Hierarchy of solutions to the NLS equation and multi-rogue waves. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Hierarchy of solutions to the NLS equation and multi-rogue waves.

Résumé

The solutions to the one dimensional focusing nonlinear Schrödinger equation (NLS) are given in terms of determinants. The orders of these determinants are arbitrarily equal to 2N for any nonnegative integer $N$ and generate a hierarchy of solutions which can be written as a product of an exponential depending on t by a quotient of two polynomials of degree N(N+1) in x and t. These solutions depend on 2N-2 parameters and can be seen as deformations with 2N-2 parameters of the Peregrine breather P_{N} : when all these parameters are equal to 0, we recover the P_{N} breather whose the maximum of the module is equal to 2N+1. Several conjectures about the structure of the solutions are given.
Fichier principal
Vignette du fichier
nlsSyn1.pdf (865.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01045243 , version 1 (24-07-2014)

Identifiants

  • HAL Id : hal-01045243 , version 1

Citer

Pierre Gaillard. Hierarchy of solutions to the NLS equation and multi-rogue waves.. 2014. ⟨hal-01045243⟩
131 Consultations
128 Téléchargements

Partager

More