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Abstract

We give new criteria for the existence of weak solutions to an equation with a super
linear source term

—Au=u? inQ, u=0 on 0N

where € is a either a bounded smooth domain or RY, ¢ > 1 and o € 9T (9Q) is a
nonnegative Radon measure on 9. One of the criteria we obtain is expressed in terms
of some Bessel capacities on 92. We also give a sufficient condition for the existence
of weak solutions to equation with source mixed terms.

—Au = |u|" 'u|Vu|” inQ, u=0 on N

where q1,¢2 > 0,q1 + ¢2 > 1,¢q2 < 2, 0 € M(9N) is a Radon measure on 9.

1 Introduction and main results

Let © be a bounded smooth domain in RY or Q@ = RY := RV~ x (0,00), N > 3, and
g : R x RY — R be a continuous function. In this paper, we study the solvability of the
problem

—Au = g(u, Vu) in Q,

u=0c on 0, (1.1)

where o € M(9N) is a Radon measure on 0f2. All solutions are understood in the usual
very weak sense, which means that u € L*(Q), g(u, Vu) € L}(Q), where p(x) is the distance
from z to Q when Q is bounded, or u € L'(RY N B), g(u, Vu) € L;(Rf N B) for any ball
Bif @ =RY, and
23
u(=A¢)dr = | g(u, Vu)édx — —do (1.2)
Q Q oq On
for any ¢ € C%(Q) N C.(RY) with &€ = 0 in Q¢, where p(z) = dist(x, ), n is the outward
unit vector on 9. It is well-known that such a solution u satisfies

u= G[g(u, Vu)] + Plo] a. e. in Q,
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where G[.], P[], respectively the Green and the Poisson potentials associated to —A in €,
are defined from the Green and the Poisson kernels by

Plo](y) = /@ P(y.2)do(:), Gla(u, Vu)l) = / Gy, 2)g(u, V) (2)de,

see [16].
Our main goal is to establish necessary and sufficient conditions for the existence of weak

solutions of (1.1) with boundary measure data, together with sharp pointwise estimates of
the solutions. In the sequel we study two cases for the problem (1.1):

1- The pure power case

—Au = |u[i in Q,
u=0 on 01, (1.3)
with v >0, ¢ >1and o > 0.
2- The mixed gradient-power case
—Au = |Vu|®2|u|1 1y in Q,
u=oc on 0f), (1.4)

with g1,g2 >0, g1 +¢2 > 1 and g2 < 2.

The problem (1.3) has been first studied by Bidaut-Véron and Vivier [2] in the subcritical

case 1 < ¢ < & with Q bounded. They proved that (1.3) admits a nonnegative solution

provided o(092) is small enough. They also proved that for any o € im; (09) there holds

G[(P[o])7] < co(9Q)P[o] (L5)

for some ¢ = ¢(N, p,q) > 0. Then Bidaut-Véron and Yarur [3] considered again the problem
(1.3) in a bounded domain in a more general situation since they allowed both interior and
boundary measure data, giving a complete description of the solutions in the subcritical case,
and sufficient conditions for existence in the supercritical case. In particular they showed
that the problem (1.3) has a solution if and only if

G[(P[o])?] < cP[o] (1.6)

for some ¢ = ¢(N,q,Q) > 0, see [3, Th 3.12-3.13, Remark 3.12].

The absorption case, i.e. g(u, Vu) = —|u|?"!u has been studied by Gmira and Véron [9]
in the subcritical case (again 1 < ¢ < £ ) and by Marcus and Véron in the supercritical
case [13], [15], [16]. The case g(u, Vu) = —|Vu|? was studied by Nguyen Phuoc and Véron
[17] and extended recently to the case g(u, Vu) = —|Vu|?|u|? ~1u by Marcus and Nguyen

Phuoc [11]. To our knowledge, the problem (1.4) has not yet been studied.

