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. In this paper, we obtain similar results for the two dimensional isotropic quantum harmonic oscillator. In the opposite direction, we construct an infinite sequence of regular eigenfunctions with as many nodal domains as allowed by Courant's theorem, up to a factor 1 4 . A classical question for a 2-dimensional bounded domain is to estimate the length of the nodal set of a Dirichlet eigenfunction in terms of the square root of the energy. In the last section, we consider some Schrödinger operators -∆ + V in R 2 and we provide bounds for the length of the nodal set of an eigenfunction with energy λ in the classically permitted region {V (x) < λ}.

Introduction and main results

(1.1)

Arrange the eigenvalues in increasing order, λ 1 (q) < λ 2 (q) < • • • . A classical theorem of C. Sturm [START_REF] Hinton | Sturm's 1836 oscillation results. Evolution of the theory[END_REF] states that an eigenfunction u of (1.1) associated with λ k (q) has exactly (k -1) zeros in ]a, b[ or, equivalently, that the zeros of u divide ]a, b[ into k sub-intervals.

In higher dimensions, one can consider the eigenvalue problem for the Laplace-Beltrami operator -∆ g on a compact connected Riemannian manifold (M, g), with Dirichlet condition in case M has a boundary ∂M ,

-∆u = λu in M, u| ∂M = 0. (1.2)
Arrange the eigenvalues in non-decreasing order, with multiplicities, λ 1 (M, g) < λ 2 (M, g) ≤ λ 3 (M, g) ≤ . . .

Denote by M 0 the interior of M , M 0 := M \ ∂M .

Given an eigenfunction u of -∆ g , denote by

N (u) := {x ∈ M 0 | u(x) = 0} (1.3) 
the nodal set of u, and by µ(u) := # { connected components of M 0 \ N (u)} (1.4) the number of nodal domains of u i.e., the number of connected components of the complement of N (u).

Courant's theorem [START_REF] Courant | Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke[END_REF] states that if -∆ g u = λ k (M, g)u, then µ(u) ≤ k.

In this paper, we investigate three natural questions about Courant's theorem in the framework of the 2D isotropic quantum harmonic oscillator.

Question 1. In view of Sturm's theorem, it is natural to ask whether Courant's upper bound is sharp, and to look for lower bounds for the number of nodal domains, depending on the geometry of (M, g) and the eigenvalue. Note that for orthogonality reasons, for any k ≥ 2 and any eigenfunction associated with λ k (M, g), we have µ(u) ≥ 2.

We shall say that λ k (M, g) is Courant-sharp if there exists an eigenfunction u, such that -∆ g u = λ k (M, g)u and µ(u) = k. Clearly, λ 1 (M, g) and λ 2 (M, g) are always Courantsharp eigenvalues. Note that if λ 3 (M, g) = λ 2 (M, g), then λ 3 (M, g) is not Courant-sharp.

The first results concerning Question 1 were stated by Antonie Stern in her 1924 PhD thesis [START_REF] Stern | Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen[END_REF] written under the supervision of R. Courant.

Theorem 1.1. [A. Stern,[START_REF] Stern | Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen[END_REF]]

1. For the square [0, π] × [0, π] with Dirichlet boundary condition, there is a sequence of eigenfunctions {u r , r ≥ 1} such that -∆u r = (1 + 4r 2 )u r , and µ(u r ) = 2 .

2. For the sphere S 2 , there exists a sequence of eigenfunctions u , ≥ 1 such that -∆ S 2 u = ( + 1)u , and µ(u ) = 2 or 3 , depending on whether is odd or even.

Stern's arguments are not fully satisfactory. In 1977, H. Lewy [START_REF] Lewy | On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere[END_REF] gave a complete independent proof for the case of the sphere, without any reference to [START_REF] Stern | Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen[END_REF] (see also [4]).

More recently, the authors [START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF] gave a complete proof for the case of the square with Dirichlet boundary conditions (see also Gauthier-Shalom-Przybytkowski [17]).

The original motivation of this paper was to investigate the possibility to extend Stern's results to the case of the two-dimensional isotropic quantum harmonic oscillator H := -∆ + |x| 2 acting on L 2 (R 2 , R) (we will say "harmonic oscillator" for short). After the publication of the first version of this paper [START_REF] Bérard | On the number of nodal domains for the 2D isotropic quantum harmonic oscillator, an extension of results of A[END_REF], T. Hoffmann-Ostenhof informed us of the unpublished master degree thesis of J. Leydold [26].

An orthogonal basis of eigenfunctions of the harmonic oscillator H is given by φ m,n (x, y) = H m (x)H n (y) exp(-

x 2 + y 2 2 ) , (1.5) 
for (m, n) ∈ N 2 , where H n denotes the Hermite polynomial of degree n. For Hermite polynomials, we use the definitions and notation of Szegö [37, §5.5].

The eigenfunction φ m,n corresponds to the eigenvalue 2(m + n + 1) , Hφ m,n = 2(m + n + 1) φ m,n .

(1.6)

It follows that the eigenspace E n of H associated with the eigenvalue λ(n) = 2(n + 1) has dimension (n + 1), and is generated by the eigenfunctions φ n,0 , φ n-1,1 , . . . , φ 0,n .

We summarize Leydold's main results in the following theorem.

Theorem 1.2. [J. Leydold,[26]]

1. For n ≥ 2, and for any nonzero u ∈ E n ,

µ(u) ≤ µ L n := n 2 2 + 2 .
(1.7)

2. The lower bound on the number of nodal domains is given by

min {µ(u) | u ∈ E n , u = 0} =    1 if n = 0 , 3 if n ≡ 0 (mod 4) , n ≥ 4 , 2 if n ≡ 0 (mod 4) .
(1.8)

Remark. When n ≥ 3, the estimate (1.7) is better than Courant's bound which is µ C n := n 2 2 + n 2 + 1. The idea of the proof is to apply Courant's method separately to odd and to even eigenfunctions (with respect to the map x → -x). A consequence of (1.7) is that the only Courant-sharp eigenvalues of the harmonic oscillator are the first, second and fourth eigenvalues. The same ideas work for the sphere as well [26,[START_REF] Leydold | On the number of nodal domains of spherical harmonics[END_REF]. For the analysis of Courant-sharp eigenvalues of the square with Dirichlet boundary conditions, see [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF][START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF].

Leydold's proof that there exist eigenfunctions of the harmonic oscillator satisfying (1.8) is quite involved. In this paper, we give a simple proof that, for any odd integer n, there exists a one-parameter family of eigenfunctions with exactly two nodal domains in E n . More precisely, for θ ∈ [0, π[, we consider the following curve in E n ,

Φ θ n := cos θ φ n,0 + sin θ φ 0,n , (1.9) 
Φ θ n (x, y) = (cos θ H n (x) + sin θ H n (y)) exp(-

x 2 + y 2 2 ) .
We prove the following theorems (Sections 4 and 5). 

θ ∈ I π 4 ∪ I 3π 4 \ { π 4 , 3π 4 } , the nodal set N (Φ θ n
) is a connected simple regular curve, and the eigenfunction Φ θ n has two nodal domains in R 2 .

Theorem 1.4. Assume that n is odd. Then, there exists θ c > 0 such that, for 0 < θ < θ c , the nodal set N (Φ θ n ) is a connected simple regular curve, and the eigenfunction Φ θ n has two nodal domains in R 2 .

Remark. The value θ c and the intervals can be computed numerically. The proofs of the theorems actually show that ]0, θ c [ ∩I π 4 = ∅.

Question 2. How good/bad is Courant's upper bound on the number of nodal domains? Consider the eigenvalue problem (1.2). Given k ≥ 1, define µ(k) to be the maximum value of µ(u) when u is an eigenfunction associated with the eigenvalue λ k (M, g). Then,

lim sup k →∞ µ(k) k ≤ γ(n) (1.10)
where γ(n) is a universal constant which only depends on the dimension n of M . Furthermore, for n ≥ 2, γ(n) < 1. The idea of the proof, introduced by Pleijel in 1956, is to use a Faber-Krahn type isoperimetric inequality and Weyl's asymptotic law. Note that the constant γ(n) is not sharp. For more details and references, see [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF][START_REF] Donnelly | Counting nodal domains in Riemannian manifolds[END_REF].

