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An elliptic semilinear equation with source term and boundary measure data: the supercritical case

 

Introduction and main results

Let Ω be a bounded smooth domain in R N or Ω = R N + := R N -1 × (0, ∞), N ≥ 3, and g : R × R N → R be a continuous function. In this paper, we study the solvability of the problem -∆u = g(u, ∇u) in Ω, u = σ on ∂Ω,

where σ ∈ M(∂Ω) is a Radon measure on ∂Ω. All solutions are understood in the usual very weak sense, which means that u ∈ L 1 (Ω), g(u, ∇u) ∈ L 1 ρ (Ω), where ρ(x) is the distance from x to ∂Ω when Ω is bounded, or u ∈ L 1 see [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF].

(R N + ∩ B), g(u, ∇u) ∈ L 1 ρ (R N + ∩ B) for any ball B if Ω = R N + ,
Our main goal is to establish necessary and sufficient conditions for the existence of weak solutions of (1.1) with boundary measure data, together with sharp pointwise estimates of the solutions. In the sequel we study two cases for the problem (1.1): 1-The pure power case

-∆u = |u| q-1 u in Ω, u = σ on ∂Ω, (1.3) 
with u ≥ 0, q > 1 and σ ≥ 0.

2-The mixed gradient-power case

-∆u = |∇u| q2 |u| q1-1 u in Ω, u = σ on ∂Ω, (1.4) 
with q 1 , q 2 > 0, q 1 + q 2 > 1 and q 2 < 2.

The problem (1.3) has been first studied by Bidaut-Véron and Vivier [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF] in the subcritical case 1 < q < N +1 N -1 with Ω bounded. They proved that (1.3) admits a nonnegative solution provided σ(∂Ω) is small enough. They also proved that for any σ ∈ M + b (∂Ω) there holds

G[(P[σ]) q ] ≤ cσ(∂Ω)P[σ] (1.5) 
for some c = c(N, p, q) > 0. Then Bidaut-Véron and Yarur [START_REF] Bidaut-Véron | Semilinear elliptic equations and systems with measure data: existence and a priori estimates[END_REF] considered again the problem (1.3) in a bounded domain in a more general situation since they allowed both interior and boundary measure data, giving a complete description of the solutions in the subcritical case, and sufficient conditions for existence in the supercritical case. In particular they showed that the problem (1.3) has a solution if and only if

G[(P[σ]) q ] ≤ cP[σ] (1.6) 
for some c = c(N, q, Ω) > 0, see [3, Th 3.12-3.13, Remark 3.12].

The absorption case, i.e. g(u, ∇u) = -|u| q-1 u has been studied by Gmira and Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] in the subcritical case (again 1 < q < N +1 N -1 ) and by Marcus and Véron in the supercritical case [START_REF] Marcus | Removable singularities and boundary trace[END_REF], [START_REF] Marcus | Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case[END_REF], [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF]. The case g(u, ∇u) = -|∇u| q was studied by Nguyen Phuoc and Véron [START_REF] Nguyen Phuoc | Boundary singularities of solutions to elliptic viscous HamiltonJacobi equations[END_REF] and extended recently to the case g(u, ∇u) = -|∇u| q2 |u| q1-1 u by Marcus and Nguyen Phuoc [START_REF] Marcus | Positive solutions of quasilinear elliptic equations with subquadratic growth in the gradient[END_REF]. To our knowledge, the problem (1.4) has not yet been studied.

To state our results, let us introduce some notations. We write A ( )B if A ≤ (≥)CB for some C depending on some structural constants, A B if A B A. Various capacities will be used throughout the paper. Among them are the Riesz and Bessel capacities in R N -1 defined respectively by

Cap Iγ ,s (O) = inf ˆRN-1 f s dy : f ≥ 0, I γ * f ≥ χ O , Cap Gγ ,s (O) = inf ˆRN-1 f s dy : f ≥ 0, G γ * f ≥ χ O , for any Borel set O ⊂ R N -1
, where s > 1, I γ , G γ are the Riesz and the Bessel kernels in R N -1 with order γ ∈ (0, N -1). We remark that

Cap Gγ ,s (O) ≥ Cap Iγ ,s (O) ≥ C|O| 1-γs N -1 (1.7)
for any Borel set O ⊂ R N -1 where γs < N -1 and C is a positive constant. When we consider equations in a bounded smooth domain Ω in R N we use a specific capacity that we define as follows: there exist open sets