To state our results, let us introduce some notations. We write A < (2)Bif A < (>)CB
for some C depending on some structural constants, A < Bif A < B < A. Various capacities
will be used throughout the paper. Among them are the Riesz and Bessel capacities in RV 1
defined respectively by

Cap;, ,(0) = inf {/ frdy:f>0,1%f> XO} ,
RN-1

Capcv,s(O)Zinf{/ fsdy:f>0,Gw*f>xO},
RN—l



for any Borel set O ¢ RYM~! where s > 1, I,,G. are the Riesz and the Bessel kernels in
RN —1 with order v € (0, N — 1). We remark that

s

Capg, +(0) = Cap ,(0) > C|O['"~= (L.7)

for any Borel set O C RY¥~! where vs < N — 1 and C is a positive constant. When we
consider equations in a bounded smooth domain © in RY we use a specific capacity that we
define as follows: there exist open sets Oy, ..., O, in RY diffeomorphisms T} : O; — B;(0)
and compact sets K1, ..., K,, in 09 such that

a. KZCOZ,(?QC U K;.
=1

b. T;(0; N9Q) = B1(0) N{zy =0}, T;(0; N Q) = B1(0) N {zx > 0}.
c. Forany x € O, N, Jy € O; NONQ, p(x) = |x — y|.

Clearly, p(T; ' (2)) < |zn| for any z = (2/, z5) € B1(0) N {zy > 0} and |J7, (x)| < 1 for any
x € 0; N, here Jr, is the Jacobian matrix of 7.

Definition 1.1 Let v € (0,N —1),s > 1. We define the Capgg-capacity of a compact set
E CoQ by

where T;(ENK;) =T;(ENK;) x {xn = 0}.
Notice that, if ys > N — 1 then there exists C' = C(N,~,s,) > 0 such that
Capli({z}) > C (1.8)
for all x € 9. Also the definition does not depend on the choice of the sets O;.
Our first two theorems give criteria for the solvability of the problem (1.1) in RY.
Theorem 1.2 Letg > 1 ando € im;' (RN=1). Then, the following statements are equivalent

1 There exists C > 0 such that the inequality

o(K) < CCap;, ,(K) (1.9)

holds for any compact set K C RN 1,

2 There exists C' > 0 such that the relation

G[(P[0])] < CPlo] < < a.ein RY (1.10)
holds.
3. The problem
—Au = uf n Rf,
U =¢eo mn 8Rﬂf, (1.11)

has a positive solution for e > 0 small enough.



Moreover, there is a constant Cy > 0 such that if any one of the two statement 1 and 2
holds with C < Cy, then equation (1.11) admits a solution u with e = 1 which satisfies

u = Plo]. (1.12)

Conversely, if (1.11) has a solution u with € = 1, then the two statements 1 and 2 hold for
some C > 0.

As a consequence of Theorem 1.2 when g(u, Vu) = |[u[7"'u (¢ > 1) and Q = RY, we
prove that if (1.3) has a nonnegative solution u with o € 90 (RV~1), then

o(B,(y)) < CorN i (1.13)
for any ball B;(y') in RV~ where C = C(q, N) and ¢ > %; ifl<g< %, then o = 0.
Conversely, if ¢ > %, do = fdz for some f > 0 which satisfies

/B,( )f1+8dz < opN-1-EE (1.14)
-y

for some € > 0, then there exists a constant Co = Cy(N, ¢) such that (1.1) has a nonnegative
solution if C' < Cj. The above inequality is an analogue of the classical Fefferman-Phong con-

dition [6]. In particular, (1.14) holds if f belongs to the Lorentz space LW"’O(RN*I).

We give sufficient conditions for the existence of weak solutions to (1.1) when g(u, Vu) =
[ul = u|Vul?, g1,q2 > 0, g1 + g2 > 1 and ¢2 < 2.

Theorem 1.3 Let q1,q2 > 0,q1 + q2 > 1,q2 < 2 and 0 € MRV 1) such that P[|o]] < oo
a.e. in RN71. Assume that there exists C > 0 such that for any Borel set K C RN~1 there
holds

|O'|(K) S C'Capl 2-qp ,((h-‘r(]z)/(K)' (115)
qa1+42
Then the problem
—Au = |u|i "y Vu|2 in RY,
U =€eo mn 81&1, (1.16)

has a solution for e > 0 small enough and it satisfies
lul SP[lof], [Vul £ p~'Pllo]). (1.17)
WN-1)(g1taz—1)
Remark 1.4 In any case and in view of (1.7), if do = fdz, f € L 2=ap (RN
and (N —1)(qg1 + g2 — 1) > 2 — qo then (1.15) holds for some C > 0 and the problem (1.16)

has a solution for € > 0 small enough. However, we can see that condition (1.15) implies
Pllo|] < oo a.e, see Theorem 2.6.

In a bounded domain §2 we obtain existence results analogous to Theorem 1.2 and 1.3
provided the capacities on 9€) set in Definition 1.1 are used instead of the Riesz capacities.

