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Abstract

The solutions to the one dimensional focusing nonlinear Schrödinger
equation (NLS) are given in terms of determinants. The orders of
these determinants are arbitrarily equal to 2N for any nonnegative
integer N and generate a hierarchy of solutions which can be written
as a product of an exponential depending on t by a quotient of two
polynomials of degree N(N + 1) in x and t. These solutions depend
on 2N − 2 parameters and can be seen as deformations with 2N − 2
parameters of the Peregrine breather PN : when all these parameters
are equal to 0, we recover the PN breather whose the maximum of the
module is equal to 2N + 1. Several conjectures about the structure of
the solutions are given.

PACS numbers :
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1 Introduction

Here, we consider the one dimensional focusing nonlinear Schrödinger equa-
tion (NLS) to describe the phenomena of rogue waves. The first results
concerning the NLS equation date from the works of Zakharov and Shabat
in 1972 who solved it using the inverse scattering method [1, 2]. The first
quasi rational solutions to NLS equation were constructed in 1983 by Pere-
grine [3]. Akhmediev, Eleonski and Kulagin obtained in 1986, the two-phase
almost periodic solution to the NLS equation and obtained the first higher
order analogue of the Peregrine breather [4, 5]. Other analogues of the Pere-
grine breathers of order 3 and 4 were constructed in a series of articles by
Akhmediev et al. [6, 7, 8] using Darboux transformations.
Recently, many works about NLS equation have been published using differ-
ent methods. Rational solutions to the NLS equation were written in 2010 as
a quotient of two wronskians [9]; the present author constructed in [10] an-
other representation of the solutions to the NLS equation in terms of a ratio
of two wronskians of even order 2N composed of elementary functions using
truncated Riemann theta functions in 2011; Guo, Ling and Liu found in 2012
another representation of the solutions as a ratio of two determinants [11]
using generalized Darboux transformation; a new approach was proposed by
Ohta and Yang in [12] using Hirota bilinear method; finally, the present au-
thor has obtained in 2013 rational solutions in terms of determinants which
do not involve limits in [13].
The present paper presents multi-parametric families of quasi rational so-
lutions to NLS of order N in terms of determinants (determinants of order
2N) depending on 2N −2 real parameters. With this method, a hierarchy of
solutions to the NLS equation is obtained. With this representation, at the
same time, the well-known ring structure, but also the triangular shapes also
given by Ohta and Yang [12], Akhmediev et al. [20], Matveev and Dubard
[22] are found.
The aim of this paper is to summarize results on solutions to the NLS equa-
tion depending on 2N − 2 parameters and try to classify them. Solutions
depending on 2N − 2 parameters give the (analogue) Peregrine breather PN
of order N as a particular case when all the parameters are equal to 0 : for
this reason, these solutions will be called 2N − 2 parameters deformations of
the Peregrine PN .
The paper is organized as follows. First, we recall the representation of the
solutions to the NLS equation in terms of wronskians. This representation
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allows to obtain quasi rational solutions to NLS equation, when some param-
eter tends towards 0. Quasi rational solutions depending a priori on 2N − 2
parameters at the order N are constructed.
Moreover we give a theorem which states the structure of the quasi-rational
solutions to the NLS equation. Families depending on 2N − 2 parameters
for the N -th order as a ratio of two polynomials of degree N(N + 1) of x
and t multiplied by an exponential depending on t are obtained. We states
that the highest amplitude of modulus of the Peregrine breather of order N
is equal to 2N + 1. Then we try to classify the hierarchy of solutions to the
NLS equation in function of the order N and the parameters ãj and b̃j.

2 Expression of solutions to NLS equation in

terms of wronskians

We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0. (1)

We recall the main result obtained in [10]. In the following, we need to define
some notations.
The parameters −1 < λν < 1, ν = 1, . . . , 2N , are real numbers such that

−1 < λN+1 < λN+2 < . . . < λ2N < 0 < λN < λN−1 < . . . < λ1 < 1
λN+j = −λj, j = 1, . . . , N.

