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We consider a Schrödinger operator with a Hermitian 2x2 matrix-valued potential which is lattice periodic and can be diagonalized smoothly on the whole R n . In the case of potential taking its minimum only on the lattice, we prove that the well-known semiclassical asymptotic of first band spectrum for a scalar potential remains valid for our model.

Semiclassical analysis for a Schrödinger operator with a U(2) artificial gauge: the periodic case 1 Introduction

Schrödinger operators with periodic matrix-valued potentials appear in many models in physics. Such models have been used recently to describe the motion of an atom in optical fields ( [Co], [Co-Da], [Da-al]), see also [Ca-Yu]. The aim of this paper is to investigate their spectral properties using semiclassical analysis. We focus on the first spectral band and assume that the potential has a non degenerate minimum. The Schrödinger operators with a non-Abelian gauge potential are Hamiltonian operators on L 2 (R n ; C m ) of the following form :

H h = h 2 n k=1 (D x k I -A k ) 2 + V + hQ + h 2 R = P h (x, hD) .
(1.1)

The classical symbol of P h (x, hD), P h (x, ξ), for (x, ξ) ∈ R n × R n , is given by

P h (x, ξ) = n k=1 (ξ k I -hA k (x)) 2 + ih 2 ∂ x k A k (x) + V (x) + hQ(x) + h 2 R(x) ,
(1.2) I is the identity m × m matrix, V, Q, R and the A k are hermitian m × m matrix with smooth coefficients and Γ periodic:

A k = (a k,ij (x)) 1≤i,j≤m , V = (v ij (x)) 1≤i,j≤m , Q = (q ij (x)) 1≤i,j≤m , R = (r ij (x)) 1≤i,j≤m , a k,ij , v ij , q ij , r ij ∈ C ∞ (R n ; C), a k,ji = a k,ij , v ji = v ij , q ji = q ij , r ji = r ij a k,ij (x -γ) = a k,ij (x), v ij (x -γ) = v ij (x), q ij (x -γ) = q ij (x) and r ij (x -γ) = r ij (x) ∀γ ∈ Γ ;                (1.3) Γ is a lattice of R n , Γ = { n k=1 m k β k ; m k ∈ Z},
β 1 , β 2 , . . . , β n ∈ R n form a basis, det(β 1 , β 2 , . . . , β n ) = 0. We use the notation D = (D x 1 , . . . , D xn ) where

D x k = -i∂ x k , k = 1...n, so D 2 = -∆ is the Laplacian operator on L 2 (R n ).
The dual basis {β ⋆ 1 , . . . , β ⋆ n } of the reciprocal lattice Γ ⋆ , is the basis of R n defined by the relations

β ⋆ j .β k = 2πδ jk : Γ ⋆ = { n k=1 m k β ⋆ k ; m k ∈ Z}.
The fundamental cell, the Wigner-Seitz cell,

W n = { n k=1 x k β k ; x k ∈] - 1 2 , 1 2 [} ,
will be identified with the n-dimensional torus T n = R n /Γ and the dual cell, the Brillouin zone, is defined by

B n = { n k=1 θ k β ⋆ k ; θ k ∈] - 1 2 , - 1 2 [} .
We will identify L 2 (T n ; C m ) with Γ periodic functions of L 2 loc (R n ; C m ) provided with the norm of L 2 (W n ; C m ). In the same way the Sobolev space W k (T n ; C m ), with k ∈ N, may be identified with Γ periodic functions of

W k loc (R n ; C m ) provided with the norm of W k (W n ; C m ).
By Floquet theory, (see [Ea] or [Re-Si] ), we have

H h = ⊕ B n H h,θ dθ , with H h,θ the partial differential operator P h (x, h(D -θ)) on L 2 (T n ; C m ). The ellipticity of P h (x, h(D -θ)) implies that the spectrum of H h,θ is discrete sp(H h,θ ) = {λ h,θ j ; j ∈ N ⋆ }, λ h,θ 1 ≤ λ h,θ 2 ≤ . . . ≤ λ h,θ j ≤ λ h,θ j+1 ≤ . . . (1.4) each λ h,θ j
is an eigenvalue of finite multiplicity and each eigenvalue is repeated according to its multiplicity.