Theorem 1.5 Let ¢ > 1, Q C RN be a bounded domain with a C? boundary and o €
M+ (9Q). Then, the following statements are equivalent:

1 There exists C > 0 such that the inequality
o(K)<C Capg?q,(K) (1.18)

for any Borel set K C 012.



2 There exists C > 0 such that the inequality
G|[(P[0])!] < CPlo] < ¢ a.ein Q, (1.19)
holds.

3. The problem
—Au = uf in €,

U =¢eo on 0N, (1.20)

admits a positive solution for € > 0 small enough.

Moreover, there is a constant Cy > 0 such that if any one of the two statements 1 and 2
holds with C' < Cy, then equation (1.20) has a solution u with € = 1 which satisfies

u = Plo]. (1.21)

Conversely, if (1.20) has a solution u with e = 1, the above two statements 1 and 2 hold for
some C' > 0.

From (1.8), we see that if o € M (9Q) and 1 < ¢ < {+1, then (1.18) holds for some
constant C' > 0. Hence, in this case, the problem (1.20) has a positive solution for £ > 0

small enough.

Theorem 1.6 Let q1,q2 > 0,q1 +q2 > 1,q2 < 2, Q C RN be a bounded domain with a C?
boundary and o € M(ON). Assume that there exists C > 0 such that the inequality

o0
lo|(K) < Ccapq211q§2,(q1+qz)/(K) (1.22)
holds for any Borel set K C 0Q2. Then the problem
—Au = |u|? | V|2 in Q,
u=¢eo on 01, (1.23)

has a solution for € > 0 small enough which satisfies (1.17).

Remark 1.7 A discussion about the optimality of this condition, as well as the one of
Theorem 1.3, is conducted in Remark 3.1. We define the subcritical range by

(N=1)¢1 + Nga < N+1 or equivalently (N —1)(g1 +¢2—1) <2 — go. (1.24)

If we assume that we are in the subcritical case, then problem (1.23) has a solution for any
measure o € M,(0Q) and € > 0 small enough.

2 Integral equations

Let Q be either RV =1 x (0, 00) or 2 a bounded domain in R with a C? boundary 9. For
0 <a < B <N, we denote

1
z —y|N=Fmax {|z -y, p(z), p(y)}

Ng g(z,y) = | = V(z,y) € 2 x Q. (2.1)
We set
Noall() = [ Nosp(opdvly) v e o1 @),

and denote N, g[f] := Ngg[fdz] if f € L}, .(Q), f>0.

loc



In this section, we are interested in the solvability of the following integral equations
U = Nag [U%(p(.)*] 4+ Na,pglw] (2.2)
where ag > 0 and w € MH(Q).

We follow the deep ideas developed by Kalton and Verbitsky in [10] who analyzed a PDE
problem under the form of an integral equation. They proved a certain number of properties
of this integral equation which are crucial for our study and, for the sake of completeness, we
recall them here. Let X be a metric space and v € 9™ (X). Let K be a Borel positive kernel
function K : X x X 5 (0,00] such that K is symmetric and K~ satisfies a quasi-metric
inequality, i.e. there is a constant C' > 1 such that for all z,y, 2z € X we have

Ky <© (K(alc,z> * K(i,y>> |

Under these conditions, we can define the quasi-metric d by

d(xay> = K(:c y)7

and denote by B,.(z) = {y € X: d(z,y) < r} the open d-ball of radius » > 0 and center z.
Note that this set can be empty.

For w € MT(X), we define the potentials Kw and K f by

Ku(z) = /X Kz, y)dw(y), K f(z) = /X K (.9)  (y)dv (),

and for ¢ > 1, the capacity Capfgq, in X by

Capk ,(E) = inf {/ gqldu :g>0,KYg > XE}a
X

for any Borel set £ C X.
Theorem 2.1 ([10]) Let ¢ > 1 and v,w € MY (X) such that

/QTV(BS(”J"))CZS<C/TV(BS($))CL9 (2.3)
0 s o 5 s

s
p (B o [ Bl s 2.4
y€eB-(z) Jo S s 0 S §

for any r > 0,z € X, where C > 0 s a constant. Then the following statements are
equivalent:

1 The equation u = K"u? + cKw has a solution for some € > 0.

2 The inequality
/(KwE)qda < Cw(E) (2.5)
E

holds for any Borel set E C X where wg = Xpw.