(2)

The terms κν , δν and γν are defined by

κj = 2
√

1 − λ2
j , δj = κjλj, γj =

√

1−λj

1+λj
,

κN+j = κj, δN+j = −δj, γN+j = 1/γj, j = 1 . . . N.
(3)

We choose the parameters aj and bj in the form

aj =
N−1
∑

k=1

ãkj
2k+1ǫ2k+1, bj =

N−1
∑

k=1

b̃kj
2k+1ǫ2k+1, 1 ≤ j ≤ N. (4)

Complex numbers eν 1 ≤ ν ≤ 2N are defined in the following way :

ej = iaj − bj, eN+j = iaj + bj, 1 ≤ j ≤ N, a, b ∈ R. (5)
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The terms xr,ν (r = 3, 1) are defined by

xr,ν = (r − 1) ln γν−i

γν+i
, 1 ≤ j ≤ 2N. (6)

The functions φr,ν are defined by :

φr,ν = sin Θr,ν , 1 ≤ ν ≤ N, φr,ν = cos Θr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (7)

with the arguments

Θr,ν = κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2, 1 ≤ ν ≤ 2N. (8)

We denote Wr(y) the wronskian of the functions φr,1, . . . , φr,2N defined by

Wr(y) = det[(∂µ−1
y φr,ν)ν, µ∈[1,...,2N ]]. (9)

We get the following result [10] :

Theorem 2.1 The function v defined by

v(x, t) =
W3(φ3,1, . . . , φ3,2N)(0)

W1(φ1,1, . . . , φ1,2N)(0)
exp(2it− iϕ).

is a solution to the focusing NLS equation with φrν defined in (7)

φr,ν = sin(κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2), 1 ≤ ν ≤ N,
φr,ν = cos(κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2), N + 1 ≤ ν ≤ 2N, r = 1, 3,

κν, δν, xr,ν, γν, eν being defined in (3), (6) and (5).

3 Families of multi-parametric solutions to

NLS equation in terms of a ratio of two

determinants depending on 2N − 2 param-

eters

To construct solutions to the NLS equation as a quotient of two determi-
nants, the following notations are needed :

Xν = κνx/2 + iδνt− ix3,ν/2 − ieν/2,
Yν = κνx/2 + iδνt− ix1,ν/2 − ieν/2,
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for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3), (6). Parameters eν are
defined by (5).
We define the functions ϕj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N by

ϕ4j+1,k = γ4j−1
k sinXk, ϕ4j+2,k = γ4j

k cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,
(10)

for 1 ≤ k ≤ N , and

ϕ4j+1,N+k = γ2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ2N−4j−5

k sinXN+k,
(11)

for 1 ≤ k ≤ N .
We define the functions ψj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way,
the term Xk is only replaced by Yk.

ψ4j+1,k = γ4j−1
k sinYk, ψ4j+2,k = γ4j

k cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,
(12)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ2N−4j−5

k sinYN+k,
(13)

for 1 ≤ k ≤ N .
Then it is clear that

q(x, t) :=
W3(0)

W1(0)

can be written as

q(x, t) =
∆3

∆1

=
det(ϕj,k)j, k∈[1,2N ]

det(ψj,k)j, k∈[1,2N ]

. (14)

We recall that λj = 1 − 2jǫ2. All the functions ϕj,k and ψj,k and their
derivatives depend on ǫ and can all be prolonged by continuity when ǫ = 0.
Then we get the following result [13] :

Theorem 3.1 The function v defined by

v(x, t) = exp(2it− iϕ) ×
det((njk)j,k∈[1,2N ]

)

det((djk)j,k∈[1,2N ]
)

(15)
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is a quasi-rational solution to the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

quotient of two polynomials N(x, t) and D(x, t) depending on 2N − 2 real
parameters ãj and b̃j, 1 ≤ j ≤ N − 1.
N and D are polynomials of degrees N(N + 1) in x and t, where

nj1 = ϕj,1(x, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2 (x, t, 0),

njN+1 = ϕj,N+1(x, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2 (x, t, 0),

dj1 = ψj,1(x, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2 (x, t, 0),

djN+1 = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

The functions ϕ and ψ are defined in (10),(11), (12), (13).