As a corollary of the above result, the eigenvalue problem (1.2) has only finitely many Courant-sharp eigenvalues.

The above result gives a quantitative improvement of Courant's theorem in the case of the Dirichlet Laplacian in a bounded open set of R 2 . When trying to implement the strategy of Pleijel for the harmonic oscillator, we get into trouble because of the absence of a reasonable Faber-Krahn inequality. P. Charron [START_REF] Charron | On Pleijel's theorem for the isotropic harmonic oscillator[END_REF][START_REF] Charron | A Pleijel type theorem for the quantum harmonic oscillator[END_REF] has obtained the following theorem.

Theorem 1.5.

If (λ n , u n ) is an infinite sequence of eigenpairs of H, then lim sup µ(u n ) n ≤ γ(2) = 4 j 2 0,1 , (1.11) 
where j 0,1 is the first positive zero of the Bessel function of order 0 .

This is in some sense surprising that the statement is exactly the same as in the case of the Dirichlet realization of the Laplacian in a bounded open set in R 2 . The proof does actually not use the isotropy of the harmonic potential, can be extended to the n-dimensional case, but strongly uses the explicit knowledge of the eigenfunctions. We refer to [START_REF] Charron | Pleijel's theorem for Schrödinger operators with radial potentials[END_REF] for further results in this direction.

A related question concerning the estimate (1.10) is whether the order of magnitude is correct. In the case of the 2-sphere, using spherical coordinates, one can find decomposed spherical harmonics u of degree , with associated eigenvalue ( +1), such that µ(u ) ∼

2 2
when is large, whereas Courant's upper bound is equivalent to 2 . These spherical harmonics have critical zeros and their nodal sets have self-intersections. In [16, Section 2], the authors construct spherical harmonics v , of degree , without critical zeros i.e., whose nodal sets are disjoint closed regular curves, such that µ(v ) ∼ 2 4 . These spherical harmonics v have as many nodal domains as allowed by Courant's theorem, up to a factor 1 4 . Since the v 's are regular, this property is stable under small perturbations in the same eigenspace.

In Section 6, in a direction opposite to Theorems 1.3 and 1.4, we construct eigenfunctions of the harmonic oscillator H with "many" nodal domains.

Theorem 1.6. For the harmonic oscillator H in L 2 (R 2 ), there exists a sequence of eigenfunctions {u k , k ≥ 1} such that Hu k = λ(k)u k , with λ(4k) = 2(4k + 1), u k as no critical zeros (i.e. has a regular nodal set), and

µ(u k ) ∼ (4k) 2 8 .

Remarks.

1. The above estimate is, up to a factor 1 4 , asymptotically the same as the upper bounds for the number of nodal domains given by Courant and Leydold. 2. A related question is to analyze the zero set when θ is a random variable. We refer to [START_REF] Hanin | Nodal sets of random eigenfunctions for the isotropic harmonic oscillator[END_REF] for results in this direction. The above questions are related to the question of spectral minimal partitions [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]. In the case of the harmonic oscillator similar questions appear in the analysis of the properties of ultracold atoms (see for example [START_REF] Royo-Letelier | Segregation and symmetry breaking of strongly coupled twocomponent Bose-Einstein condensates in a harmonic trap[END_REF]). Question 3. Consider the eigenvalue problem (1.2), and assume for simplicity that M is a bounded domain in R 2 . Fix any small number r, and a point x ∈ M such that B(x, r) ⊂ M . Let u be a Dirichlet eigenfunction associated with the eigenvalue λ and assume that λ ≥ πj 2 0,1 r 2 . Then N (u) ∩ B(x, r) = ∅. This fact follows from the monotonicity of the Dirichlet eigenvalues, and indicates that the length of the nodal set should tend to infinity as the eigenvalue tends to infinity. The first results in this direction are due to Brüning and Gromes [6,[START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF] who show that the length of the nodal set N (u) is bounded from below by a constant times √ λ. For further results in this direction (Yau's conjecture), we refer to [15,[START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF]28,[START_REF] Bérard | Stern's analysis of the nodal sets of some families of spherical harmonics revisited[END_REF][START_REF] Sogge | Lower bounds on the Hausdorff measure of nodal sets II[END_REF]. In Section 7, we investigate this question for the harmonic oscillator.

Theorem 1.7. Let δ ∈]0, 1[ be given. Then, there exists a positive constant C δ such that for λ large enough, and for any nonzero eigenfunction of the isotropic 2D quantum harmonic oscillator,

H := -∆ + |x| 2 , Hu = λu , (1.12 
)

the length of N (u) ∩ B √ δλ is bounded from below by C δ λ 3 2 .
As a matter of fact, we prove a lower bound for more general Schrödinger operators in R 2 (Propositions 7.2 and 7.8), shedding some light on the exponent 3 2 in the above estimate. In Section 7.3, we investigate upper and lower bounds for the length of the nodal sets, using the method of Long Jin [START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF].
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A reminder on Hermite polynomials

We use the definition, normalization, and notation of Szegö's book [START_REF] Szegö | Orthogonal Polynomials[END_REF]. With these choices, the Hermite polynomial H n has the following properties, [37, § 5.5 and Theorem 6.32].

1. H n satisfies the differential equation

y (t) -2t y (t) + 2n y(t) = 0 .
2. H n is a polynomial of degree n which is even (resp. odd) for n even (resp. odd).

H

n (t) = 2t H n-1 (t) -2(n -1) H n-2 (t) , n ≥ 2 , H 0 (t) = 1 , H 1 (t) = 2t . 4. H n has n simple zeros t n,1 < t n,2 < • • • < t n,n .

5.

H n (t) = 2t H n-1 (t) -H n-1 (t) .

6.

H n (t) = 2nH n-1 (t) .

(2.1)

7. The coefficient of t n in H n is 2 n . 8. +∞ -∞ e -t 2 |H n (t)| 2 dt = π 1 2 2 n n! .
9. The first zero t n,1 of H n satisfies t n,1 = (2n + 1)

1 2 -6 -1 2 (2n + 1) -1 6 (i 1 + n ) , (2.2) 
where i 1 is the first positive real zero of the Airy function, and lim n→+∞ n = 0 .

The following result (Theorem 7.6.1 in Szegö's book [START_REF] Szegö | Orthogonal Polynomials[END_REF]) will also be useful.

Lemma 2.1. The successive relative maxima of t → |H n (t)| form an increasing sequence for t ≥ 0 .

Proof.

It is enough to observe that the function

Θ n (t) := 2nH n (t) 2 + H n (t) 2 satisfies Θ n (t) = 4t (H n (t)) 2 .
3 Stern-like constructions for the harmonic oscillator in the case n-odd

The case of the square

Consider the square [0, π] 2 , with Dirichlet boundary conditions, and the following families of eigenfunctions associated with the eigenvalues λ(1, 2r) := 1 + 4r 2 , where r is a positive integer, and θ ∈ [0, π/4],

(x, y) → cos θ sin x sin(2ry) + sin θ sin(2rx) sin y . According to [START_REF] Stern | Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen[END_REF], for any given r ≥ 1, the typical evolution of the nodal sets when θ varies is similar to the case r = 4 shown in Figure 1 [2, Figure 6.9]. Generally speaking, the nodal sets deform continuously, except for finitely many values of θ, for which selfintersections of the nodal set appear or disappear or, equivalently, for which critical zeros of the eigenfunction appear/disappear.

We would like to get similar results for the isotropic quantum harmonic oscillator.

Symmetries

Recall the notation, Φ θ n (x, y) := cos θ φ n,0 (x, y) + sin θ φ 0,n (x, y) .

(3.1) More simply, Φ θ n (x, y) = exp - x 2 + y 2 2 (cos θ H n (x) + sin θ H n (y)) .
Since Φ θ+π n = -Φ θ n , it suffices to vary the parameter θ in the interval [0, π[. Assuming n is odd, we have the following symmetries.

