Semiclassical analysis for a Schrödinger operator with a U(2) artificial gauge: the periodic case - Archive ouverte HAL
Article Dans Une Revue Reviews in Mathematical Physics Année : 2016

Semiclassical analysis for a Schrödinger operator with a U(2) artificial gauge: the periodic case

Abderemane Morame
  • Fonction : Auteur
  • PersonId : 860098
Francoise Truc

Résumé

We consider a Schrödinger operator with a Hermitian 2x2 matrix-valued potential which is lattice periodic and can be diagonalized smoothly on the whole $R^n.$ In the case of potential taking its minimum only on the lattice, we prove that the well-known semiclassical asymptotic of first band spectrum for a scalar potential remains valid for our model.
Fichier principal
Vignette du fichier
Version_II.pdf (161.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00936313 , version 1 (24-01-2014)
hal-00936313 , version 2 (24-06-2014)

Identifiants

Citer

Abderemane Morame, Francoise Truc. Semiclassical analysis for a Schrödinger operator with a U(2) artificial gauge: the periodic case. Reviews in Mathematical Physics, 2016, 28 (8), ⟨10.1142/S0129055X16500148⟩. ⟨hal-00936313v2⟩
270 Consultations
250 Téléchargements

Altmetric

Partager

More