3. For any Borel set E C X, there holds

w(E) < CCapg o (E). (2.6)



4. The inequality
K" (Kw)! < CKw < 00 v —a.e. (2.7)
holds.
We check below that N, g satisfies all assumptions of K in Theorem 2.1.
Lemma 2.2 N, g is symmetric and satisfies the quasi-metric inequality.

Proof. Clearly, N, g is symmetric. Now we check the quasi-metric inequality associated to

N, s and X = Q. For any w, z,y € Q such that z # y # z, we have
L e e N
S
Nog(2,2)  Naps(2,y)

Since |p(z) — p(y)| < |z — yl, there holds

= g NP (p(2))* + |z — |V (p()* S |z — y|V P (min{p(x), p(y)}) + |z — y¥F+e
<l — 2N + |z — 41V F) (minfp(e), p(y)})° + & — 2|V I 4 |z — y| VBT
< ((p())e — 2P + 3 — 21V F+2) 4 (o)) — 9|V P + |2 — y|VB+e)
1 1
Nop(@2) | Nap(ey)

S

Thus,

1 < 1 n 1
Na,g(l‘,y)

Next we give sufficient conditions for (2.3), (2.4) to hold, in view of the applications that
we develop in Sections 3 and 4.

Lemma 2.3 If dv(z) = (p(x))* xadz with ag > 0, then (2.3) and (2.4) hold.

Proof. It is easy to see that for any z € Q, s >0

B a1 (2)NQ CBg(x) C Bs(z)NQ, (2.8)

2 N-BS

with S = min{s Nt sﬁ(p(x))fﬁ} and B, (z) = Q when s > 2%(diam ()N,
We show that for any 0 < s < 8diam (), x € Q

v(Bs(z)) < (max{p(z), s})*sV. (2.9)

Indeed, take 0 < s < 8diam (), € Q. There exist ¢ = £(Q) € (0,1) and x, €  such that
Bes(zs) C Bs(x) N2 and p(zs) > es.

(a) f0<s< @, so for any y € Bs(z), p(y) < p(z). Thus we obtain (2.9) because
v(Bs(x)) = (p(2))*|Bs(2) N QY < (p(x))*s™.

(b) If s > @, since p(y) < p(z) + | — y| < 5s for any y € Bs(x), there holds v(Bs(z)) <
sVte0 and we have the following dichotomy:

(b.1) either s < 4p(x), then

V(B‘?(‘T)) 2 V(Bp(m) (l’)) = (p(x))a0+N Z SN+040;

4




(b.2) or s > 4p(x), we have for any y € Bey/a(xs), p(y) > —|y — 25| + p(xs) > es/2. It
follows

v(Bs(2)) 2 v(Besja(ws)) Z sV 00

Therefore (2.9) holds.

(at)(N—p+a) _
Next, for any 0 < s <27 ~N-5 (diam (Q))N=F+* and z € Q, we have

v(Bs(x)) = (max{p(z), min{s¥=rs , 77 (p(z)) N7 }} )0

N
N‘iB },)
ag+N

_ ) sy o if p(x) < sN*}*jfm
(o))~ #5555 it p(r) > 5757,

X (min{sm ,§7F (p(z))”

(a+1)(N—B+a)

and v(Bs(z)) = v(Q) < (diam (Q))**N if s > 27 ~5  (diam (Q))VN P+, We get,
. (diam (Q))0tF= if r > (diam (Q))N =P+,
JHEEDE L R e ()Y, i (),
’ (p(z))*~¥=8,7 =7 if r e (0,(p(z))N B+

Therefore (2.3) holds. It remains to prove (2.4). For any € Q and r > 0, it is clear that if
r> L(p(x))N P+ we have

" v(Bs d agtB—a
sup / 71/( ) & < min{r%, (diam (Q))QOHB*O‘},
yeB,.(z) Jo S S

from which inequality we obtain

T U(By(y)ds _ (" v(By(x)) ds
e

S S

sup
yEB,.(z

If 0 < r < 3(p(x))N =P+ we have B,(z) C B
y€B o (), thus

N (o)) N

/ "v(Bs(y)) ds _ / " v(Bs(y)) ds
0 0

Sy T (z) and p(x) < p(y) for all

sup —< sup —
yeR- (=) T < (o)) NP 50
qp—-aN_ B
< sup (p(y))™ N=Fr~=s
1 __a
ly—z|<rN=58 (p(z)) N-8
= (pa)) o #55rws
[ B
=/ . .
Therefore, (2.4) holds. ]

Remark 2.4 Lemma 2.2 and 2.3 in the case « = B = 2 and ag = q + 1 had already been
proved by Kalton and Verbitsky in [10].