       Φ θ n (-x, y) = Φ π-θ n (x, y) , Φ θ n (x, -y) = -Φ π-θ n (x, y) , Φ θ n (y, x) = Φ π 2 -θ n (x, y) . (3.2)
When n is odd, it therefore suffices to vary the parameter θ in the interval [0, π 4 ]. The case θ = 0 is particular, so that we shall mainly consider θ ∈]0, π 4 ].

Critical zeros

A critical zero of Φ θ n is a point (x, y) ∈ R 2 such that both Φ θ n and its differential dΦ θ n vanish at (x, y). The critical zeros of Φ θ n satisfy the following equations.

     cos θ H n (x) + sin θ H n (y) = 0 , cos θ H n (x) = 0 , sin θ H n (y) = 0 . (3.3)
Equivalently, using the properties of the Hermite polynomials, a point (x, y) is a critical zero of Φ θ n if and only if

     cos θ H n (x) + sin θ H n (y) = 0 , cos θ H n-1 (x) = 0 , sin θ H n-1 (y) = 0 . (3.4)
The only possible critical zeros of the eigenfunction Φ θ n are the points (t n-1,i , t n-1,j ) for 1 ≤ i, j ≤ (n -1), where the coordinates are the zeros of the Hermite polynomial

H n-1 . The point (t n-1,i , t n-1,j ) is a critical zero of Φ θ n if and only if θ = θ(i, j) , where θ(i, j) ∈]0, π[ is uniquely determined by the equation, cos (θ(i, j)) H n (t n-1,i ) + sin (θ(i, j)) H n (t n-1,j ) = 0 . (3.5)
The values θ(i, j) will be called critical values of the parameter θ, the other values regular values. Here we have used the fact that H n and H n have no common zeros. We have proved the following lemma.

Lemma 3.1. For θ ∈ [0, π[, the eigenfunction Φ θ n has no critical zero, unless θ is one of the critical values θ(i, j) defined by equation (3.5). In particular Φ θ n has no critical zero, except for finitely many values of the parameter θ ∈ [0, π[. Given a pair (i 0 , j 0 ) ∈ {1, . . . , n -1}, let θ 0 = θ(i 0 , j 0 ), be defined by (3.5) for the pair (t n-1,i 0 , t n-1,j 0 ) . Then, the function Φ θ 0 n has finitely many critical zeros, namely the points

(t n-1,i , t n-1,j ) which satisfy cos θ 0 H n (t n-1,i ) + sin θ 0 H n (t n-1,j ) = 0 , (3.6) 
among them the point (t n-1,i 0 , t n-1,j 0 ) .

Remarks.

From the general properties of nodal lines [2, Properties 5.2], we derive the following facts.

1. When θ ∈ {θ(i, j) | 1 ≤ i, j ≤ n -1}, the nodal set N (Φ θ n ) of the eigenfunction Φ θ n , is a smooth 1-dimensional submanifold of R 2 (a collection of pairwise distinct connected simple regular curves). 2. When θ ∈ {θ(i, j) | 1 ≤ i, j ≤ n -1}, the nodal set N (Φ θ
n ) has finitely many singularities which are double crossings1 . Indeed, the Hessian of the function Φ θ n at a critical zero (t n-1,i , t n-1,j ) is given by

Hess (t n-1,i ,t n-1,j ) Φ θ n = exp (- t 2 n-1,i + t 2 n-1,j 2 ) cos θ H n (t n-1,i ) 0 0 sin θ H n (t n-1,j ) ,
and the assertion follows from the fact that H n-1 has simple zeros.

General properties of the nodal set N (Φ θ n )

Denote by L the finite lattice

L := {(t n,i , t n,j ) | 1 ≤ i, j ≤ n} ⊂ R 2 , (3.7) 
consisting of points whose coordinates are the zeros of the Hermite polynomial H n .

The horizontal and vertical lines {y = t n,i } and {x = t n,j }, 1 ≤ i, j ≤ n, form a checkerboard like pattern in R 2 which can be colored according to the sign of the function H n (x) H n (y) (grey where the function is positive, white where it is negative). We will refer to the following properties as the checkerboard argument, compare with [START_REF] Stern | Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen[END_REF][START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF].

For symmetry reasons, we can assume that θ ∈]0, π 4 ]. (i) We have the following inclusions for the nodal sets

N (Φ θ n ) , L ⊂ N (Φ θ n ) ⊂ L ∪ (x, y) ∈ R 2 | H n (x) H n (y) < 0 . (3.8) 
(ii) The nodal set N (Φ θ n ) does not meet the vertical lines {x = t n,i }, or the horizontal lines {y = t n,i } away from the set L.

(iii) The lattice point (t n,i , t n,j ) is not a critical zero of Φ θ n (because H n and H n have no common zero). As a matter of fact, near a lattice point, the nodal set N (Φ θ n ) is a single arc through the lattice point, with a tangent which is neither horizontal, nor vertical.

Figure 2 shows the evolution of the nodal set of Φ θ n , for n = 7, when θ varies in the interval ]0, π 4 ]. The pictures in the first column correspond to regular values of θ whereas the pictures in the second column correspond to critical values of θ. The form of the nodal set is stable in the open interval between two consecutive critical values of the parameter θ. In the figures, the thick curves represent the nodal sets N (Φ θ 7 ), the thin lines correspond to the zeros of H 7 , and the grey lines to the zeros of H 7 , i.e. to the zeros of H 6 .

We now describe the nodal set N (Φ θ n ) outside a large enough square which contains the lattice L. For this purpose, we give the following two barrier lemmas which describe the intersections of the nodal set with horizontal and vertical lines. 2 ) Φ θ n (t, y). In ]t n,n , +∞[ , v (y) is positive, and v(t n,n ) ≤ 0 . The first assertion follows. The local extrema of v occur at the points t n-1,j , for 1 ≤ j ≤ (n -1) . The second assertion follows from the definition of t n-1,0 , and from the inequalities,

Lemma 3.2. Assume that θ ∈]0, π 4 ]. For n odd, define t n-1,0 to be the unique point in ] -∞, t n,1 [ such that H n (t n-1,0 ) = -H n (t n-1,1
cos θ H n (t) + sin θ H n (t n-1,j ) ≤ 1 √ 2 H n (t) + |H n |(t n-1,j ) < - 1 √ 2 H n (t n-1,1 ) -|H n |(t n-1,j ) ≤ 0 ,
for t < t n-1,0 , where we have used Lemma 2.1.

Lemma 3.3. Let θ ∈]0, π 4 ]. Define t θ n-1,n ∈]t n,n , ∞[ to be the unique point such that tan θ H n (t θ n-1,n ) = H n (t n-1,1 ). Then, 1. ∀t ≥ t n,n , the function x → Φ θ n (x, t) has exactly one zero in the interval ] -∞, t n,1 ] ; 2. ∀t > t θ n-1,n , the function x → Φ θ n (x, t) has exactly one zero in the interval ]-∞, ∞[ . 3. For θ 2 > θ 1 , we have t θ 2 n-1,n < t θ 1 n-1,n .
Using the symmetry with respect to the horizontal line {y = 0}, one has similar statements for t ≤ t n,1 and for t < -t θ n-1,n . Proof. Let h(x) := exp( x 2 +t 2 2 ) Φ θ n (x, t). In the interval ] -∞, t n,1 ] , the derivative h (x) is positive, h(t n,1 ) > 0 , and lim x→-∞ h(x) = -∞ , since n is odd. The first assertion follows. The local extrema of h are achieved at the points t n-1,j . Using Lemma 2.1, for t ≥ t θ n-1,n , we have the inequalities,

H n (t n-1,j ) + tan θ H n (t) ≥ tan θ H n (t θ n-1,n ) -|H n (t n-1,j )| = H n (t n-1,1 ) -|H n (t n-1,j )| ≥ 0 .
As a consequence of the above lemmas, we have the following description of the nodal set far enough from (0, 0).