(When m = 1 and V = Q = R = A k = 0, ( 1 |T n | e iω.x ) ω∈Γ ⋆ is the Hilbert basis of L 2 (T n ) which is composed of eigenfunctions of h 2 (D -θ) 2 ).
The Floquet theory guarantees that

sp(H h ) = θ∈B n sp(H h,θ ) = ∞ j=1 b h j , (1.5) 
where b h j denotes the j-th band b h j = {λ h,θ j , θ ∈ B n }. In the sequel h 0 will be a non negative small constant, h will be in ]0, h 0 [, and any non negative constant which doesn't depend on h will invariably be denoted by C.

Preliminary: the artificial gauge model

We will be interested in the model of artificial gauge considered in [Co], [Co-Da] and [Da-al] 

m = 2, V = vI + W, A k = Q = R = 0, ∀k, W = w.σ, with w = (w 1 , w 2 , w 3 ), v and the w j are in C ∞ (R n ; R), (2.1)
we denote σ = (σ 1 , σ 2 , σ 3 ), where the σ j are the Pauli matrices.

Let us remark that

V = vI + W, W = w.σ, W 2 = |w| 2 I . (2.2)
In the sequel we will assume that

|w| > 0 v(x) -|w(x)| has a unique non degenerate minimum on T n . (2.3)
Due to the invariance of the Laplacian by translation and by the action of O(n), we can assume, up to a composition by a translation of the potentials, that

v(γ) -|w(γ)| < v(x) -|w(x)|, ∀x ∈ R n \ Γ and ∀γ ∈ Γ, v(x) -|w(x)| = E 0 + n k=1 τ 2 k x 2 k + O(|x| 3 ), as |x| → 0,      (2.4) (τ k > 0, ∀k).
There exists U ∈ U(2), ( a unitary 2 × 2 matrix), such that

U ⋆ V U = V = v -|w| 0 0 v + |w| . (2.5)
As |w| never vanishes, U = U(x) can be chosen smooth and Γ periodic:

U = u 11 u 12 u 21 u 22 ∈ C ∞ (T n ; U(2));
for example u 11 = 1 2 |w|(|w| -Re((w 1 + iw 2 )e -iθ )) (w 3 -|w| + e iθ (w 1 -iw 2 )),

u 21 = 1 2 |w|(|w| -Re(w 1 + iw 2 )e -iθ )) (w 1 + iw 2 -e iθ (w 3 + |w|)), u 12 = u 21 , u 22 = -u 11 and θ = χ( w 2 2 + w 2 3 |w| 2 ) π 2 ,
where χ(t) is a smooth function on the real line, 0 ≤ χ(t) ≤ 1,

χ(t) = 1 when |t| ≤ 1/4 and χ(t) = 0 when |t| ≥ 1/2. So U = (α, β, ρ).σ + iδσ 0 , with (α, β, ρ, δ) ∈ C ∞ (T n ; S 3 ); (2.6)
σ 0 is the 2 × 2 identity matrix and S 3 is the unit sphere of R 4 . When w 1 + iw 2 = 0 or when w 3 < 0, one can choose U such that δ = 0 by

taking (α, β, ρ) = 1 2|w| (- w 1 |w| -w 3 , - w 2 |w| -w 3 , |w| -w 3 ).
Firstly let us expand the formula of the operator

H h = U ⋆ H h U = h 2 D 2 I + U ⋆ V U -2ih 2 n k=1 (U ⋆ ∂ x k U)D x k -h 2 U ⋆ ∂ 2 x k U
which can be rewritten as

H h = U ⋆ H h U = h 2 n k=1 (D x k I -A k ) 2 + V + h 2 R , (2.7) 
where

A k = iU ⋆ ∂ x k U : A k = [(∂ x k α, ∂ x k β, ∂ x k ρ)∧(α, β, ρ)+(δ∂ x k α-α∂ x k δ, δ∂ x k β-β∂ x k δ, δ∂ x k ρ-ρ∂ x k δ)].σ , (2.8) and R = n k=1 (U ⋆ ∂ x k U) 2 + (∂ x k U ⋆ ).(∂ x k U) .
(2.9)

So we can assume that H h is of the form (1.1) with m = 2, Q = 0, A k and R given by (2.8) and (2.9), with U defined by (2.6), and V = V a diagonal matrix given by (2.5).