O 1 , ..., O m in R N , diffeomorphisms T i : O i → B 1 (0) and compact sets K 1 , ..., K m in ∂Ω such that a. K i ⊂ O i , ∂Ω ⊂ m i=1 K i . b. T i (O i ∩ ∂Ω) = B 1 (0) ∩ {x N = 0}, T i (O i ∩ Ω) = B 1 (0) ∩ {x N > 0}. c. For any x ∈ O i ∩ Ω, ∃y ∈ O i ∩ ∂Ω, ρ(x) = |x -y|. Clearly, ρ(T -1 i (z)) |z N | for any z = (z , z N ) ∈ B 1 (0) ∩ {x N > 0} and |J Ti (x)| 1 for any x ∈ O i ∩ Ω, here J Ti is the Jacobian matrix of T i . Definition 1.1 Let γ ∈ (0, N -1), s > 1. We define the Cap ∂Ω γ,s -capacity of a compact set E ⊂ ∂Ω by Cap ∂Ω γ,s (E) = m i=1 Cap Gγ ,s ( Ti (E ∩ K i )),
where

T i (E ∩ K i ) = Ti (E ∩ K i ) × {x N = 0}.
Notice that, if γs > N -1 then there exists C = C(N, γ, s, Ω) > 0 such that

Cap ∂Ω γ,s ({x}) ≥ C (1.8)
for all x ∈ ∂Ω. Also the definition does not depend on the choice of the sets O i .

Our first two theorems give criteria for the solvability of the problem (1.1) in R N + .

Theorem 1.2 Let q > 1 and σ ∈ M + b (R N -1 ). Then, the following statements are equivalent 1 There exists C > 0 such that the inequality

σ(K) ≤ C Cap I 2 q ,q (K) (1.9) holds for any compact set K ⊂ R N -1 .
2 There exists C > 0 such that the relation

G [(P[σ]) q ] ≤ CP[σ] < ∞ a.e in R N + (1.10)
holds.

The problem

-∆u = u q in R N + , u = εσ in ∂R N + , (1.11) 
has a positive solution for ε > 0 small enough.

Moreover, there is a constant C 0 > 0 such that if any one of the two statement 1 and 2 holds with C ≤ C 0 , then equation (1.11) admits a solution u with ε = 1 which satisfies

u P[σ].
(1.12)

Conversely, if (1.11) has a solution u with ε = 1, then the two statements 1 and 2 hold for some C > 0.

As a consequence of Theorem 1.2 when g(u, ∇u) = |u| q-1 u (q > 1) and Ω = R N + , we prove that if (1.3) has a nonnegative solution u with σ ∈ M + b (R N -1 ), then

σ(B r (y )) ≤ Cr N -q+1 q-1 (1.13)
for any ball B r (y ) in R N -1 where C = C(q, N ) and

q > N +1 N -1 ; if 1 < q ≤ N +1 N -1 , then σ ≡ 0. Conversely, if q > N +1
N -1 , dσ = f dz for some f ≥ 0 which satisfies ˆB r (y )

f 1+ε dz ≤ Cr N -1-2(ε+1) q-1 (1.14)
for some ε > 0, then there exists a constant C 0 = C 0 (N, q) such that (1.1) has a nonnegative solution if C ≤ C 0 . The above inequality is an analogue of the classical Fefferman-Phong condition [START_REF] Fefferman | The uncertainty principle[END_REF]. In particular, (1.14) holds if f belongs to the Lorentz space

L (N -1)(q-1) 2 
,∞ (R N -1 ).

We give sufficient conditions for the existence of weak solutions to (1.1) when g(u, ∇u) = |u| q1-1 u|∇u| q2 , q 1 , q 2 ≥ 0, q 1 + q 2 > 1 and q 2 < 2.

Theorem 1.3 Let q 1 , q 2 ≥ 0, q 1 + q 2 > 1, q 2 < 2 and σ ∈ M(R N -1 ) such that P[|σ|] < ∞ a.e. in R N -1 . Assume that there exists C > 0 such that for any Borel set K ⊂ R N -1 there holds |σ|(K) ≤ C Cap I 2-q 2 q 1 +q 2 ,(q1+q2) (K).
(1.15)

Then the problem

-∆u = |u| q1-1 u|∇u| q2 in R N + , u = εσ in ∂R N + , (1.16) 
has a solution for ε > 0 small enough and it satisfies

|u| P[|σ|], |∇u| ρ -1 P[|σ|].
(1.17)

Remark 1.4 In any case and in view of

(1.7), if dσ = f dz, f ∈ L (N -1)(q 1 +q 2 -1) 2-q 2
,∞ (R N -1 ) and (N -1)(q 1 + q 2 -1) > 2 -q 2 then (1.15) holds for some C > 0 and the problem (1.16) has a solution for ε > 0 small enough. However, we can see that condition (1.15) implies P[|σ|] < ∞ a.e, see Theorem 2.6.

In a bounded domain Ω we obtain existence results analogous to Theorem 1.2 and 1.3 provided the capacities on ∂Ω set in Definition 1.1 are used instead of the Riesz capacities. Theorem 1.5 Let q > 1, Ω ⊂ R N be a bounded domain with a C 2 boundary and σ ∈ M + (∂Ω). Then, the following statements are equivalent:

1 There exists C > 0 such that the inequality

σ(K) ≤ C Cap ∂Ω 2 q ,q (K) (1.18)
for any Borel set K ⊂ ∂Ω.