Proposition 3.4. Let θ ∈]0, π 4 ]. In the set R 2 \]-t θ n-1,n , t θ n-1,n [×]t n-1,0 , |t n-1,0 |[, the nodal set N (Φ θ
n ) consists of two regular arcs. The first arc is a graph y(x) over the interval ] -∞, t n,1 ], starting from the point (t n,1 , t n,n ) and escaping to infinity with,

lim x→-∞ y(x) x = - n √ cot θ .
The second arc is the image of the first one under the symmetry with respect to (0, 0) in R 2 . 4 Proof of Theorem 1.3

Local nodal patterns

Note that φ n,0 (x, y) -φ 0,n (x, y) = - √ 2 Φ 3π 4 n (x, y) = - √ 2Φ π 4 n (x, -y) .
Hence, up to symmetry, it is the same to work with θ = π 4 and the anti-diagonal, or to work with θ = 3π 4 and the diagonal. For notational convenience, we work with 3π 4 .

4.1 The nodal set of Φ 3π 4

n

The purpose of this section is to prove the following result which is the starting point for the proof of Theorem 1.3.

Proposition 4.1. Let {t n-1,i , 1 ≤ i ≤ n -1} denote the zeroes of H n-1 .
For n odd, the nodal set of φ n,0 -φ 0,n consists of the diagonal x = y, and of n-1 2 disjoint simple closed curves crossing the diagonal at the (n -1) points (t n-1,i , t n-1,i ), and the anti-diagonal at the (n -1) points (t n,i , -t n,i ).

To prove Proposition 4.1, we first observe that it is enough to analyze the zero set of (x, y) → Ψ n (x, y) := H n (x) -H n (y) .

Critical zeros

The only possible critical zeros of Ψ n are determined by

H n (x) = 0 , H n (y) = 0 .
Hence, they consist of the (n -1) 2 points (t n-1,i , t n-1,j ) , for 1 ≤ i, j ≤ (n -1) , where t n-1,i is the i-th zero of the polynomial H n-1 .

The zero set of Ψ n contains the diagonal {x = y} . Since n is odd, there are only n points belonging to the zero set on the anti-diagonal {x + y = 0}.

On the diagonal, there are (n -1) critical points. We claim that there are no critical zeros outside the diagonal. Indeed, let (t n-1,i , t n-1,j ) be a critical zero. Then, H n (t n-1,i ) = H n (t n-1,j ). Using Lemma 2.1 and the parity properties of Hermite polynomials, we see that The second part in the proof of the proposition follows closely the proof in the case of the Dirichlet Laplacian for the square (see Section 5 in [START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF]). Essentially, the Chebyshev polynomials are replaced by the Hermite polynomials. Note however that the checkerboard is no more with equal squares, and that the square [0, π] 2 has to be replaced in the argument by the rectangle [t n-1,0 , -t n-1,0 ] × [-t θ n-1,n , t θ n-1,n ], for some θ ∈]0, 3π 4 [ , see Lemmas 3.2 and 3.3 .

|H n (t n-1,i )| = |H n (t n-1,j )| occurs if and only if t n-1,i = ±t n-1,j . Since n is odd, we can conclude that H n (t n-1,i ) = H n (t n-1,j ) occurs if and only if t n-1,i = t n-1,j .
The checkerboard argument holds, see (3.8) and the properties at the beginning of Section 3.4.

The separation lemmas of our previous paper [START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF] must be substituted by Lemmas 3.2 and 3.3 , and similar statements with the lines {x = t n-1,j } and {y = t n-1,j }, for 1 ≤ j ≤ (n -1) .

One needs to control what is going on at infinity. As a matter of fact, outside a specific rectangle centered at the origin, the zero set is the diagonal {x = y}, see Proposition 3.4 .

Hence in this way (like for the square), we obtain that the nodal set of Ψ n consists of the diagonal and n-1 2 disjoint simple closed curves turning around the origin. The set L is contained in the union of these closed curves. The "energy" considerations of our previous papers [START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF]4] work here as well. Here is a simple alternative argument.

We look at the line y = α x for some α = 1. The intersection of the zero set with this line corresponds to the zeroes of the polynomial x → H n (x) -H n (α x) which has at most n zeroes. But in our previous construction, we get at least n zeroes. So the presence of extra curves would lead to a contradiction for some α. This argument solves the problem at infinity as well.

Perturbation argument

Figure 4 shows the desingularization of the nodal set N (Φ 3π 4 n ), from below and from above. The picture is the same as in the case of the square (see Figure 1), all the critical points disappear at the same time and in the same manner, i.e. all the double crossings open up horizontally or vertically depending whether θ is less than or bigger than 3π 4 . As in the case of the square, in order to show that the nodal set can be desingularized under small perturbation, we look at the signs of the eigenfunction Φ 3π 4 n near the critical zeros. We use the cases (I) and (II) which appear in Figure 5 below (see also [ The sign configuration for φ n,0 (x, y) -φ 0,n (x, y) near the critical zero (t n-1,i , t n-1,i ) is given by Figure 5 case (I), if i is even, case (II), if i is odd.

Looking at the intersection of the nodal set with the vertical line {y = t n-1,i }, we have that (-

1) i (H n (t) -H n (t n-1,i )) ≥ 0 , for t ∈]t n,i , t n,i+1 [ .
For positive small, we write

(-1) i (H n (t) -(1 + )H n (t n-1,i )) = (-1) i (H n (t) -H n (t n-1,i )) + (-1) i+1 H n (t n-1,i ) , so that (-1) i (H n (t) -(1 + )H n (t n-1,i )) ≥ 0 , for t ∈]t n,i , t n,i+1 [ .
A similar statement can be written for horizontal line {x = t n-1,i } and -, with > 0 , small enough. These inequalities describe how the crossings all open up at the same time, and in the same manner, vertically (case I) or horizontally (case II), see Figure 6, as in the case of the square [2, Figure 6.8].

Figure 6: Desingularization at a critical zero.

We can then conclude as in the case of the square, using the local nodal patterns, Section 3.5.

Remark. Because the local nodal patterns can only change when θ passes through one of the values θ(i, j) defined in (3.5), the above arguments work for θ ∈ J \ { 3π 4 }, for any interval J containing 3π 4 and no other critical value θ(i, j).

5 Proof of Theorem 1.4

Proposition 5.1. The conclusion of Theorem 1.4 holds with

θ c := inf {θ(i, j) | 1 ≤ i, j ≤ n -1} , (5.1) 
where the critical values θ(i, j) are defined by (3.5).

Proof. The proof consists in the following steps. For simplicity, we call N the nodal set N (Φ θ n ). • Step 1. By Proposition 3.4, the structure of the nodal set N is known outside a large coordinate rectangle centered at (0, 0) whose sides are defined by the ad hoc numbers in Lemmas 3.2 and 3.3. Notice that the sides of the rectangle serve as barriers for the arguments using the local nodal patterns as in our paper for the square.

• Step 2. For 1 ≤ j ≤ n -1, the line {x = t n-1,j } intersects the set N at exactly one point (t n-1,j , y j ), with y j > t n,n when j is odd, resp. with y j < t n,1 when j is even. The proof is given below, and is similar to the proofs of Lemmas 3.2 or 3.3 .

• Step 3. Any connected component of N has at least one point in common with the set L. This follows from the argument with y = αx or from the energy argument (see Subsection 4.1.3).

• Step 4. Follow the nodal set from the point (t n,1 , t n,n ) to the point (t n,n , t n,1 ), using the analysis of the local nodal patterns as in the case of the square.

Proof of Step 2. For 1 ≤ j ≤ (n -1), define the function v j by v j (y) := cos θ H n (t n-1,j ) + sin θ H n (y) .

The local extrema of v j are achieved at the points t n-1,i , for 1 ≤ i ≤ (n -1), and we have

v j (t n-1,i ) = cos θ H n (t n-1,j ) + sin θ H n (t n-1,i ) ,
which can be rewritten, using (3.5), as

v j (t n-1,i ) = H n (t n-1,j ) sin θ(j, i) sin (θ(j, i) -θ) .
The first term in the right-hand side has the sign of (-1) j+1 and the second term is positive provided that 0 < θ < θ c . Under this last assumption, we have

(-1) j+1 v j (t n-1,i ) > 0 , ∀i , 1 ≤ i ≤ (n -1) . (5.
2)

The assertion follows.