Definition 2.5 For ag > 0,0<a << N and s > 1, we define Capl’ﬁfa’ﬁ’s by

Capy, , +(E) = inf {/Qgs(/)(x))”‘odfﬂ 19> 0,Naglg(p()*] = XE}

for any Borel set E C ).



Clearly, we have
Cany, () =t { [ g7l Vo 9> 0.No 5l > x|
’7 Q
for any Borel set £ C Q. Furthermore we have by [1, Theorem 2.5.1],

/e = sup {w(E) TwE Dﬁ;(E), HNa,ﬁ[wH

(Capoﬁoa)ﬁ,s(E)) L' (9,(p(.)))>0dz) < 1} (2.10)

for any compact set E C §, where s’ is the conjugate exponent of s.

Thanks to Lemma 2.2 and 2.3 , we can apply Theorem 2.1 and we obtain:

Theorem 2.6 Let w € MY (Q), ag > 0,0 < a < B < N and ¢ > 1. Then the following
statements are equivalent:

1 The equation u = Ny g[u?(p(.))*] + eNg glw] has a solution for € > 0 small enough.

2 The inequality
| Naslor)(p(a)) s < CulE) (2.11)
ENQ

holds for some C > 0 and any Borel set E C Q, wp = wxE.
3. The inequality
w(K) < CCapyy, , ,(K) (2.12)

holds for some C > 0 and any compact set K C Q.
4. The inequality
Nas [(Naglw])? (p(.))*] < CNaglw] < oo aein Q (2.13)
holds for some C' > 0.

To apply the previous theorem we need the following result.

Proposition 2.7 Letq > 1, v,w € MT(X). Suppose that A1, Ay, By, By : X xX + [0, +00)
are Borel positive Kernel functions with Ay < Ao, By < Bs. Then, the following statements
are equivalent:

1 The equation u = A{u? + eBiw v-a.e has a solution for € > 0 small enough.

2 The equation u = ASu? + eBow v—a.e has a solution for € > 0 small enough.
3. The problem u < AYu? + eBiw v-a.e has a solution for ¢ > 0 small enough.
4. The equation u 2 AYu? + eBiw v-a.e has a solution for € > 0 small enough.

Proof. We prove only that 4 implies 2. Suppose that there exist ¢; > 0,69 > 0 and a
position Borel function u such that

Afu? + ggBiw < cyu.

Taken ¢z > 0 with Ay < ¢4y, Bs < coB. We consider u,+1 = Ajul + 60(0162)74731320.)
1
and up = 0 for any n > 0. Clearly, u, < (c1c2)” a-Tu for any n and {u,} is nondecreasing.

Thus, U = lim w, is a solution of U = A§U? + 60(6102)7ﬁB2w. n
n— o0

The following results provide some relations between the capacities Capﬁ{’a s and the
Riesz capacities on RY~1 which allow to define the capacities on 9.



Proposition 2.8 Assume that Q@ = RVN~! x (0,00) and let ag > 0 such that
—1+s(14+a—-8)<ay<—-1+5(N-8+a).
There holds

Capyy, .5 (K > {0}) < Cap;_ o (K) (2.14)

7(1«#—0—0(/17]
’07 a 0 P(l t Set K C RN
ny com, C 5

Proof. The proof relies on an idea of [18, Corollary 4.20]. Thanks to [1, Theorem 2.5.1]
and (2.10), we get (2.14) from the following estimate: for any p € 9t (RV 1)

HNCV,,B[M(@&{MV:O}H Ls' (RN-1); (2.15)

1 @ (p)mode) < g qp2ott _ [1]

where I, [u] is the Riesz potential of p in RV~ i.e

h[u}(y)=/0 B 1(1)7 VyeRN

with B.(y) being a ball in R¥~1. We have

’

s’ _ e o] du(z) s , I
Ls" (,(p(.))~0dz) — \/]RN—lw/O (/]RN—l (|$, - Z|2 +LE2 )W HANg drydx
B\
/]RN 1/ </9th pN-B+a 7 Nod-rNdx-
Notice that

(% u(BL(a) dr\T (BN W(BLU)) dr\T
/o (/m rN=B+a oNden 2 0 A o o

’
S

< (B, () da
> /0 ,

~ N—fBta—20H TN
TN

[INa,gl1 ® 0tz =03l

On the other hand, using Hélder’s inequality and Fubini’s Theorem, we obtain

’