Theorem 2.1 Under the above assumptions, the first bands b h j , j = 1, 2, . . . , of H h are concentrated around the value hµ j + E 0 j = 1, 2, . . . , in the sense that, there exist N 0 > 1 and h 0 > 0 such that

distance(hµ j + E 0 , b h j ) ≤ Ch 2 , ∀j < N 0 and ∀h, 0 < h < h 0 ,
where

µ j = n k=1 (2j k + 1)τ k , j k ∈ N, the (µ ℓ ) ℓ∈N ⋆ is the increasing sequence of the eigenvalues of the harmonic oscillator -∆ + n k=1 τ 2 k x 2 k .
3 Proof of Theorem 2.1

Proof. According to the above discussion, we can assume that

H h = P h (x, hD) , with P h (x, hD) = P h 11 (x, hD) P h 12 (x, hD) P h 21 (x, hD) P h 22 (x, hD) , (3.1) with P h 11 (x, hD) = h 2 (D -a .,11 (x)) 2 + v(x) -|w(x)| + h 2 r 11 (x) P h 22 (x, hD) = h 2 (D + a .,11 (x)) 2 + v(x) + |w(x)| + h 2 r 22 (x) P h 12 (x, hD) = -h 2 a .,12 (x).(D + a .,11 (x)) -h 2 a .,12 (x).(D -a .,11 (x)) + ih 2 div(a .,12 (x)) + h 2 r 12 (x) P h 21 (x, hD) = -h 2 a .,21 (x)(D -a .,11 (x)) -h 2 a .,21 (x).(D + a .,11 (x)) + ih 2 div(a .,21 (x)) + h 2 r 21 (x) .                (3.2) (D = (D x 1 , D x 2 , . . . , D xn ) and a .,ij (x) = (a 1,ij (x), a 2,ij (x), . . . , a n,ij (x)) .) (We used that a .,22 = -a .,11 ).
Let us denote by H h,θ 11 and H h,θ 22 the operators associated with

P h 11 (x, h(D -θ)) and P h 22 (x, h(D -θ)) on L 2 (T n ; C). Then, if c 0 = min |w(x)| and c 1 = max R(x) , sp(H h,θ 11 ) ⊂ [E 0 -h 2 c 1 , +∞[ and sp(H h,θ 22 ) ⊂ [E 0 -h 2 c 1 + 2c 0 , +∞[.
To prove the theorem it is then enough to prove the proposition below.

Proposition 3.1 Let us consider a constant c, 0 < c < c 0 . Then there exists C 0 > 0 such that, for any E h ∈] -∞, E 0 + 2c[, we have E h ∈ sp(H h,θ ) ⇒ distance(E h , sp(H h,θ 11 ) ≤ C 0 h 2 E h ∈ sp(H h,θ 11 ) ⇒ distance(E h , sp(H h,θ )) ≤ C 0 h 2 . (3.3) Proof. For such E h , (H h,θ
22 -E h ) -1 exists and, thanks to semiclassical pseudodifferential calculus of [Ro] (see also [Di-Sj] ), for

h 0 > 0 small, if 0 < h < h 0 then (H h,θ 22 -E h ) -1 L 2 (T n ) + h(D -θ)(H h,θ 22 -E h ) -1 L 2 (T n ) + (H h,θ 22 -E h ) -1 h(D -θ) L 2 (T n ) + h(D -θ)(H h,θ 22 -E h ) -1 h(D -θ) L 2 (T n ) ≤ C, and then P h 12 (x, h(D -θ))(H h,θ 22 -E h ) -1 P h 21 (x, h(D -θ)) L 2 (T n ) ≤ h 2 C. So if E h ∈ sp(H h,θ ), then u h = (u h 1 , u h 2 ) = (0, 0) is an eigenfunction of H h,θ associated with E h iff H h,θ 11 u h 1 + P h 12 (x, h(D -θ))u h 2 = E h u h 1 u h 2 = -(H h,θ 22 -E h I) -1 P h 21 (x, h(D -θ))u h 1 .
(3.4)