6 Eigenfunctions with "many" nodal domains, proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6 i.e., to the constructions of eigenfunctions of H with regular nodal sets (no self-intersections) and "many" nodal domains. We work in polar coordinates. An orthogonal basis of E is given by the functions Ω ± ,n , Ω ± ,n (r, ϕ) = exp(-

r 2 2 ) r -2n L ( -2n) n (r 2 ) exp (±i( -2n)ϕ) , (6.1) with 0 ≤ n ≤ 2 , see [26, Section 2.1]. In this formula L (α)
n is the generalized Laguerre polynomial of degree n and parameter α, see [START_REF] Szegö | Orthogonal Polynomials[END_REF]Chapter 5]. Recall that the Laguerre polynomial L n is the polynomial L (0) n . Assumption 6.1. From now on, we assume that = 4k , with k even.

Since is even, we have a rotation invariant eigenfunction exp(-r 2

2 ) L 2k (r 2 ) which has (2k + 1) nodal domains. We also look at the eigenfunctions ω ,n ,

ω ,n (r, ϕ) = exp(- r 2 2 ) r -2n L ( -2n) n (r 2 ) sin (( -2n)ϕ) , (6.2) 
with 0 ≤ n < 2 .

The number of nodal domains of these eigenfunctions is µ(ω ,n ) = 2(n + 1)( -2n), because the Laguerre polynomial of degree n has n simple positive roots. When = 4k, the largest of these numbers is µ := 4k(k + 1) , (6.3) and this is achieved for n = k .

When k tends to infinity, we have µ ∼ 2 4 , the same order of magnitude as Leydold's upper bound µ L ∼ 2 2 . We want now to construct eigenfunctions u k ∈ E , = 4k with regular nodal sets, and "many" nodal domains (or equivalently, "many" nodal connected components), more precisely with µ(u k ) ∼ From now on, we fix some , 0 < < 1 . We assume that a is positive (to be chosen small enough later on), and that b is non zero (to be chosen small enough, either positive or negative later on).

In the remaining part of this section, we skip the exponential factor in the eigenfunctions since it is irrelevant to study the nodal sets.

Under Assumption 6.1, define

A(r, ϕ) := r 2k L (2k) k (r 2 ) sin(2kϕ) , B(r, ϕ) := r 4k sin(4kϕ -π) , C(r, ϕ) := L 2k (r 2 ) . (6.4)
We consider the deformations

F a = A + a B and G a,b = A + a B + b C.
Both functions are invariant under the rotation of angle π k , so that we can restrict to ϕ ∈ [0, π k ] . For later purposes, we introduce the angles ϕ j = jπ k , for 0 ≤ j ≤ 4k -1, and ψ m = (m+ )π 4k , for 0 ≤ m ≤ 8k -1 . We denote by t i , 1 ≤ i ≤ k the zeros of L k . This polynomial has (k -1) simple zeros, which we denote by t i , 1 ≤ i ≤ k -1, with t i < t i < t i+1 . We define r i := t i .

Critical zeros

Clearly, the origin is a critical zero of the eigenfunction F a = A + a B , while G a,b = A + a B + b C does not vanish at the origin.

Away from the origin, the critical zeros of F a are given by the system

F a (r, ϕ) = 0 , ∂ r F a (r, ϕ) = 0 , ∂ ϕ F a (r, ϕ) = 0 . (6.5)
The first and second conditions imply that a critical zero (r, ϕ) satisfies sin(2kϕ) sin(4kϕ -π) kL

(2k) k (r 2 ) -r 2 L(2k) k (r 2 ) = 0 , (6.6)
where L is the derivative of the polynomial L .

The first and third conditions imply that a critical zero (r, ϕ) satisfies 2 sin(2kϕ) cos(4kϕ -π) -cos(2kϕ) sin(4kϕ -π) = 0 . (6.7)

It is easy to deduce from (6.5) that when (r, ϕ) is a critical zero, sin(2kϕ) sin(4kϕ -π) = 0 . It follows that, away from the origin, a critical zero (r, ϕ) of F a satisfies the system

kL (2k) k (r 2 ) -r 2 L(2k) k (r 2 ) = 0 , 2 sin(2kϕ) cos(4kϕ -π) -cos(2kϕ) sin(4kϕ -π) = 0 . (6.8)
The first equation has precisely (k -1) positive simple zeros r c,i , one in each interval ]r i , r i [ , for 1 ≤ i ≤ (k -1). An easy analysis of the second shows that it has 4k simple zeros ϕ c,j , one in each interval ]ϕ j , ψ 2j+1 [ , for 0 ≤ j ≤ 4k -1 .

Property 6.2. The only possible critical zeros of the function F a , away from the origin, are the points (r c,i , ϕ c,j ) , for 1 ≤ i ≤ k -1 and 0 ≤ j ≤ 4k -1 , with corresponding finitely many values of a given by (6.5). In particular, there exists some a 0 > 0 such that for 0 < a < a 0 , the eigenfunction F a has no critical zero away from the origin.

The function G a,b does not vanish at the origin (provided that b = 0). Its critical zeros are given by the system

G(r, ϕ) = 0 , ∂ r G(r, ϕ) = 0 , ∂ ϕ G(r, ϕ) = 0 . (6.9)
We look at the situation for r large. Write

L (2k) k (t) = (-1) k k! t k + P k (t) , L 2k (t) = 1 (2k)! t 2k + Q k (t) , (6.10) 
where P k and Q k are polynomials with degree (k -1) and (2k -1) respectively.

The first and second equations in (6.9) are equivalent to the first and second equations of the system

0 = (-1) k k! sin(2kϕ) + a sin(4kϕ -π) + b (2k)! + O( 1 r 2 ) , 0 = (-1) k k! cos(2kϕ) + 2a cos(4kϕ -π) + O( 1 r 2 ) , (6.11)
where the O( 1 r 2 ) are uniform in ϕ and a, b (provided they are initially bounded). Property 6.3. There exist positive numbers a 1 ≤ a 0 , b 1 , R 1 , such that for 0 < a < a 1 , 0 < |b| < b 1 , and r > R 1 , the function G a,b (r, ϕ) has no critical zero. It follows that for fixed 0 < a < a 1 , and b small enough (depending on a), the function G a,b has no critical zero in R 2 .

Proof. Let α := (-1) k k! sin(2kϕ) + a sin(4kϕ -π), β := b (2k)! and γ := (-1) k k! cos(2kϕ) + 2a cos(4kϕ -π) . Compute (α + β) 2 + γ 2 . For 0 < a < 1 2k! , one has (α + β) 2 + γ 2 ≤ 1 (2k!) 2 - 4a k! - 4|b| k!(2k)! .
The first assertion follows. The second assertion follows from the first one and from Property 6.2.

The checkerboard

Since a in positive, the nodal set of F a satisfies

L ⊂ N (F a ) ⊂ L ∪ {AB < 0} , (6.12) 
where L is the finite set N (A) ∩ N (B), more precisely,

L = {(r i , ψ m ) | 1 ≤ i ≤ k , 0 ≤ m ≤ 8k -1} . (6.13)
Let p i,m denote the point with polar coordinates (r i , ψ m ). It is easy to check that the points p i,m are regular points of the nodal set N (F a ). More precisely the nodal set N (F a ) at these points is a regular arc transversal to the lines {ϕ = ψ m } and {r = r i }. Note also that the nodal set N (F a ) can only cross the nodal sets N (A) or N (B) at the points in L . The connected components of the set {AB = 0} form a "polar checkerboard" whose white boxes are the connected components in which AB < 0 . The global aspect of the checkerboard depends on the parity of k . Recall that our assumption is that = 4k , with k even. Figure 7 displays a partial view of the checkerboard, using the invariance under the rotation of angle π k . The thin lines labelled "R" correspond to the angles ψ m , with m = 0, 1, 2, 3 . The thick lines to the angles ϕ j , with j = 0, 1, 2 . The thick arcs of circle correspond to the values r i , with i = 1, 2, 3 and then i = k -1, k . The light grey part represents the zone r i with i = 4, . . . , k -2. The intersection points of the thin lines "R" with the thick arcs are the point in L , in the sector 0 ≤ ϕ ≤ ϕ 2 . The outer arc of circle (in grey) represents the horizon.