2 There exists C > 0 such that the inequality

G [(P[σ]) q ] ≤ CP[σ] < ∞ a.e in Ω, (1.19) 
holds.

The problem

-∆u = u q in Ω, u = εσ on ∂Ω, (1.20) 
admits a positive solution for ε > 0 small enough.

Moreover, there is a constant C 0 > 0 such that if any one of the two statements 1 and 2 holds with C ≤ C 0 , then equation (1.20) has a solution u with ε = 1 which satisfies

u P[σ]. (1.21)
Conversely, if (1.20) has a solution u with ε = 1, the above two statements 1 and 2 hold for some C > 0.

From (1.8), we see that if σ ∈ M + (∂Ω) and 1 < q < N +1 N -1 , then (1.18) holds for some constant C > 0. Hence, in this case, the problem (1.20) has a positive solution for ε > 0 small enough. Theorem 1.6 Let q 1 , q 2 ≥ 0, q 1 + q 2 > 1, q 2 < 2, Ω ⊂ R N be a bounded domain with a C 2 boundary and σ ∈ M(∂Ω). Assume that there exists C > 0 such that the inequality

|σ|(K) ≤ C Cap ∂Ω 2-q 2 q 1 +q 2 ,(q1+q2) (K) (1.22)
holds for any Borel set K ⊂ ∂Ω. Then the problem

-∆u = |u| q1-1 u|∇u| q2 in Ω, u = εσ on ∂Ω, (1.23) 
has a solution for ε > 0 small enough which satisfies (1.17).

Remark 1.7 A discussion about the optimality of this condition, as well as the one of Theorem 1.3, is conducted in Remark 3.1. We define the subcritical range by

(N -1)q 1 + N q 2 < N + 1 or equivalently (N -1)(q 1 + q 2 -1) < 2 -q 2 .
(1.24)

If we assume that we are in the subcritical case, then problem (1.23) has a solution for any measure σ ∈ M b (∂Ω) and ε > 0 small enough.

Integral equations

Let Ω be either

R N -1 × (0, ∞) or Ω a bounded domain in R N with a C 2 boundary ∂Ω. For 0 ≤ α ≤ β < N , we denote N α,β (x, y) = 1 |x -y| N -β max {|x -y|, ρ(x), ρ(y)} α ∀(x, y) ∈ Ω × Ω. (2.1)
We set

N α,β [ν](x) = ˆΩ N α,β (x, y)dν(y) ∀ν ∈ M + (Ω), and denote N α,β [f ] := N α,β [f dx] if f ∈ L 1 loc (Ω), f ≥ 0.
In this section, we are interested in the solvability of the following integral equations

U = N α,β [U q (ρ(.)) α0 ] + N α,β [ω] (2.2)
where α 0 ≥ 0 and ω ∈ M + (Ω).

We follow the deep ideas developed by Kalton and Verbitsky in [START_REF] Kalton | Nonlinear equations and weighted norm inequality[END_REF] who analyzed a PDE problem under the form of an integral equation. They proved a certain number of properties of this integral equation which are crucial for our study and, for the sake of completeness, we recall them here. Let X be a metric space and ν ∈ M + (X). Let K be a Borel positive kernel function K : X × X → (0, ∞] such that K is symmetric and K -1 satisfies a quasi-metric inequality, i.e. there is a constant C ≥ 1 such that for all x, y, z ∈ X we have

1 K(x, y) ≤ C 1 K(x, z) + 1 K(z, y)
.

Under these conditions, we can define the quasi-metric d by

d(x, y) = 1 K(x, y) ,
and denote by B r (x) = {y ∈ X : d(x, y) < r} the open d-ball of radius r > 0 and center x.

Note that this set can be empty.

For ω ∈ M + (X), we define the potentials Kω and K ν f by

Kω(x) = ˆX K(x, y)dω(y), K ν f (x) = ˆX K(x, y)f (y)dν(y),
and for q > 1, the capacity Cap ν K,q in X by

Cap ν K,q (E) = inf ˆX g q dν : g ≥ 0, K ν g ≥ χ E ,
for any Borel set E ⊂ X.

Theorem 2.1 ([10]) Let q > 1 and ν, ω ∈ M + (X) such that ˆ2r

0 ν(B s (x)) s ds s ≤ C ˆr 0 ν(B s (x)) s ds s , (2.3) 
sup y∈Br(x) ˆr 0 ν(B s (y)) s ds s ≤ C ˆr 0 ν(B s (x)) s ds s , (2.4) 
for any r > 0, x ∈ X, where C > 0 is a constant. Then the following statements are equivalent:

1 The equation u = K ν u q + εKω has a solution for some ε > 0.

2 The inequality ˆE(Kω E ) q dσ ≤ Cω(E) (2.5)

holds for any Borel set E ⊂ X where ω E = χ E ω.

3.

For any Borel set E ⊂ X, there holds

ω(E) ≤ C Cap ν K,q (E). (2.6)
4. The inequality

K ν (Kω) q ≤ CKω < ∞ ν -a.e. (2.7) 
holds.