In fact E h ∈] -∞, E 0 + c[ will be an eigenvalue of H h,θ iff there exists

u h 1 in the Sobolev space W 2 (T n ; C), u h 1 L 2 (T n ) = 0, such that H h,θ 11 u h 1 -P h 12 (x, h(D -θ))(H h,θ 22 -E h I) -1 P h 21 (x, h(D -θ))u h 1 = E h u h 1 , then we get the first part of Proposition 3.1. If E h is an eigenvalue of H h,θ
11 satisfying the assumption of Proposition 3.1, and u h 1 an associated eigenfunction, then with

u h = (u h 1 , -(H h,θ 22 -E h ) -1 P h 21 (x, h(D -θ))u h 1 ), one has (H h,θ -E h I)u h L 2 (T n ;C 2 ) = P h 12 (x, h(D -θ))(H h,θ 22 -E h ) -1 P h 21 (x, h(D -θ))u h 1 L 2 (T n ;C) ≤ h 2 C u h L 2 (T n ;C 2 )
, we get the second part of Proposition 3.1.

Theorem 2.1 follows from Proposition 3.1 and , , [He-Sj-1] and [He-Sj-2] results, (see also [He]), which guarantee that the sequence of eigenvalues of

H h,θ 11 , (λ j (H h,θ 11 )) j∈N ⋆ satisfies ∀N 0 > 1, ∃h 0 > 0, C 0 > 0 s.t. ∀h, 0 < h < h 0 and ∀j ≤ N 0 , |λ j (H h,θ 11 ) -(hµ h j + E 0 )| ≤ C 0 h 2

Asymptotic of the first band

For any real Lipschitz Γ periodic function φ, and for any u ∈ W 2 (T n ; C 2 ), we have the identity

Re < P h (x, h(D -θ))u | e 2φ/h u > L 2 (T n ;C 2 ) = n k=1 h 2 ((D x k -θ k )I -A k )e φ/h u 2 L 2 (T n ;C 2 ) + < ( V -|∇φ| 2 I + h 2 R)u | e 2φ/h u > L 2 (T n ;C 2 ) .          (4.1)
This identity enables us to apply the method used in [He-Sj-1], (see also [He] and [Ou]). We define the Agmon [Ag] distance on

R n d(y, x) = inf γ 1 0 v(γ(t)) -|w(γ(t))| -E 0 | γ(t)|dt , (4.2)
the inf is taken among paths such that γ(0) = y and γ(1) = x.

For common properties of the Agmon distance, one can see for example [Hi-Si].

We will use that, for any fixed

y ∈ R n , the function d(y, x) is a Lipschitz function on R n and |∇ x d(y, x)| 2 ≤ v(x) -|w(x)| -E 0 almost everywhere on R n .
Using that the zeros of v(x) -w(x) -E 0 are the elements of Γ and are non degenerate, we get that the real function

d 0 (x) = d(0, x) satisfies, (see [He-Sj-1]), |∇d 0 (x)| 2 = v(x) -|w(x)| -E 0 in a neighbourhood of 0.
We summarize the properties of the Agmon distance we will need:

i) ∃ R 0 > 0 s.t. d 0 (x) ∈ C ∞ (B 0 (R 0 )) ii) |∇d 0 (x)| 2 = v(x) -|w(x)| -E 0 , ∀x ∈ B 0 (R 0 ) iii) |∇d 0 (x)| 2 ≤ v(x) -|w(x)| -E 0 iv) |∇d Γ (x)| 2 ≤ v(x) -|w(x)| -E 0        (4.3) where d 0 (x) = d(0, x), B 0 (r) = {x ∈ R n ; d 0 (x) < r} and d Γ (x) = d(Γ, x) = min ω∈Γ d(ω, x).
The least Agmon distance in Γ is

S 0 = inf 1≤k≤n d 0 (β k ) = inf ρ =ω, (ω,ρ)∈Γ 2 d(ω, ρ) .
(4.4)