Behavior at infinity

We now look at the behavior at infinity of the functions F a and G a,b . We restrict our attention to the sector {0 ≤ ϕ ≤ ϕ 2 }.

Recall that k is even.

For r > r k , the nodal set N (F a ) can only visit the white sectors S 0 := {ϕ 0 < ϕ < ψ 0 }, S 1 := {ψ 1 < ϕ < ϕ 1 }, and S 2 := {ψ 2 < ϕ < ψ 3 }, issuing respectively from the points p k,0 , p k,1 or p k,2 , p k,3 .

As above, we can write

F a (r, ϕ) = r 4k g(ϕ) + sin(2kϕ)P k (r 2 ) , (6.14) 
with

g(ϕ) = 1 k! sin(2kϕ) + a sin(4kϕ -π) ,
where we have used the fact that k is even.

• Analysis in S 0 . We have 0 < ϕ < π 4k . Note that g(0) g( π 4k ) < 0 . On the other-hand, g (ϕ) satisfies

g (ϕ) ≥ 2k 1 k! cos( π 2 ) -2a .
It follows that provided that 0 < a < 1 2 k! cos( π 2 ), the function g has exactly one zero θ 0 in the interval ]0, π 4k [ . It follows that for r big enough, the equation F a (r, ϕ) = 0 has exactly one zero ϕ(r) in the interval ]0, π 4k [, and this zero tends to θ 0 when r tends to infinity. Looking at (6.14) again, we see that ϕ(r) = θ 0 + O( 1 r 2 ). It follows that the nodal set in the sector S 0 is a line issuing from p k,0 and tending to infinity with the asymptote ϕ = θ 0 .

• Analysis in S 1 . The analysis is similar to the analysis in S 0 .

• Analysis in S 2 . In this case, we have that

(2+ )π 4k < ϕ < (3+ )π 4k . It follows that -sin(2kϕ) ≥ min{sin( π 2 ), cos( π 2 )} > 0. If 0 < a < 1 k! min{sin( π 2 )
, cos( π 2 )}, then F a (r, ϕ) tends to negative infinity when r tends to infinity, uniformly in ϕ ∈]ψ 2 , ψ 3 [ . It follows that the nodal set of N (F a ) is bounded in the sector S 2 .

6.4

The nodal set N (F a ) and N (G a,b ) Proposition 6.4. For = 4k, k even, and a positive small enough, the nodal set of F a consists of three sets of "ovals" 1. a cluster of 2k closed (singular) curves, with a common singular point at the origin, 2. 2k curves going to infinity, tangentially to lines ϕ = ϑ a,j (in the case of the sphere, they would correspond to a cluster of closed curves at the south pole), 3. 2k(k -1) disjoint simple closed curves (which correspond to the white cases at finite distance of Stern's checkerboard for A and B).

Proof.

Since B vanishes at higher order than A at the origin, the behavior of the nodal set of F a is well determined at the origin. More precisely, the nodal set of F a at the origin consists of 4k semi-arcs, issuing from the origin tangentially to the lines ϕ = jπ/2k, for 0 ≤ j ≤ 4k -1 . At infinity, the behavior of the nodal set of F a is determined for a small enough in Subsection 6.3. An analysis à la Stern, then shows that for a small enough there is a cluster of ovals in the intermediate region {r 2 < r < r k-1 }, when k ≥ 4.

Fixing so a small enough so that the preceding proposition holds, in order to obtain a regular nodal set, it suffices to perturb F a into G a,b , with b small enough, choosing its sign so that the nodal set F a is desingularized at the origin, creating 2k ovals. 

V , H V u = λu, the length of N (u) ∩ B V (δλ) is not less than 2(1 -δ) 9π 2 j 0,1 √ λ A B (-2ρ) V (δλ) . (7.4)
Proof of Proposition 7.2.

Lemma 7.3. Choose some radius 0 < ρ ≤ 1, and let Consider the set F of finite subsets {x 1 , . . . , x n } of R 2 with the following properties,

ρ δ := j 0,1 √ 1 -δ . ( 7 
x i ∈ N (u) ∩ B (-ρ) V (δλ), 1 ≤ i ≤ n , B(x i , ρ δ √ λ ) , 1 ≤ i ≤ n , pairwise disjoint. (7.6)
For λ large enough, the set F is not empty, and can be ordered by inclusion. It admits a maximal element {x 1 , . . . , x N } , where N depends on δ, ρ, λ and u. 

N ≥ λ 9π 2 ρ 2 δ A B (-2ρ) V (δλ) , (7.7) 
where A(Ω) denotes the area of the set Ω . 

(u) ∩ B(x i , α √ λ ) is at least 2α √ λ . Finally, the length of N (u) ∩ B V (δλ) is at least N 2α √ λ which is bigger than 2α 9π 2 ρ 2 δ √ λA B (-2ρ) V (δλ) .
Since this is true for any α < j 0,1 .

Proof of Theorem 1.7.

We apply the preceding proposition with V (x) = |x| 2k and ρ = 1. Then, B V (λ) = B(λ

1 2k
) and B (-r) V (λ) = B(λ 1 2k -r). In this case, the length of the nodal set is bounded by some constant times λ Remark. The above proof sheds some light on the exponent 3 2 in Proposition 1.7.

More general potentials

We reinterpret Proposition 7.2 for more general potentials V (x), under natural assumptions which appear in the determination of the Weyl's asymptotics of H V (see [START_REF] Robert | Propriétés spectrales d'opérateurs pseudo-différentiels[END_REF], [23]).

After renormalization, we assume:

Assumption 7.6. V is of class C 1 , V ≥ 1
, and there exist some positive constants ρ 0 and C 1 such that for all x ∈ R 2 ,

|∇V (x)| ≤ C 1 V (x) 1-ρ 0 . (7.8)
Note that under this assumption there exist positive constants r 0 and C 0 such that

x, y satisfy |x -y| ≤ r 0 ⇒ V (x) ≤ C 0 V (y) . (7.9)
The proof is easy. We first write

V (x) ≤ V (y) + |x -y| sup z∈[x,y]
|∇V (z)| .

Upper and lower bounds on the length of the nodal set: the semi-classical approach of Long Jin

In [START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF], Long Jin analyzes the same question in the semi-classical context for a Schrödinger operator

H W,h := -h 2 ∆ g + W (x) ,
where ∆ g is the Laplace-Beltrami operator on the compact connected analytic Riemannian surface (M, g), with W analytic. In this context, he shows that if (u h , λ h ) is an h-family of eigenpairs of H W,h such that λ h → E, then the length of the zero set of u h inside the classical region

W -1 (] -∞, E]) is of order h -1 .
Although not explicitly done in [START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF], the same result is also true in the case of M = R 2 under the condition that lim inf W (x) > E ≥ inf W , keeping the assumption that W is analytic. Let us show how we can reduce the case M = R 2 to the compact situation.

Proposition 7.9. Let us assume that W is continuous and that there exists E 1 such that

W -1 (] -∞, E 1 ]) is compact. Then the bottom of the essential spectrum of H W,h is bigger than E 1 . Furthermore, if (λ h , u h ) is a family (h ∈]0, h 0 ]) of eigenpairs of H W,h such that lim h→0 λ h = E 0 with E 0 < E 1 and ||u h || = 1, then given K a compact neighborhood of W -1 (] -∞, E 0 ]), there exists K > 0 such that ||u h || L 2 (K) = 1 + O (exp(-K /h)) , as h → 0 .
This proposition is a consequence of Agmon estimates (see Helffer-Sjöstrand [START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF] or Helffer-Robert [20] for a weaker result with a remainder in O K (h ∞ )) measuring the decay of the eigenfunctions in the classically forbidden region. This can also be found in a weaker form in the recent book of M. Zworski [START_REF] Zworski | Semi-classical analysis[END_REF] (Chapter 7), which also contains a presentation of semi-classical Carleman estimates.