We check below that N α,β satisfies all assumptions of K in Theorem 2.1.

Lemma 2.2 N α,β is symmetric and satisfies the quasi-metric inequality.

Proof. Clearly, N α,β is symmetric. Now we check the quasi-metric inequality associated to N α,β and X = Ω. For any x, z, y ∈ Ω such that x = y = z, we have

|x -y| N -β+α |x -z| N -β+α + |z -y| N -β+α 1 N α,β (x, z) + 1 N α,β (z, y) . Since |ρ(x) -ρ(y)| ≤ |x -y|, there holds |x -y| N -β (ρ(x)) α + |x -y| N -β (ρ(y)) α |x -y| N -β (min{ρ(x), ρ(y)}) α + |x -y| N -β+α |x -z| N -β + |z -y| N -β (min{ρ(x), ρ(y)}) α + |x -z| N -β+α + |z -y| N -β+α (ρ(x)) α |x -z| N -β + |x -z| N -β+α + (ρ(y)) α |z -y| N -β + |z -y| N -β+α 1 N α,β (x, z) + 1 N α,β (z, y) .
Thus,

1 N α,β (x, y) 1 N α,β (x, z) + 1 N α,β (z, y) .
Next we give sufficient conditions for (2.3), (2.4) to hold, in view of the applications that we develop in Sections 3 and 4.

Lemma 2.3 If dν(x) = (ρ(x)) α0 χ Ω dx with α 0 ≥ 0, then (2.3) and (2.4) hold.

Proof. It is easy to see that for any x ∈ Ω, s > 0

B 2 -α+1 N -β S (x) ∩ Ω ⊂ B s (x) ⊂ B S (x) ∩ Ω, (2.8) 
with S = min{s

1 N -β+α , s 1 N -β (ρ(x)) -α N -β } and B s (x) = Ω when s > 2 αN N -α (diam (Ω)) N . We show that for any 0 ≤ s < 8diam (Ω), x ∈ Ω ν(B s (x)) (max{ρ(x), s}) α0 s N .
(2.9) Indeed, take 0 ≤ s < 8diam (Ω), x ∈ Ω. There exist ε = ε(Ω) ∈ (0, 1) and x s ∈ Ω such that B εs (x s ) ⊂ B s (x) ∩ Ω and ρ(x s ) > εs.

(a) If 0 ≤ s ≤ ρ(x) 4 , so for any y ∈ B s (x), ρ(y) ρ(x). Thus we obtain (2.9) because

ν(B s (x)) (ρ(x)) α0 |B s (x) ∩ Ω| (ρ(x)) α0 s N . (b) If s > ρ(x)
4 , since ρ(y) ≤ ρ(x) + |x -y| < 5s for any y ∈ B s (x), there holds ν(B s (x)) s N +α0 and we have the following dichotomy: (b.1) either s ≤ 4ρ(x), then

ν(B s (x)) ν(B ρ(x) 4 (x)) (ρ(x)) α0+N s N +α0 ;
(b.2) or s ≥ 4ρ(x), we have for any y ∈ B εs/2 (x s ), ρ(y) ≥ -|y -

x s | + ρ(x s ) > εs/2. It follows ν(B s (x)) ν(B εs/2 (x s )) s N +α0 .
Therefore (2.9) holds.

Next, for any 0 ≤ s < 2

(α+1)(N -β+α) N -β
(diam (Ω)) N -β+α and x ∈ Ω, we have

ν(B s (x)) (max{ρ(x), min{s 1 N -β+α , s 1 N -β (ρ(x)) -α N -β }}) α0 × min{s 1 N -β+α , s 1 N -β (ρ(x)) -α N -β } N s α 0 +N N -β+α if ρ(x) ≤ s 1 N -β+α , (ρ(x)) α0-αN N -β s N N -β if ρ(x) ≥ s 1 N -β+α , and ν(B s (x)) = ν(Ω) (diam (Ω)) α0+N if s > 2 (α+1)(N -β+α) N -β
(diam (Ω)) N -β+α . We get,

ˆr 0 ν(B s (x)) s ds s      (diam (Ω)) α0+β-α if r > (diam (Ω)) N -β+α , r α 0 +β-α N -β+α if r ∈ ((ρ(x)) N -β+α , (diam (Ω)) N -β+α ], (ρ(x)) α0-αN N -β r β N -β if r ∈ (0, (ρ(x)) N -β+α ].
Therefore (2.3) holds. It remains to prove (2.4). For any x ∈ Ω and r > 0, it is clear that if r > 1 2 (ρ(x)) N -β+α we have

sup y∈Br(x) ˆr 0 ν(B s (y)) s ds s min{r α 0 +β-α N -β+α , (diam (Ω)) α0+β-α },
from which inequality we obtain sup y∈Br(x) ˆr 0 ν(B s (y)) s ds s ˆr 0 ν(B s (x)) s ds s .