[y o< [T (Do) [ (REEE) oman
o/, (o) Cffrc%”‘fd I
o [ [y (LB
mo [T (mey )

L (9,(p(.))) “0 dz) (/]RN 1/ ( - ﬁm ))H)S/ti?’dy)
(2.16)

It implies (2.15) from [4, Theorem 2.3]. |

Thus,
1/s’

HN&-ﬂ[ ® §{$N 0}”

10



Proposition 2.9 Let Q C RY be a bounded domain a C? boundary. Assume oy > 0 and
“1+d1+a—-0)<ayg<-1+5(N—p+a). Then there holds

Capy,, J(B) = Capgsza+a07j_17 (E) (2.17)

1,s
for any compact set E C 99 C RV,

Proof. Let Ki,..., K, be as in definition 1.1. We have
Capy , ((B) =) Capy | (ENK;),
i=1

for any compact set E C 0f). By definition 1.1, we need to prove that

Capy, , ,(ENK;) < Capg ST(ENK;) Yi=1,2,..,m. (2.18)

ﬁ—a+°‘%,ﬂ—1

We can show that for any w € M (9Q) and i = 1,...,m, there exists w; € M (T;(K;)) with
T;(K;) = T;(K;) x {xy = 0} such that

wi(0) = w(T;7 (0 x {0}))

for all Borel set O C T;(K;), its proof can be found in [1, Proof of Lemma 5.2.2]. Thanks
to [1, Theorem 2.5.1], it is enough to show that for any i € {1,2,...,m} there holds

INa,sxx: @l Lo (@, (p( )20 dz) = ||Gﬂ_a+w27/+l_1 [willl s @v-1 (2.19)

where G [w;] (0 <y < N —1) is the Bessel potential of w; in RV71, i.e

Golol@) = [ 6o =il

Indeed, we have

L @ (o)) de) = /Q ( /K %) (p(x))*dx
= /Omﬂ (/K %)9 (P(x))aoda:—i—/g;\@ </K %>G (p(z))*°dx

=/ B ( / x_dj’m) (o)™ + ((K:))*

Here we used |z — z| < 1 for any « € Q\O;, z € K;.
By a standard change of variable we obtain

/omsz </K %)S, (p(x))*dz + (w(K;))*

= dw(z) : —1 ao -1 -1 w(K; s’
oo UL i ) 6 3 )+ ()

dw(z) )5’ oo b /
= — yn'dy + (w(K;))* withy = (v, yn),
/Bl(())ﬂ{zN>O} (/K y — Ti(z)|N—FPt+e N (Ha)) (

[N, glwxx,]
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since [T71(y) — 2| = [y — T2, 1, (T )] = 1 and p(T;2(y) = gy for all (y,2) €
T;(0; N Q) x K;. From the definition of w;, we have

1 s
da«z>) yeody + (w(K)"
/Bl(O)ﬁ{zN>O} </K = Ti(2)|N-Fte

’

1 3 N / .
-, </ — 2NﬁMW&Ozw@Wyﬂmm»
B1(0)n{en>0} \JTi(&:) (Jy — &2 +yx)™ =2

’

w;(Bl(y")) dr ’ . . .
B N dynd th R=4d ).
/RN 1/ (/mm{yN R} rN—B+a Yy oYynay Wi iam (Q)

As in the proof of Proposition 2.8, there holds

’

’

’

wiByN dr\ e
- — | yNdyndy
~/]RN 1 / </rnln{y1v R} rN=fta N
2R ! (a0 s’
i B d
/ / il a))+1 ldy/'
RN-1 N Bta— 0 T

Therefore, we get (2.19) from [4, Theorem 2.3]. |

Remark 2.10 Proposition 2.8 and 2.9 with a = 8 = 2,9 = ¢+ 1 were demonstrated by
Verbitsky in [5, Apppendiz B], using an alternative approach.

3 Proof of the main results

We denote
Plo](x) :/ P(z,2)do(2) /G (x,y)f
o0
for any o € M(ON), f € L})(Q), f > 0. Then the unique weak solution of
—Au=f in Q,
u=o0 on 02,

can be represented by
u(z) = G[f](z) + Plo](z) V x €.

We recall below some classical estimates for the Green and the Poisson kernels.

