An elliptic semilinear equation with source term and boundary measure data: the supercritical case
Résumé
We give new criteria for the existence of weak solutions to equation with source term \begin{align*}-\Delta u = u^q ~~\text{in}~\Omega,~~u=\sigma~~\text{on }~\partial\Omega\end{align*}where $q>1$, $\Omega$ is a either a bounded smooth domain or $\mathbb{R}_+^{N}$ and $\sigma\in \mathfrak{M}^+(\partial\Omega)$ is a nonnegative Radon measure on $\partial\Omega$. In particular, one of the criteria is expressed in terms of some Bessel capacities on $\partial\Omega$. We also give a sufficient condition for the existence of weak solutions to equation with source mixed term. \begin{align*} -\Delta u = |u|^{q_1-1}u|\nabla u|^{q_2} ~~\text{in}~\Omega,~~u=\sigma~~\text{on }~\partial\Omega \end{align*} where $q_1,q_2\geq 0, q_1+q_2>1, q_2<2$, $\sigma\in \mathfrak{M}(\partial\Omega)$ is a Radon measure on $\partial\Omega$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|