If 0 < r ≤ 1 2 (ρ(x)) N -β+α , we have B r (x) ⊂ B r 1 N -β (ρ(x))
α N -β (x) and ρ(x) ρ(y) for all

y ∈ B r 1 N -β (ρ(x)) -α N -β (x), thus sup y∈Br(x) ˆr 0 ν(B s (y)) s ds s ≤ sup |y-x|<r 1 N -β (ρ(x)) -α N -β ˆr 0 ν(B s (y)) s ds s sup |y-x|<r 1 N -β (ρ(x)) -α N -β (ρ(y)) α0-αN N -β r β N -β (ρ(x)) α0-αN N -β r β N -β ˆr 0 ν(B s (x)) s ds s .
Therefore, (2.4) holds.

Remark 2.4 Lemma 2.2 and 2.3 in the case α = β = 2 and α 0 = q + 1 had already been proved by Kalton and Verbitsky in [START_REF] Kalton | Nonlinear equations and weighted norm inequality[END_REF].

Definition 2.5 For α 0 ≥ 0, 0 ≤ α ≤ β < N and s > 1, we define Cap α0 N α,β ,s by

Cap α0 N α,β ,s (E) = inf ˆΩ g s (ρ(x)) α0 dx : g ≥ 0, N α,β [g(ρ(.)) α0 ] ≥ χ E for any Borel set E ⊂ Ω. Proposition 2.8 Assume that Ω = R N -1 × (0, ∞) and let α 0 ≥ 0 such that -1 + s (1 + α -β) < α 0 < -1 + s (N -β + α).
There holds

Cap α0 N α,β ,s (K × {0}) Cap I β-α+ α 0 +1 s -1
,s (K) (2.14)

for any compact set K ⊂ R N -1 ,
Proof. The proof relies on an idea of [START_REF] Nguyen | Potential estimates and quasilinear parabolic equations with measure data[END_REF]Corollary 4.20]. Thanks to [1, Theorem 2.5.1] and (2.10), we get (2.14) from the following estimate: for any

µ ∈ M + b (R N -1 ) ||N α,β [µ ⊗ δ {x N =0} ]|| L s (Ω,(ρ(.))) α 0 dx) ||I β-α+ α 0 +1 -1 [µ]|| L s (R N -1 ) , (2.15) 
where

I γ [µ] is the Riesz potential of µ in R N -1 , i.e I γ [µ](y) = ˆ∞ 0 µ(B r (y)) r N -1-γ dr r ∀ y ∈ R N -1 ,
with B r (y) being a ball in R N -1 . We have

||N α,β [µ ⊗ δ {x N =0} ]|| s L s (Ω,(ρ(.)) α 0 dx) = ˆRN-1 ˆ∞ 0 ˆRN-1 dµ(z) (|x -z| 2 + x 2 N ) N -β+α 2 s x α0 N dx N dx ˆRN-1 ˆ∞ 0 ˆ∞ x N µ(B r (x )) r N -β+α dr r s x α0 N dx N dx . Notice that ˆ∞ 0 ˆ∞ x N µ(B r (x )) r N -β+α dr r s x α0 N dx N ≥ ˆ∞ 0 ˆ2x N x N µ(B r (x )) r N -β+α dr r s x α0 N dx N ˆ∞ 0   µ(B x N (x )) x N -β+α- α 0 +1 s N   s dx N x N .
On the other hand, using Hölder's inequality and Fubini's Theorem, we obtain

ˆ∞ 0 ˆ∞ x N µ(B r (x )) r N -β+α dr r s x α0 N dx N ≤ ˆ∞ 0 ˆ∞ x N r -s 2s dr r s s ˆ∞ x N µ(B r (x )) r N -β+α-1 2s s dr r x α0 N dx N = C ˆ∞ 0 ˆ∞ x N µ(B r (x )) r N -β+α-1 2s s dr r x α0-1 2 N dx N = C ˆ∞ 0 ˆr 0 x α0-1 2 N dx N µ(B r (x )) r N -β+α-1 2s s dr r = C ˆ∞ 0 µ(B r (x )) r N -β+α-α 0 +1 s s dr r .
Thus, Proposition 2.9 Let Ω ⊂ R N be a bounded domain a C 2 boundary. Assume α 0 ≥ 0 and

||N α,β [µ ⊗ δ {x N =0} ]|| L s (Ω,(ρ(.))) α 0 dx) ˆRN-1 ˆ∞ 0 µ(B r (y)) r N -β+α-α 0 +1
-1 + s (1 + α -β) < α 0 < -1 + s (N -β + α).
Then there holds

Cap α0 N α,β ,s (E) Cap ∂Ω β-α+ α 0 +1 s -1,s (E) (2.17)
for any compact set E ⊂ ∂Ω ⊂ R N .