Moreover, we have the following result which the states the highest am-
plitude of the modulus of the Peregrine breather of order N 1 :

Theorem 3.2 The function v0 defined by

v0(x, t) = exp(2it− iϕ) ×

(

det((njk)j,k∈[1,2N ])

det((djk)j,k∈[1,2N ])

)

(ãj=b̃j=0, 1≤j≤N−1)

(16)

is the Peregrine breather of order N solution to the NLS equation (1) whose
highest amplitude in module is equal to 2N + 1.

4 Hierarchy of solutions to NLS equation de-

pending on 2N − 2 parameters

For each nonnegative integer N , we have constructed solutions to NLS equa-
tion depending on 2N − 2 parameters.
The case N = 1 correspond to the classical breather, first constructed by
Peregrine [3] in 1983; the analogue breather in the case N = 2 was built
for the first time by Akhmediev, Eleonski and Kulagin [4, 5] in 1986. Other
analogues of the Peregrine breathers of order 3 and 4 were constructed in a

1This result and the proof has been submitted. It should be published soon
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series of articles by Akhmediev et al. [6, 7] using Darboux transformations.
It is only in 2012 that solutions of order 3 and 4 with respectively 4 and
6 parameters were first explicitly found by Matveev using another method
based on results of [21], but only published in 2013 in [22].
The solutions for orders 3 and 4 have also been explicitly found by the present
author [14, 15]. The equivalence between with two types of solutions was
made in [22] for the order 3; the equivalence between these solutions for the
order 4 was made by the present author in [15].
In a series of articles, we have studied other higher orders. We have also
explicitly found the solutions at order 5 with 8 parameters [16] : these ex-
pressions are too extensive to be presented : it takes 14049 pages! For orders
6, 7 the solutions are also explicitly found but are more complicated and
cannot be published in any review; the analysis has been done in all these
cases in respectively [17, 18]. The solutions for order 8, with 14 parameters
are also found and submitted to a review.
The cases of orders 9 and 10 have just been finished and the solutions with
respectively 16 and 18 parameters are explicitly found.
From these various studies, it arises that the solutions have quite particular
structures depending on the parameters ãj and b̃j. The parameters ãj and b̃j
play a similar role in obtaining the structures of the solutions. One can thus
establish a certain number of conjectures about these solutions at the order
N .
We illustrate these conjectures by plots of the solutions in the (x; t) plane.

4.1 Case a1 6= 0 (or b1 6= 0)

For ã1 6= 0 or b̃1 6= 0 and other parameters equal to 0, one obtains a triangle
with N(N+1)

2
peaks.

It is important to note that we obtain triangle only in this case; in all the
other cases for only one parameter non equal to 0, we obtain rings.
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Figure 1: Solution to NLS, N=3, ã1 = 104 : triangle with 6 peaks; on the
right, N=4, ã1 = 103 : triangle with 10 peaks.

Figure 2: Solution to NLS, N=5, ã1 = 104 : triangle with 15 peaks; on the
right, N=6, ã1 = 103 : triangle with 21 peaks.

Figure 3: Solution to NLS, N=7, ã1 = 104 : triangle with 28 peaks; on the
right, sight of top.

Figure 4: Solution to NLS, N=8, ã1 = 106 : triangle with 36 peaks; on the
right, sight of top.
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Figure 5: Solution to NLS, N=9, ã1 = 103 : triangle with 45 peaks; on the
right, sight of top.

Figure 6: Solution to NLS, N=10, ã1 = 103 : triangle with 55 peaks; on the
right, sight of top.

4.2 Case aN−1 6= 0 (or b1 6= 0), N ≥ 3

For ãN−1 6= 0 or b̃N−1 6= 0 and other parameters equal to 0, one obtains only
one ring of 2N − 1 peaks with in the center Peregrine PN−2 of order N − 2
2; here, N ≥ 3.

Figure 7: Solution to NLS, N=3, ã2 = 106 : ring with 5 peaks, P1 in the
center; on the right, N=4, ã3 = 108 : ring with 7 peaks, P2 in the center.

2This conjecture was already formulated by different authors, in particular by Akhme-
diev et al. [19]
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Figure 8: Solution to NLS, N=5, ã4 = 1010 : ring with 9 peaks, P3 in the
center; on the right, N=6, ã5 = 1015 : ring with 11 peaks, P4 in the center.