The Agmon distance on T n , d T n (., .), is defined by its Γ-periodic extension on

(R n ) 2 d T n (y, x) = min ω∈Γ d(y, x + ω).
Then

S 0 2 = sup r {r > 0 s.t. {x ∈ T n ; d T n (x 0 , x) < r} is simply connected} , (4.5)
where x 0 is the single point in T n such that v(x 0 ) -|w(x 0 )| = E 0 . The Γ-periodic function on R n , d Γ (x) is the one corresponding to the extension of d T n (x 0 , x). If λ h,θ is an eigenvalue of H h,θ and if u h,θ is an associated eigenfunction, then by (4.1) one gets as in the scalar case considered in ) and ,

n k=1 h 2 ((D x k -θ k )I -A k )e φ/h u h,θ 2 L 2 (T n ;C 2 ) + < [ V -|∇φ| 2 I + h 2 R -λ h,θ I] + u h,θ | e 2φ/h u h,θ > L 2 (T n ;C 2 ) =< [ V -|∇φ| 2 I + h 2 R -λ h,θ I] -u h,θ | e 2φ/h u h,θ > L 2 (T n ;C 2 ) ,          (4.6) so, when φ(x) = d T n (x 0 , x), necessarily λ h,θ -E 0 + O(h 2 ) > 0, and if h/C < λ h,θ -E 0 < hC, then u h,θ is localized in energy near x 0 , for any η ∈]0, 1[, ∃C η > 0 such that n k=1 h 2 ((D x k -θ k )I -A k )e ηd T n (x 0 ,x)/h u h,θ 2 L 2 (T n ;C 2 ) +(1 -η 2 ) < (v -|w| -E 0 )u h,θ | e 2ηd T n (x 0 ,x)/h u h,θ > L 2 (T n ;C 2 ) ≤ hC η {x∈T n ; d T n (x 0 ,x)< √ hC} |u h,θ (x)| 2 dx.          (4.7)
Let Ω ⊂ T n an open and simply connected set with smooth boundary satisfying, for some η, 0 < η < S 0 /2,

{x ∈ T n ; d T n (x 0 , x) < S 0 -η 2 } ⊂ Ω ⊂ {x ∈ T n ; d T n (x 0 , x) < S 0 /2} (4.8)
Let H h Ω be the selfadjoint operator on L 2 (Ω; C 2 ) associated with P h (x, hD) with Dirichlet boundary condition. We denote by (λ j (H h Ω )) j∈N ⋆ the increasing sequence of eigenvalues of H h Ω . Using the method of [He-Sj-1], we get easily the following results Theorem 4.1 For any η, 0 < η < S 0 /2, there exist h 0 > 0 and N 0 > 1 such that, if 0 < h < h 0 and j ≤ N 0 , then 2h) . For the first band, we have the following improvement

∀θ ∈ B n , 0 < λ j (H h Ω ) -λ h,θ j ≤ Ce -(S 0 -η)/(2h) ; (4.9) so the length of the band b h j satisfies |b h j | ≤ Ce -(S 0 -η)/(
|b h 1 | ≤ Ce -(S 0 -η)/h . (4.10)

Sketch of the proof.

As Ω is simply connected and the one form θdx is closed, there exists a smooth real function ψ θ (x) on Ω such that e -iψ θ (x) P h (x, hD)e iψ θ (x) = P h (x, h(D-θ)) : the Dirichlet operators on Ω, H h Ω and H h,θ Ω associated to P h (x, hD) and P h (x, h(Dθ)) are gauge equivalent, so they have the same spectrum.

Therefore the min-max principle says that

0 < λ j (H h,θ Ω ) -λ h,θ j = λ j (H h Ω ) -λ h,θ j .
But the exponential decay of the eigenfunction ϕ h,θ j (x) associated with λ h,θ j , given by (4.7) implies that

(P h (x, h(D -θ)) -λ h,θ j )χϕ h,θ j (x) L 2 (Ω;C 2 ) ≤ Ce -(S 0 -η+ǫ)/(2h) ,
for some ǫ > 0, and for a smooth cut-off function χ supported in Ω and 2h) . This achieves the proof of (4.9).