Proof. Let K 1 , ..., K m be as in definition 1.1. We have

Cap α0 N α,β ,s (E) m i=1 Cap α0 N α,β ,s (E ∩ K i ),
for any compact set E ⊂ ∂Ω. By definition 1.1, we need to prove that

Cap α0 N α,β ,s (E ∩ K i ) Cap G β-α+ α 0 +1 s -1 ,s ( Ti (E ∩ K i )) ∀ i = 1, 2, ..., m. (2.18) 
We can show that for any ω ∈ M + b (∂Ω) and i = 1, ..., m, there exists

ω i ∈ M + b ( Ti (K i )) with T i (K i ) = Ti (K i ) × {x N = 0} such that ω i (O) = ω(T -1 i (O × {0}))
for all Borel set O ⊂ Ti (K i ), its proof can be found in [1, Proof of Lemma 5.2.2]. Thanks to [1, Theorem 2.5.1], it is enough to show that for any i ∈ {1, 2, ..., m} there holds

||N α,β [χ Ki ω]|| L s (Ω,(ρ(.))) α 0 dx) ||G β-α+ α 0 +1 s -1 [ω i ]|| L s (R N -1 ) , (2.19) 
where

G γ [ω i ] (0 < γ < N -1) is the Bessel potential of ω i in R N -1 , i.e G γ [ω i ](x) = ˆRN-1 G γ (x -y)dω i (y).
Indeed, we have

||N α,β [ωχ Ki ]|| s L s (Ω,(ρ(.))) α 0 dx) = ˆΩ ˆKi dω(z) |x -z| N -β+α s (ρ(x)) α0 dx = ˆOi∩Ω ˆKi dω(z) |x -z| N -β+α s (ρ(x)) α0 dx + ˆΩ\Oi ˆKi dω(z) |x -z| N -β+α s (ρ(x)) α0 dx ˆOi∩Ω ˆKi dω(z) |x -z| N -β+α s (ρ(x)) α0 dx + (ω(K i )) s .
Here we used |x -z| 1 for any x ∈ Ω\O i , z ∈ K i . By a standard change of variable we obtain

ˆOi∩Ω ˆKi dω(z) |x -z| N -β+α s (ρ(x)) α0 dx + (ω(K i )) s = ˆTi(Oi∩Ω) ˆKi dω(z) |T -1 i (y) -z| N -β+α s (ρ(T -1 i (y))) α0 |J Ti (T -1 i (y))| -1 dy + (ω(K i )) s ˆB1(0)∩{xN >0} ˆKi dω(z) |y -T i (z)| N -β+α s y α0 N dy + (ω(K i )) s with y = (y , y N ), since |T -1 i (y) -z| |y -T i (z)|, |J Ti (T -1 i (y))| 1 and ρ(T -1 i (y))
y N for all (y, z) ∈ T i (O i ∩ Ω) × K i . From the definition of ω i , we have

ˆB1(0)∩{xN >0} ˆKi 1 |y -T i (z)| N -β+α dω(z) s y α0 n dy + (ω(K i )) s = ˆB1(0)∩{xN >0} ˆTi(Ki) 1 (|y -ξ| 2 + y 2 N ) N -β+α 2 dω i (ξ) s y α0 N dy N dy + (ω(K i )) s ˆRN-1 ˆ∞ 0 ˆ2R min{y N ,R} ω i (B r (y )) r N -β+α dr r s y α0 N dy N dy with R = diam (Ω).
As in the proof of Proposition 2. Remark 2.10 Proposition 2.8 and 2.9 with α = β = 2, α 0 = q + 1 were demonstrated by Verbitsky in [5, Apppendix B], using an alternative approach.

Proof of the main results

We denote

P[σ](x) = ˆ∂Ω P(x, z)dσ(z), G[f ](x) = ˆΩ G(x, y)f (y)dy for any σ ∈ M(∂Ω), f ∈ L 1 ρ (Ω), f ≥ 0.
Then the unique weak solution of

-∆u = f in Ω, u = σ on ∂Ω, can be represented by u(x) = G[f ](x) + P[σ](x) ∀ x ∈ Ω.
We recall below some classical estimates for the Green and the Poisson kernels.

G(x, y) min 1 |x -y| N -2 , ρ(x)ρ(y) |x -y| N , P(x, z) ρ(x) |x -z| N , and 
|∇ x G(x, y)| ρ(y) |x -y| N min 1, |x -y| ρ(x)ρ(y) , |∇ x P(x, z)| 1 |x -z| N , for any (x, y, z) ∈ Ω × Ω × ∂Ω, see [2]. Since |ρ(x) -ρ(y)| ≤ |x -y| we have max ρ(x)ρ(y), |x -y| 2 max {|x -y|, ρ(x), ρ(y)} 2 .
Proof of Theorem 1.3 and 1.6. By (3.2) and (3.3), we have

G(x, y) ≤ Cρ(x)ρ(y)N 1,1 (x, y), |∇ x G(x, y)| ≤ Cρ(y)N 1,1 (x, y), (3.4) 
P(x, z) ≤ Cρ(y)N 1,1 (x, z), |∇ x P(x, z)| ≤ CN 1,1 (x, z), (3.5) 
for all (x, y, z) ∈ Ω × Ω × ∂Ω and for some constant C > 0.