Observing that in the proof of Long Jin the compact manifold M can be replaced by any compact neighborhood of W -1 (] -∞, E 0 ]), we obtain: Proposition 7.10. Let us assume in addition that W is analytic in some compact neighborhood of W -1 (]-∞, E 0 ]), then the length of the zero set of u h inside the classical region

W -1 (] -∞, E 0 ]) is of order h -1 .
More precisely, there exist C > 0 and h 0 > 0 such that for all h ∈]0, h 0 ] we have

1 C h -1 ≤ length N (u h ) ∩ W -1 (] -∞, E 0 ]) ≤ C h -1 . ( 7 
.12)

Remark 7.11. As observed in [START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF] (Remark 1.3), the results of [START_REF] Hanin | Nodal sets of random eigenfunctions for the isotropic harmonic oscillator[END_REF] suggest that the behavior of the nodal sets in the classically forbidden region could be very different from the one in the classically allowed region.

We can by scaling recover Proposition 1.7, and more generally treat the eigenpairs of -∆ x + |x| 2k . Indeed, assume that (-∆ x + |x| 2k )u(x) = λu(x). Write x = ρ y. Then,

(-ρ -2 ∆ y + ρ 2k |y| 2k -λ)u(ρy) = 0. If we choose ρ 2k = λ, h = ρ -k-1 = λ -k+1 2k
and let v h (y) = h 1 2(k+1) y) u(h 1 k+1 y), then, (-h 2 ∆ y + |y| 2k -1)v h (y) = 0. Applying (7.12) to the family v h and rescaling back to the variable x, we find that

1 C λ k+2 2k ≤ length N (u) ∩ {x ∈ R 2 | |x| 2k < λ} ≤ C λ k+2 2k . (7.13)
With this extension of Long Jin's statement, when V = |x| 2k , we also obtain an upper bound of the length of N (u) in B V (λ). Note that when k → +∞ , the problem tends to the Dirichlet problem in a ball of size 1. We then recover that the length of N (u) is of order √ λ.

The above method can also give results in the non-homogeneous case, at least when (7.11) is satisfied with m 0 = m 1 . We can indeed prove the following generalization.

Proposition 7.12.

Let us assume that there exist m ≥ 1, 0 > 0 and C > 0 such that V is holomorphic in

D := {z = (z 1 , z 2 ) ∈ C 2 , | z| ≤ 0 < z >} and satisfies |V (z)| ≤ C < z > m , ∀z ∈ D . (7.14) 
Suppose in addition that we have the ellipticity condition

1 C < x > m ≤ V (x) , ∀x ∈ R 2 . (7.15) 
Then, for any > 0, the length N (u) ∩ (B V (λ) \ B V ( λ)) for an eigenpair (u, λ) of H V , is of the order of λ 1 2 + 2 m as λ → +∞. Moreover, one can take = 0 when V is a polynomial.

Proof

The lower bound was already obtained by a more general direct approach in Proposition 7.8. One can indeed verify using Cauchy estimates that (7.14) and (7.15) imply (7.8) and (7.11), with ρ 0 = 1/2m. Under the previous assumptions, we consider

W λ (y) = λ -1 V (λ 1 m y) , v λ (y) = λ 1 4m u(λ 1 m y) .
We observe that with

h = λ -1 2 -1 m , (7.16) 
the pair (v λ , 1) is an eigenpair for the semi-classical Schrödinger operator -h 2 ∆ y +W λ (y):

(-h 2 ∆ + W λ )v λ = v λ .
It remains to see if we can extend the result of Long Jin to this situation. We essentially follow his proof, whose basic idea goes back to . The difference being that W λ depends on h through (7.16).

The inspection of the proof2 shows that there are three points to control.

Analyticity

What we need is to have for any y 0 in R 2 \ {0} a complex neighborhood V of y 0 , h 0 > 0 and C such that, for any h ∈]0, h 0 ], v λ admits an holomorphic extension in V with sup

V |v λ | ≤ C exp C h ||v λ || L ∞ (R 2 ) . (7.17) 
This can be done by using the FBI transform, controlling the uniformity when W is replaced by W λ . But this is exactly what is given by Assumption (7.14). Notice that this is not true in general for y 0 = 0. We cannot in general find a λ-independent neighborhhod of 0 in C 2 where W λ is defined and bounded. Note here that ||v λ || L ∞ (R 2 ) is by standard semiclassical analysis O(h -N ) for some N . When V is in addition a polynomial:

V (x) = m j=0 P j (x)
where P j is an homogeneous polynomial of degree j, we get

W λ (y) = P m (y) + m =1 λ -m P m-(y) ,
and we can verify the uniform analyticity property for any y 0 .

Uniform confining

As we have mentioned before, Long Jin's paper was established in the case of a compact manifold (in this case and for Laplacians, it is worth to mention the papers of Sogge-Zelditch [START_REF] Bérard | Stern's analysis of the nodal sets of some families of spherical harmonics revisited[END_REF][START_REF] Sogge | Lower bounds on the Hausdorff measure of nodal sets II[END_REF]) but it can be extended to the case of R 2 under the condition that the potential is confining, the length being computed in a compact containing the classically permitted region. This is the case with W λ . Note that if W λ (y) ≤ C 1 , then we get

λ -1 V (λ 1 m y) ≤ C 1 ,
which implies by the ellipticity condition

1 C λ -1 |λ 1 m | m |y| m ≤ C 1 , that is |y| ≤ (C C 1 ) 1 m .

Uniform doubling property

Here instead of following Long Jin's proof, it is easier to refer to the results of Bakri-Casteras [START_REF] Bakri | Quantitative uniqueness for Schrödinger operator with regular potential[END_REF], which give an explicit control in term of the C 1 norm of W λ . As before, we have to use our confining assumption in order to establish our result in any bounded domain Ω in R 2 containing uniformly the classically permitted area W -1 λ (] -∞, +1]). This last assumption permits indeed to control the L 2 -norm of v λ from below in Ω. We actually need the two following estimates (we assume (7.16)):

Given Ω like above, for any R > 0, there exists C R such that, for any (x, R) such that B(x, R) ⊂ Ω , Here we have applied Theorem 3.2 and Proposition 3.3 in [START_REF] Bakri | Quantitative uniqueness for Schrödinger operator with regular potential[END_REF] with electric potential h -2 (W λ -1). These two statements involve the square root of the C 1 norm of the electric potential in Ω, which is O(h -1 ) in our case.

||v λ || L 2 (B(x,R)) ≥ exp - C R h . ( 7 
End of the proof Hence, considering an annulus A( 0 , R 0 ) we get following Long Jin that the length of the nodal set of v λ in this annulus is indeed of order O(h -1 ) and after rescaling we get the proposition for the eigenpair (u, λ). In the polynomial case, we get the same result but in the ball B(0, R 0 ).

Remarks.

1. Long Jin's results hold in dimension n, not only in dimension 2. The above extensions work in any dimension as well, replacing the length by the (n -1)-Hausdorff measure.

2. As observed in [START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF], the results in [START_REF] Hanin | Nodal sets of random eigenfunctions for the isotropic harmonic oscillator[END_REF] suggest that the behavior of nodal sets in the classically forbidden region could be very different from the one in the classically allowed region.

3. Under the assumptions of Proposition 7.12, one gets from Theorem 1.1 in [START_REF] Bakri | Quantitative uniqueness for Schrödinger operator with regular potential[END_REF] that the order of a critical point of the zero set of an eigenfunction of H V associated with λ in the classically permitted region is at most of order λ 1 2 + 1 m . Let us emphasize that here no assumption of analyticity for V is used. On the other hand, note that using Courant's theorem and Euler's and Weyl's formulas, one can prove that the number of critical points in the classically allowed region is at most of order λ 1+ 2 m . When m = 2, we can verify from the results in Section 6 that this upper bound cannot be improved in general. 4. For nodal sets in forbidden regions, see [START_REF] Canzani | Nodal sets of Schrödinger eigenfunctions in forbidden regions[END_REF].

  Given a finite interval ]a, b[ and a continuous function q : [a, b] → R, consider the onedimensional self-adjoint eigenvalue problem -y + qy = λy in ]a, b[ , y(a) = y(b) = 0 .
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 1 Figure 1: Nodal sets for the Dirichlet eigenvalue λ(1, 8) of the square.