= min 1 p()p(y)
o) =min{ e 20}

p(z)
P = —
and

Ply) . |z —y| 1
VeG(z,y)| < —F=min 1, —=—— 3, |V,P(z,2)| < ——,
Ve @IS Ty { e | PEAIS pE

for any (x,y,z) € Q x Q x 99, see [2]. Since |p(z) — p(y)| < |x — y| we have

max {p(z)p(y), |z — y|*} =< max {|z — y|, p(x), p(y)}*.

12



Thus,

i M k - |l — y|” -
mln{1’< p(m)p(:g)) }A (max {|z — y|, p(x), p(x)})” for v>0.

Therefore,

G(z,y) = p(x)p(y)N22(z,y), P(z,2) =< p(z)Naa(z, 2)
and

Ve Gz, 9)| S p(y)N1,1(2,y), [VaP(2,2)] S Naalz,2)

for all (x,9,2) € QA x 2 x N, a > 0.

(3.1)

(3.3)

Proof of Theorem 1.2 and Theorem 1.5. By (3.2), the following equivalence holds

G[(P[o])] SPlo] <o aein Q<= No,[(Na2[0])?p?™!] < Naplo] < oo aein Q.

Furthermore
U =< G[UY +Plo] <= U =< pNa2[pU?] + pNa2[0],
which in turn is equivalent to
V =< Noo[p?T'V9) + Noofo] with V =Up~".
By Proposition 2.8 and 2.9 we have:

Capy, o (K) = Caqu';lz,q,(K x {0}) VK c RN71 K compact.
if Q= Rf, and

Cap%?l, (K) =< Caqut‘lz)q, (K) VK C 09, K compact.

g

if Q is a bounded domain. Thanks to Theorem (2.6) with w =0, a = 2,8 =2,a9 = ¢+ 1

and proposition 2.7, we get the results.

Proof of Theorem 1.3 and 1.6. By (3.2) and (3.3), we have

G(z,y) < Cp(@)p(y)N1,1(2,y), [VaiG(z,y)| < Cp(y)N1,1(z,y),
P(z,2) < Cp(y)Ni1(z,2), |[V.P(z,2)] < CNy(z,2),

for all (z,y,2) € Q x Q x 99 and for some constant C' > 0.
For any u € V[/ﬁ)p1 (), we set

mew=Aemwwww*wmwwwww+[;m@@ww>
Using (3.4) and (3.5), we have

[F(u)] < Cp( )N [lul™[Vu[®p()] + Cp()N1alo]],
[VF(u)| < ONyy [Jul® [Vu|®p()] + CNy s f[o]].

Therefore, we can easily see that if

)Q1+qz—1

o q1tq2 q1+1 (ql te—1
Nua [(Nuallol)®* (o) ] < Sigrt

13
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holds, then F is the map from E to E, where
E= {u € Wllocl(Q) Sul < Ap( )Ny alol], [Vul < ANq1[lo]] aein Q}

: _ C(a1t+g2)
with A = e

Assume that (3.6) holds. We denote S by the subspace of functions f € W' (€2) with norm

loc
||f”3 = |‘f||L’11+’12(Q,(p(.))1_‘12dz) + |||vf|||L‘11+‘12(Q,(p(.))1+‘12dw) < 0.

Clearly, E C S, E is closed under the strong topology of S and convex.

On the other hand, it is not difficult to show that F is continuous and F(E) is precompact in
S. Consequently, by Schauder’s fixed point theorem, there exists u € E such that F(u) = u.
Hence, u is a solution of (1.16)-(1.23) and it satisfies

ful < Ap()Nuallof], [Vul < AN [[o]

Thanks to Theorem 2.6 and Proposition 2.8, 2.9, we verify that assumptions (1.15) and
(1.23) in Theorem 1.3 and 1.6 are equivalent to (3.6). This completes the proof of the
Theorems. ]

Remark 3.1 We do not know whether conditions (1.15) and (1.22) are optimal or not. It
is noticeable that if P||o|] € L9F92(Q, p'=%dz), it is proved in [14, Th 1.1] that, if Q is a

-
ball, then |o| belongs to the Besov-Sobolev space B~ atay a2 (0Q). Therefore inequality

1
90 (a1+42)’
|0-|(K) S C <Cap ‘121:'(1(122 ’(Q1+QZ)/(K))

holds for any Borel set K C 02, and it is a necessary condition for (1.22) to hold since
(quqZ)), < 1. In a general C? bounded domain, it is easy to see that this property, proved
in a particular case in [13, Th 2.2] is still valid thanks to the equivalence relation (2.23)
therein between Poisson’s kernels, see also the proof of Proposition 2.9. The difficulty for
obtaining a necessary condition of existence lies in the fact that, if the inequality u > Plo]
is clear, |Vu| 2 p~'P[o] is not true. It can also be shown that if