For any u ∈ W 1,1 loc (Ω), we set

F(u)(x) = ˆΩ G(x, y)|u(y)| q1-1 u(y)|∇u(y)| q2 dy + ˆ∂Ω P(x, z)dσ(z).
Using (3.4) and (3.5), we have

|F(u)| ≤ Cρ(.)N 1,1 [|u| q1 |∇u| q2 ρ(.)] + Cρ(.)N 1,1 [|σ|], |∇F(u)| ≤ CN 1,1 [|u| q1 |∇u| q2 ρ(.)] + CN 1,1 [|σ|].
Therefore, we can easily see that if

N 1,1 (N 1,1 [|σ|]) q1+q2 (ρ(.)) q1+1 ≤ (q 1 + q 2 -1) q1+q2-1 (C(q 1 + q 2 )) q1+q2 N 1,1 [|σ|] < ∞ a.e in Ω (3.6)
holds, then F is the map from E to E, where

E = u ∈ W 1,1 loc (Ω) : |u| ≤ λρ(.)N 1,1 [|σ|], |∇u| ≤ λN 1,1 [|σ|] a.e in Ω
with λ = C(q1+q2) q1+q2-1 . Assume that (3.6) holds. We denote S by the subspace of functions f ∈ W 1,1 loc (Ω) with norm ||f || S = ||f || L q 1 +q 2 (Ω,(ρ(.)) 1-q 2 dx) + |||∇f ||| L q 1 +q 2 (Ω,(ρ(.)) 1+q 2 dx) < ∞.

Clearly, E ⊂ S, E is closed under the strong topology of S and convex. On the other hand, it is not difficult to show that F is continuous and F(E) is precompact in S. Consequently, by Schauder's fixed point theorem, there exists u ∈ E such that F(u) = u. Hence, u is a solution of ( ,q1+q2 (∂Ω). Therefore inequality

|σ|(K) ≤ C Cap ∂Ω 2-q 2 q 1 +q 2
,(q1+q2) (K) 1 (q 1 +q 2 ) holds for any Borel set K ⊂ ∂Ω, and it is a necessary condition for (1.22) to hold since 1 (q1+q2) < 1. In a general C 2 bounded domain, it is easy to see that this property, proved in a particular case in [13, Th 2.2] is still valid thanks to the equivalence relation (2.23) therein between Poisson's kernels, see also the proof of Proposition 2.9. The difficulty for obtaining a necessary condition of existence lies in the fact that, if the inequality u ≥ P[σ] is clear, |∇u| ρ -1 P[σ] is not true. It can also be shown that if |u| q1 |∇u| q2 ≤ C(G(|σ|)) q1 (ρN 1,1 [|σ|]) q2 ∈ L 1 (Ω, ρ(.)dx), then σ is absolutely continuous with respect to Cap ∂Ω 2-q 2 q 1 +q 2 ,(q1+q2) .

Extension to Schrödinger operators with Hardy potentials

We can apply Theorem 2.6 to solve the problem

-∆u -κ ρ 2 u = u q in Ω, u = σ on ∂Ω,
where κ ∈ [0, 1 4 ] and σ ∈ M + (∂Ω). Let G κ , P κ be the Green kernel and Poisson kernel of -∆ -κ ρ 2 in Ω with κ ∈ [0, 1 4 ]. It is proved that 

  and ˆΩ u(-∆ξ)dx = ˆΩ g(u, ∇u)ξdx -ˆ∂Ω ∂ξ ∂n dσ (1.2) for any ξ ∈ C 2 (Ω) ∩ C c (R N ) with ξ = 0 in Ω c , where ρ(x) = dist(x, ∂Ω), n is the outward unit vector on ∂Ω. It is well-known that such a solution u satisfies u = G[g(u, ∇u)] + P[σ] a. e. in Ω, where G[.], P[.], respectively the Green and the Poisson potentials associated to -∆ in Ω, are defined from the Green and the Poisson kernels by P[σ](y) = ˆ∂Ω P(y, z)dσ(z), G[g(u, ∇u)](y) = ˆΩ G(y, x)g(u, ∇u)(x)dx,

16 )

 16 It implies (2.15) from [4, Theorem 2.3].

G,

  κ (x, y) min 1 |x -y| N -2 , (ρ(x)ρ(y)) P κ (x, z) (ρ(x)) 1+ √ 1-4κ 2 |x -z| N -1+ √ 1-4κ ,