χ(x) = 1 if d T n (x 0 , x) ≤ (S 0 -η + ǫ)/2. So distance(λ h,θ j , sp(H h Ω )) ≤ Ce -(S 0 -η+ǫ)/(
Let us denote E h,θ , (respectively E h,Ω ), the first eigenvalue λ h,θ 1 , (respectively λ 1 (H h Ω )), and ϕ h,θ (x), (respectively ϕ h,Ω (x)), the associated normalized eigenfunctions. Let χ be a cut-off function satisfying the same properties as before. Then

P h (x, h(D-θ))(e -iψ θ (x) χ(x)ϕ h,Ω (x)) = λ 1 (H h
Ω )e -iψ θ (x) χ(x)ϕ h,Ω (x) + e -iψ θ (x) r h 0 (x) with, thanks to the same identity as (4.7) for Dirichlet problem on Ω,

r h 0 L 2 (T n ;C 2 ) ≤ Ce -S 0 -η 2h .
The same argument used in [He-Sj-1], (see also [He]), gives this estimate

|E h,θ -E h,Ω -< r h 0 | χϕ h,Ω > L 2 (T n ;C 2 ) | ≤ Ce -(S 0 -η)/h . As τ h =< r h 0 | χϕ h,Ω > L 2 (T n ;C 2 ) does not depend on θ, so ∀θ ∈ B n , |E h,θ -E h,Ω -τ h | ≤ Ce -(S 0 -η)/h
this estimate ends the proof of (4.10) As for the tunnel effect in [He-Sj-1] and , we have an accuracy estimate for the first band, like the scalar case in and in [Ou] (see also [He]).

Theorem 4.2 There exists h 0 > 0 such that, if 0 < h < h 0 then

|b h 1 | ≤ Ce -S 0 /h .
Sketch of the proof. Instead of comparing H h,θ with an operator defined in a subset of T n , we have to work on the universal cover R n of T n . We take Ω ⊂ R n an open and simply connected set with smooth boundary satisfying, for some η 0 , 0 < η 0 < η 1 < S 0 /2, B 0 ((S 0 + η 0 )/2) ⊂ Ω ⊂ B 0 ((S 0 + η 1 )/2).

(4.11)

So Ω contains the Wigner set W n , more precisely

W n ⊂ Ω ⊂ 2W n and Ω ∩ Γ = {0}.
We let also denote H h Ω the Dirichlet operator on L 2 (Ω; C 2 ) associated with P h (x, hD), and E h Ω its first eigenvalue. The associated eigenfunction is also denoted by ϕ h,Ω (x).

In the same way as to get (4.7), we have

n k=1 h 2 (D x k I -A k )e d 0 (x)/h ϕ h,Ω 2 L 2 (Ω;C 2 ) ≤ hC B 0 ( √ hC)
|ϕ h,Ω (x)| 2 dx, (4.12)

then the Poincaré estimate gives

Ω e 2d 0 (x)/h |ϕ h,Ω (x)| 2 dx ≤ h -1 C B 0 ( √ hC) |ϕ h,Ω (x)| 2 dx. (4.13)
Let χ a smooth cut-off function satisfying

χ(x) = 1 if d 0 (x) ≤ (S 0 + η 0 )/2 and χ(x) = 0 if x / ∈ Ω.
Then the function

ϕ h,θ (x) = ω∈Γ e iθ(x-ω) χ(x -ω)ϕ h,Ω (x -ω)
is Γ-periodic and satisfies

(P h (x, h(D -θ)) -E h Ω )ϕ h,θ (x) = r h,θ and r h,θ L 2 (W n ;C 2 ) ≤ Ce -(S 0 +η 0 )/(2h) ϕ h,θ L 2 (W n ;C 2 ) (4.14) and < r h,θ | ϕ h,θ > L 2 (W n ;C 2 ) = ω,ρ∈Γ 0 e iθ(ρ-ω) W n ([P h (x, hD); χ]ϕ h,Ω )(x -ω).(χϕ h,Ω )(x -ρ)dx with Γ 0 = {0, ±β 1 , . . . , ±β n } and [P h (x, hD); χ] = -2h 2 i n k=1 ∂ x k χ(D x k I -A k ) -h 2 ∆χI. So 1 ϕ h,θ 2 L 2 (W n ;C 2 ) < r h,θ | ϕ h,θ > L 2 (W n ;C 2 ) ≤ Ce -S 0 /h . (4.15)
The proof comes easily from (4.12) and (4.13) as in [Ou] or in [He].

