An elliptic semilinear equation with source term and boundary measure data: the supercritical case
Résumé
We give new criteria for the existence of weak solutions to an equation with a super linear source term
\begin{align*}
-\Delta u = u^q ~~\text{in}~\Omega,~~u=\sigma~~\text{on }~\partial\Omega
\end{align*}
where $\Omega$ is a either a bounded smooth domain or $\mathbb{R}_+^{N}$, $q>1$ and $\sigma\in \mathfrak{M}^+(\partial\Omega)$ is a nonnegative Radon measure on $\partial\Omega$. One of the criteria we obtain is expressed in terms of some Bessel capacities on $\partial\Omega$. We also give a sufficient condition for the existence of weak solutions to equation with source mixed terms.
\begin{align*}
-\Delta u = |u|^{q_1-1}u|\nabla u|^{q_2} ~~\text{in}~\Omega,~~u=\sigma~~\text{on }~\partial\Omega
\end{align*}
where $q_1,q_2\geq 0, q_1+q_2>1, q_2<2$, $\sigma\in \mathfrak{M}(\partial\Omega)$ is a Radon measure on $\partial\Omega$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...