  1.16)-(1.23) and it satisfies |u| ≤ λρ(.)N 1,1 [|σ|], |∇u| ≤ λN 1,1 [|σ]. Thanks to Theorem 2.6 and Proposition 2.8, 2.9, we verify that assumptions (1.15) and (1.23) in Theorem 1.3 and 1.6 are equivalent to (3.6). This completes the proof of the Theorems. Remark 3.1 We do not know whether conditions (1.15) and (1.22) are optimal or not. It is noticeable that if P[|σ|] ∈ L q1+q2 (Ω, ρ 1-q2 dx), it is proved in [14, Th 1.1] that, if Ω is a ball, then |σ| belongs to the Besov-Sobolev space B -2-q 2

	q 1 +q 2

Clearly, we have

Cap α0

N α,β ,s (E) = inf ˆΩ g s (ρ(x)) -α0(s-1) dx : g ≥ 0, N α,β [g] ≥ χ E for any Borel set E ⊂ Ω. Furthermore we have by [START_REF] Adams | Function Spaces and Potential Theory[END_REF]Theorem 2.5.1],

Cap α0 N α,β ,s (E)

for any compact set E ⊂ Ω, where s is the conjugate exponent of s.

Thanks to Lemma 2.2 and 2.3 , we can apply Theorem 2.1 and we obtain:

Theorem 2. [START_REF] Fefferman | The uncertainty principle[END_REF] Let ω ∈ M + (Ω), α 0 ≥ 0, 0 ≤ α ≤ β < N and q > 1. Then the following statements are equivalent:

[ω] has a solution for ε > 0 small enough.

holds for some C > 0 and any Borel set E ⊂ Ω, ω E = ωχ E .

The inequality

holds for some C > 0 and any compact set K ⊂ Ω.

The inequality

holds for some C > 0.

To apply the previous theorem we need the following result.

Then, the following statements are equivalent:

1 The equation u = A ν 1 u q + εB 1 ω ν-a.e has a solution for ε > 0 small enough. 2 The equation u = A ν 2 u q + εB 2 ω ν-a.e has a solution for ε > 0 small enough.

The problem u A ν

1 u q + εB 1 ω ν-a.e has a solution for ε > 0 small enough.

The equation u A ν

1 u q + εB 1 ω ν-a.e has a solution for ε > 0 small enough. Proof. We prove only that 4 implies 2. Suppose that there exist c 1 > 0, ε 0 > 0 and a position Borel function u such that

The following results provide some relations between the capacities Cap α0 N α,β ,s and the Riesz capacities on R N -1 which allow to define the capacities on ∂Ω.

and

Proof of Theorem 1.2 and Theorem 1.5. By (3.2), the following equivalence holds

which in turn is equivalent to

By Proposition 2.8 and 2.9 we have:

if Ω = R N + , and

if Ω is a bounded domain. Thanks to Theorem (2.6) with ω = σ, α = 2, β = 2, α 0 = q + 1 and proposition 2.7, we get the results.

for all (x, y, z) ∈ Ω × Ω × ∂Ω, see [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF][START_REF] Marcus | Moderate solutions of semilinear elliptic equations with Hardy potential[END_REF][START_REF] Gkikas | Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials[END_REF]. Therefore, from (3.1) we get G κ (x, y) (ρ(x)ρ(y))

for all (x, y, z) ∈ Ω × Ω × ∂Ω, α ≥ 0. We denote

dx), f ≥ 0. Then the unique weak solution of

satisfies the following integral equation [START_REF] Gkikas | Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials[END_REF] 

As in the proofs of Theorem 1.2 and Theorem 1.5 the relation

is equivalent to

and the relation

is equivalent to

and proposition 2.7, 2.8, 2.9, we obtain. Theorem 4.1 Let q > 1, 0 ≤ κ ≤ 1 4 and σ ∈ M + (∂Ω). Then, the following statements are equivalent 1 There exists C > 0 such that the following inequalities hold

for any Borel set O ⊂ ∂Ω if Ω is a bounded domain.

2 There exists C > 0 such that the inequality

holds.

Problem

has a positive solution for ε > 0 small enough.

Moreover, there is a constant C 0 > 0 such that if any one of the two statements 1 and 2 holds with C ≤ C 0 , then equation 4.6 has a solution u with ε = 1 which satisfies

Conversely, if (4.6) has a solution u with ε = 1, then the two statements 1 and 2 hold for some C > 0.

Remark 4.2 The problem (4.6) admits a subcritical range

If the above inequality, the problem can be solved with any positive measure provided σ(∂Ω) is small enough. The role of this critical exponent has been pointed out in [START_REF] Marcus | Moderate solutions of semilinear elliptic equations with Hardy potential[END_REF] and [START_REF] Gkikas | Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials[END_REF] for the removability of boundary isolated singularities of solutions of -∆u -κ ρ 2 u + u q = 0 in Ω i.e. solutions which vanish on the boundary except at one point. Furthermore the complete study of the problem -∆u -κ ρ 2 u + u q = 0 in Ω, u = σ on ∂Ω, (

is performed in [START_REF] Gkikas | Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials[END_REF] in the supercritical range

.

The necessary and sufficient condition is therein expressed in terms of the absolute continuity of σ with respect to the Cap I q+3-(q-1) √

1-4κ 2q

,q -capacity.