Using the same argument of as in the proof of (4.10), we get that

|E h,θ -E h Ω -τ h,θ | ≤ Ce -(S 0 +η 0 )/h ) , (4.16) with τ h,θ = 1 ϕ h,θ 2 L 2 (W n ;C 2 ) < r h,θ | ϕ h,θ > L 2 (W n ;C 2 ) .
Theorem 4.2 follows from (4.15) and (4.16)

B.K.W. method for the Dirichlet ground state

Let Ω be an open set satisfying (4.8). more precisely Ω ⊂ R n an open, bounded and simply connected set with smooth boundary satisfying, for some

η 1 and η 2 , 0 < η 1 < η 2 < S 0 /2, {x ∈ R n ; d 0 (x) < S 0 -η 2 2 } ⊂ Ω ⊂ {x ∈ R n ; d 0 (x) < S 0 -η 1 2 } (5.1) Theorem 5.1 The first eigenvalue E h,Ω = λ 1 (H h Ω ) of the Dirichlet operator H h Ω
admits an asymptotic expansion of the form

E h,Ω ≃ ∞ j=0 h j e j ,
and if S 0 -η 1 is small enough, the associated eigenfunction ϕ h,Ω has also an asymptotic expansion of the form

ϕ h,Ω = e -φ/h (f + h , f - h ) , f ± h ≃ ∞ j=0 h j f ± j , (f - 0 = 0) .
As usual Proof. When the gauge potential matrix is identified with the one form

e 0 = E 0 , e 1 = τ 1 , e 2 = r 11 (0) + n k=1 |a k,11 (0)| 2 , (5.2 
Adx = n k=1 A k (x)dx k ,
its curvature form appears to be the related magnetic field B = dA + A ∧ A :

B = 1≤j<k≤n (∂ x j A k (x)-∂ x k A j (x))dx j ∧dx k + 1≤j<k≤n (A j (x)A k (x)-A k (x)A j (x))dx j ∧dx k .
For our purpose, only the vector magnetic potential a .,11 is significant. We will work with Coulomb vector gauge a .,11 : div(a We look for an eigenvalue E h ≃ ∞ j=0

       (5.6) Let us write e -φ/h P h (x, hD)(e -φ/h f h ) = W 0 (x)f h + hW 1 (x, D)f h + h 2 W 2 (x, D)f h (5.7) with W 0 (x) = V (x) -|∇φ(x)| 2 I W 1 (x, D) = ∆φI + 2i n k=1 ∂ x k φ(D x k I -A k ) W 2 (x, D) = n k=1 (D x k I -A k ) 2 + R(x). So W 1 (x, D) = ∆φ -2i∇φ.(i∇ + a .,
h j e j and an associated eigenfunction

f h ≃ ∞ j=0 h j f j , so e φ/h (P h (x, hD) -E h I)(e -φ/h f h ) ≃ ∞ j=0 h j κ j (We used that f + 0 (0) = 1). So κ 2 = 0 implies e 2 = (i∇ + a .,11 ) 2 f + 0 (0) + r 11 (0) , 2∇φ(x).∇f + 1 (x) = -(∆φ(x) -e 1 -2ia .,11 (x).∇φ(x))f + 1 (x) -( (i∇ + a .,11 ) 2 + e 2 -r 11 (x))f + 0 (x) + 2i(a .,12 (x).∇φ(x))f - 1 (x) f - 2 (x) = 1 2|w(x)| [2i(a .,21 (x).∇φ(x))f + 1 (x) -2∇φ(x).∇f - 1 (x) -2i(a .,11 (x).∇φ(x))f - 1 (x) -2ia .,21 (x).∇f + 0 (x) -i(div(a .,21 (x))f + 0 (x) -r 21 (x)f + 0 (x)] . 
4) Term of order j> 2. We assume that e ℓ for ℓ = 0, 1, . . . , j-1, the functions f ± ℓ (x) for ℓ = 0, 1, . . . , j-2, and the one f - j-1 (x) are well-known, f + ℓ (0) = 0 when 0 < ℓ < j -1. The equation κ