Figure 2 :

 2 Figure 2: Evolution of the nodal set N (Φ θ n ), for n = 7 and θ ∈]0, π 4 ].

Figure 3 :

 3 Figure 3: Local nodal patterns for Dirichlet eigenfunctions of the square.
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 12 Existence of disjoint simple closed curves in the nodal set of Φ 3π 4 n

4. 1 . 3 n

 13 No other closed curve in the nodal set of Φ 3π 4It remains to show that there are no other closed curves which do not cross the diagonal.
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 2 Figure 6.7]).

Figure 4 :

 4 Figure 4: The nodal set of N (Φ θ n ) near 3π 4 (here n = 7).

Figure 5 :

 5 Figure 5: Signs near a critical zero.
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 28 The construction consists of the following steps.1. Choose A ∈ E such that µ(A) = µ .2. Choose B ∈ E such that for a small enough, the perturbed eigenfunction F a := A + a B has no critical zero except the origin, and a nodal set with many components. Fix such an a . 3. Choose C ∈ E such that for b small enough (and a fixed), G a,b := A + a B + b C has no critical zero.

  in increasing order. They are simple and positive, so that the numbers r i = √ t i are well defined. For notational convenience, we denote by L(2k) k the derivative of the polynomial L (2k)

Figure 7 :

 7 Figure 7: = 4k, k even.

Figure 8

 8 Figure 8 displays the cases = 8 (i.e. k = 2). Finally, we have constructed an eigenfunction G a,b with 2k(k + 1) nodal component so that µ(G a,b ) ∼ 2k 2 = 2 8 .

Figure 8 :Proposition 7 . 2 .

 872 Figure 8: Ovals for = 8 .

. 5 ), for λ > ρ δ ρ 2 , 2 , 2 0, 1 r 2 +

 522212 Thenand for any x ∈ B (-ρ) V (δλ), the ball B(x, ρ δ √ λ ) intersects the nodal set N (u) of the function u. Proof of Lemma 7.3. Let r := ρ δ √ λ . If the ball B(x, r) did not intersect N (u), then it would be contained in a nodal domain D of the eigenfunction u. Denoting by σ 1 (Ω) the least Dirichlet eigenvalue of the operator H V in the domain Ω, by monotonicity, we could writeλ = σ 1 (D) ≤ σ 1 (B(x, r)) . Since x ∈ B (-ρ) V(δλ) and λ > ρ δ ρ the ball B(x, r) is contained in B V (δλ), and we can bound V from above by δλ in this ball. It follows that σ 1 (B(x, r)) < j δλ. This leads to a contradiction with the definition of ρ δ .

Lemma 7 . 4 .

 74 The balls B(x i , 3ρ δ √ λ ) , 1 ≤ i ≤ N , cover the set B (-2ρ) V (δλ) .Proof of Lemma 7.4. Assume the claim in not true, i.e. that there exists some y ∈ B(-2ρ) V (δλ) such that |y -x i | > 3ρ δ √ λ for all i ∈ {1, . . . , N }. Since y ∈ B (-ρ) V (δλ) , byLemma 7.3, there exists some x ∈ N (u) ∩ B(y, ρ δ √ λ ), and we have x ∈ B (-ρ) V (δλ). Furthermore, for all i ∈ {1, . . . , N }, we have |x -x i | ≥ 2ρ δ √ λ . The set {x, x 1 , x 2 , . . . , x N } would belong to F, contradicting the maximality of {x 1 , x 2 , . . . , x N }. Lemma 7.4 gives a lower bound on the number N ,

Lemma 7 . 5 .√ λ ≥ j 2 0, 1 α 2

 75212 For any α < j 0,1 , the ball B(x, α √ λ ) does not contain any closed connected component of the nodal set N (u).Proof of Lemma 7.5. Indeed, any closed connected component of N (u) contained in B(x, α √ λ ) would bound some nodal domain D of u, contained in B(x, α √ λ ), and we would haveλ = σ 1 (D) ≥ σ 1 B(x,α λ , contradicting the assumption on α .Take the maximal set {x 1 , . . . , x N } ⊂ N (u) ∩ B (-ρ) V (δλ) constructed above. The balls B(x i , ρ δ √ λ ) are pairwise disjoint, and so are the balls B(x i , α √ λ ) for any 0 < α < j 0,1 . There are at least two nodal arcs issuing from a point x i , and they must exit B(x i , α √ λ ), otherwise we could find a closed connected component of N (u) inside this ball, contradicting Lemma 7.5. The length of N

1 2 + 1 k ≈ λ 1 2

 211 A (B V (δλ)). When k = 1, we obtain Proposition 1.7.

  Using the symmetry with respect to the vertical line {x = 0}, one has similar statements for t ≥ t n,n and for t > -t n-1,0 .

	Proof. Let v(y) := exp( t 2 +y 2

). Then, 1. ∀t ≤ t n,1 , the function y → Φ θ n (t, y) has exactly one zero in the interval [t n,n , +∞[ ; 2. ∀t < t n-1,0 , the function y → Φ θ n (t, y) has exactly one zero in the interval ] -∞, +∞[ .

  .18) Given Ω like above, there exists C such that, for any (x, r) such that B(x, 2r) ⊂ Ω ,||v λ || L 2 (B(x,2r)) ≤ exp C h ||v λ || L 2 (B(x,r)) .

	(7.19)

This result is actually general for any eigenfunction of the harmonic oscillator, as stated in[26], on the basis of Euler's formula and Courant's theorem.

We refer here to the proof of (2.20) in[START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF].

7 On bounds for the length of the nodal set In Subsection 7.1, we obtain Theorem 1.7 as a corollary of a more general result, Proposition 7.2, which sheds some light on the exponent 3 2 . The proof is typically 2-dimensional, à la [START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF]. We consider more general potentials in Subsection 7.3. In Subsection 7.3, we extend the methods of Long Jin [START_REF] Jin | Semiclassical Cauchy estimates and applications[END_REF] to some Schrödinger operators. We obtain both lower and upper bounds on the length of the nodal sets in the classically permitted region, Proposition 7.10.

Lower bounds, proof à la Brüning-Gromes

Consider the eigenvalue problem on L 2 (R 2 )

for some suitable non-negative potential V such that the operator has discrete spectrum (see [START_REF] Laugesen | Spectral Theory of Partial Differential Equations[END_REF]Chapter 8]). More precisely, we assume:

Assumption 7.1. The potential V is positive, continuous and tends to infinity at infinity.

Introduce the sets

and, for r > 0 , B

where B(x, r) is the open ball with center x and radius r.

Applying (7.8) (here we only use ρ 0 ≥ 0), we get

V (z) .

We now take x ∈ B(y, r) for some r > 0 and get sup x∈B(y,r)

which we can rewrite, if C 1 r < 1, in the form

This is more precise than (7.9) because we get C 0 (r 0 ) = (1 -C 1 r 0 ) -1 , which tends to 1 as r 0 → 0 .

We assume Assumption 7.7. For any δ ∈]0, 1[, there exists some positive constants A δ and λ δ such that

Proposition 7.8. Fix δ ∈ (0, 1), and assume that V satisfies the previous assumptions.

Then, there exists a positive constant C δ (depending only on the constants appearing in the assumptions on V ) and λ δ such that for any eigenpair (u, λ) of

Proof.

Using (7.10), it is enough to prove the existence of r 1 such that, for 0 < r < r 1 , there exists C 2 (r) and M (r) s.t.

, and y ∈ B(x, r), we have

Taking C 2 (r) = C 1 C 0 (r) 1-ρ 0 r and M (r) ≥ (C 2 (r) + 1) 1 ρ 0 gives the result.

Remarks.

1. The method of proof of Proposition 7.2, which is reminiscent of the proof by Brüning [START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF] (see also [6]) is typically 2-dimensional.

2. The same method could be applied to a Schrödinger operator on a complete noncompact Riemannian surface, provided one has some control on the geometry, the first eigenvalue of small balls, etc..

3. If we assume that there exist positive constants m 0 ≤ m 1 and C 3 such that for any

where < x >:= 1 + |x| 2 , then A(B V (λ)) has a controlled growth at ∞.

4.

If m 0 = m 1 in (7.11), then (7.10) is satisfied. The control of A δ as δ → +1 can be obtained under additional assumptions.