[ul®|Vu|® < C(G(lo])™ (pN1a[lo])® € L1, p(.)dx),

then o is absolutely continuous with respect to Cap%s’,,
q1+492”’

(q1+4q2)""

4 Extension to Schrodinger operators with Hardy po-
tentials

We can apply Theorem 2.6 to solve the problem

—Au — HGu=u? in Q
)
P
u=oc on 01,

where x € [0, 1] and o € MT(99Q).

Let G, P« be the Green kernel and Poisson kernel of —A — % in Q with « € [0, 1. It
is proved that

Vi—dr
= i 1 (p(@)p(y) =
GK(Ly)Amm{x—yW2’|x—y|N1+m )

1+vVI—dr
PRRSURR . ) .
T g — NI R
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for all (z,y,2) € Q x Q x 99, see [7, 12, 8]. Therefore, from (3.1) we get

1+V1—-4k

Gr(z,y) =< (p(2)p(y) 2 Niy =22, 9), (4.1)
Pr(2,2) = (p(2)) 7 Ni_yizimsalt: 2), (4.2)

for all (x,y,2) € Q x Q x 98, a > 0. We denote

P, [o](x) = /a Pul@2)do(2), Gulflla) = / Gl 9) f(y)dy

for any o € M+(IQ), f € L'(Q,p = " dz), f > 0. Then the unique weak solution of
—Au — p%u =f in Q,
u=oc on 0f,

satisfies the following integral equation [8]
u= Gg[f] + Pxlo] ae. in Q.
As in the proofs of Theorem 1.2 and Theorem 1.5 the relation
G, [(Pi[o)Y] SPlo] <0 aein Q,

is equivalent to

(q+1><1+¢m>}
2

N1+\/174n,2 {(N1+\/174n,2[0])q0 S N1+\/174n,2[0'] <oo aein £,

and the relation
U= G,[U%+P,lo],

is equivalent to

1+V/1—-4k

(g+1)(1+VT—4r) . —
T VI + N, rogmolo] with V=Up~ 2

V= Nl-ﬁ/@,z[/’

Thanks to Theorem 2.6 with w = 0, a = 1+ V1 —4kK,8 = 2,00 = % V1245 and
proposition 2.7, 2.8, 2.9, we obtain.

Theorem 4.1 Let ¢ > 1,0 < k < 1 and o € M (9Q). Then, the following statements are
equivalent

1 There exists C > 0 such that the following inequalities hold

0(0) < C Cap; (0) (4.3)

q+3—(q53)x/m’q'
for any Borel set O C RN~ if Q =RY and
0(0) < CCapifa_iynyyr=sx ,(O) (4.4)
24 >

for any Borel set O C 09 if Q is a bounded domain.

2 There exists C' > 0 such that the inequality
G, [(P[o])] < CPlo] < 00 a.ein K, (4.5)

holds.
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3. Problem
—Au — ;—Qu =uf n Q,

U =€ on 01, (4.6)

has a positive solution for e > 0 small enough.

Moreover, there is a constant Cy > 0 such that if any one of the two statements 1 and 2
holds with C < Cy, then equation 4.6 has a solution u with € = 1 which satisfies

u =< Pylo]. (4.7)

Conversely, if (4.6) has a solution u with € = 1, then the two statements 1 and 2 hold for
some C > 0.

Remark 4.2 The problem (4.6) admits a subcritical range

14++v/1—4k
N+ =5—
N+ 1+\/21—4n . 2'

1<g<

If the above inequality, the problem can be solved with any positive measure provided o(02)
is small enough. The role of this critical exponent has been pointed out in [12] and [8] for
the removability of boundary isolated singularities of solutions of

—Au—%u—kuq:OinQ

i.e. solutions which vanish on the boundary except at one point. Furthermore the complete
study of the problem
—Au—p%u+uq:0 in §,

u=oc on 01, (4.8)

is performed in [8] in the supercritical range

N+ 14++v/1—4k
> 2 .
9= N—|— 1+\/21—4n —9

The necessary and sufficient condition is therein expressed in terms of the absolute continuity

of o with respect to the Cap1q+37(q;;> g -capacity.
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