On the nodal patterns of the 2D isotropic quantum harmonic oscillator - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

On the nodal patterns of the 2D isotropic quantum harmonic oscillator

Résumé

For the spherical Laplacian on the sphere and for the Dirichlet Laplacian in the square, Antonie Stern claimed in her PhD thesis (1924) the existence of an infinite sequence of eigenvalues whose corresponding eigenspaces contain an eigenfunction with exactly two nodal domains. These results were given complete proofs respectively by Hans Lewy in 1977, and the authors in 2014 (see also Gauthier-Shalom–Przybytkowski (2006)). In this paper, we obtain similar results for the two dimensional isotropic quantum harmonic oscillator. In the opposite direction, we construct an infinite sequence of regular eigenfunctions with " many " nodal domains. We finally provide bounds for the length of the nodal set of an eigenfunction with energy $\lambda$ in the classically permitted region $\{ |x| < \sqrt{\lambda} \}$.
Fichier principal
Vignette du fichier
berard-helffer-nodal-patterns-quantum-harmonic-osc-V1-150603.pdf (986.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01160620 , version 1 (06-06-2015)
hal-01160620 , version 2 (27-04-2017)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. On the nodal patterns of the 2D isotropic quantum harmonic oscillator. 2015. ⟨hal-01160620v1⟩
502 Consultations
350 Téléchargements

Altmetric

Partager

More