Figure 9: Solution to NLS, N=7, ã6 = 1012 : ring with 13 peaks, P5 in the
center; on the right, sight of top.

Figure 10: Solution to NLS, N=8, ã7 = 1010 : ring with 15 peaks, P6 in the
center; on the right, sight of top.

Figure 11: Solution to NLS, N=9, ã8 = 1020 : ring with 17 peaks, P7 in the
center; on the right, sight of top.
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Figure 12: Solution to NLS, N=10, ã9 = 1019 : ring with 19 peaks, P8 in the
center; on the right, sight of top.

4.3 Case aN−2 6= 0 (or b1 6= 0), N ≥ 5

For ãN−2 6= 0 or b̃N−2 6= 0 and other parameters equal to 0, one obtains two
concentric rings of 2N − 3 peaks with in the center Peregrine PN−4 of order
N − 4; here N ≥ 5.

Figure 13: Solution to NLS, N=5, ã3 = 106 : 2 rings with 7 peaks, P1 in the
center; on the right, N=6, ã4 = 1010 : 2 rings with 9 peaks, P2 in the center.

Figure 14: Solution to NLS, N=7, ã5 = 1015 : 2 rings with 11 peaks, P3 in
the center; on the right, sight of top.
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Figure 15: Solution to NLS, N=8, ã6 = 1020 : 2 rings with 13 peaks, P4 in
the center; on the right, sight of top.

Figure 16: Solution to NLS, N=9, ã7 = 1020 : 2 rings with 15 peaks, P5 in
the center; on the right, sight of top.

Figure 17: Solution to NLS, N=10, ã8 = 1019 : 2 rings with 17 peaks, P6 in
the center; on the right, sight of top.

4.4 Case aN−3 6= 0 (or bN−3 6= 0), N ≥ 7

For ãN−3 6= 0 or b̃N−3 6= 0 and other parameters equal to 0, one obtains three
concentric rings of 2N − 5 peaks with in the center Peregrine PN−6 of order
N − 6; here N ≥ 7.

12



Figure 18: Solution to NLS, N=7, ã4 = 1010 : 3 rings with 9 peaks, P1 in the
center; on the right, sight of top.

Figure 19: Solution to NLS, N=8, ã5 = 1020 : 3 rings with 11 peaks, P2 in
the center; on the right, sight of top.

Figure 20: Solution to NLS, N=9, ã6 = 1015 : 3 rings with 13 peaks, P3 in
the center; on the right, sight of top.

Figure 21: Solution to NLS, N=10, ã7 = 1016 : 3 rings with 15 peaks, P4 in
the center; on the right, sight of top.
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4.5 General case

In general, we can conjecture that :
For ãN−k 6= 0 or b̃N−k 6= 0 and other parameters equal to 0, for N > 0 and
2k < N − 1, one obtains k concentric rings of 2N − 2k+ 1 peaks with in the
center Peregrine PN−2k of order N − 2k.
It would be relevant to study the cases for the integers k such that k > N

2

and the parameters aN−k 6= 0 or bN−k 6= 0; the structure seems to be more
complicated and would be clarified.

5 Conclusion

Here we have given the structure of quasi-rational solutions to the one di-
mensional focusing NLS equation at the order N . They can be expressed as
a product of an exponential depending on t by a ratio of two polynomials of
degree N(N + 1) in x and t.
If we choose ãi = b̃i = 0 for 1 ≤ i ≤ N , we obtain the classical (analogue)
Peregrine breather. Thus these solutions appear as 2N − 2-parameters de-
formations of the Peregrine breather PN of order N ; this PN breather has an
highest amplitude in module equal to 2N + 1; this result is recently proved
by the author and submitted to a review.
The method described in the present paper provides a powerful tool to get
explicit solutions to the NLS equation and to understand the behavior of
rogue waves.
There are currently many applications in these fields as recent works by
Akhmediev et al. [23] or Kibler et al. [24] attest it in particular.
This study leads to a better understanding of the phenomenon of rogue waves,
and it would be relevant to go on with the higher orders.
A beginning of classification of the solutions to NLS equation was started
with Akhmediev et al. [25]. It would be important in the future to prove the
conjectures given in this paper and to give a complete classification for the
order N of the quasi rational solutions to the NLS equation.
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