+ j = 0 becomes 2∇φ(x).∇f + j-1 (x) + (∆φ(x) -e 1 -2ia .,11 (x).∇φ(x))f + j-1 (x) = 2i(a .,21 (x).∇φ(x))f - j-1 (x) + j-3 ℓ=0 e j-ℓ f + ℓ (x) -( (i∇ + a .,11 ) 2 -e 2 + r 11 (x) )f + j-2 (x) -( r 12 (x) + idiv(a 21 ) )f - j-2 (x) -2ia 21 .∇f - j-2 (x)              (5.11)
This equation has a unique solution f

+ j-1 (x) such that f + j-1 (0) = 0 iff e j = ( (i∇ + a .,11 ) 2 + r 11 (0) )f + j-2 (0) + r 12 (0))f - j-2 (0) -2ia .,21 (0).∇)f - j-2 (0) -j-3 ℓ=0 e j-ℓ f + ℓ (0) .
(5.12)

The equation κ - j = 0 gives

f - j (x) = 1 2|w(x)| × [-2∇φ(x).∇f - j-1 (x) + (e 1 -2ia .,11 (x).∇φ(x))f - j-1 (x) + 2ia .,21 (x).∇φ(x)f + j-1 (x) +(e 2 -(i∇-a .,11 ) 2 )f - j-2 (x)-idiv(a .,21 (x))f + j-2 (x)-2ia .,21 (x).∇f + j-2 (x)+ j-3 ℓ=0 e j-ℓ f - ℓ (x)]
5) End of the proof. Let χ(x) be a cut-off function equal to 1 in a neighbourhood of 0 and supported in Ω. Then taking χ(x)f j (x) instead of f j (x), we get a function ϕ h,Ω satisfying Dirichlet boundary condition and Theorem 5.1. The self-adjointness of the related operator ensures that the computed sequence (e j ) is real 6 Sharp asymptotic for the width of the first band

Returning to the proof of Theorem 4.2, we have to study carefully the τ h,θ defined in (4.16), using the method of performed in [He] and [Ou]. L 2 (W n ;C 2 ) W n ([P h (x, hD); χ]ϕ h,Ω )(x).(χϕ h,Ω )(x + ω)dx .

We get from the formula of [P h (x, hD); χ] and from the estimate (4.13) that

ρ + ω = - h 2 ϕ h,θ 2 L 2 (W n ;C 2 ) W n
(∇χ(x -ω)∇ϕ h,Ω )(x -ω)).(χϕ h,Ω )(x)dx + (6.2) + O(he -S 0 /h ) and

ρ - ω = - h 2 ϕ h,θ 2 L 2 (W n ;C 2 ) W n
(∇χ(x)∇ϕ h,Ω )(x)).(χϕ h,Ω )(x + ω)dx + O(he -S 0 /h ) . Theorem 6.1 Under the assumption of Theorem 4.2, if for any ω ∈ {±β 1 , . . . , ±β n } such that the Agmon distance in R n between 0 and ω is the least one, (i.e. d(0, ω) = S 0 ), there exists one or a finite number of minimal geodesics joining 0 and ω, then there exists η 0 > 0 and h 0 > 0 such that b h 1 = η 0 h 1/2 e -S 0 /h 1 + O(h 1/2 ) , ∀h ∈]0, h 0 [ . Sketch of the proof. Following the proof of splitting in [He-Sj-1] and [He], in (6. + e d(x)/h χ 0 (ϕ h,Ω -ϕ h B.K.W. ) 2 L 2 (W n ;C 2 ) ≤ h p 0 C p 0 , (6.3) where χ 0 is a cut-off function supported in W n ∩ O and equal to 1 in a neighborhood of the minimal geodesics between 0 and the ±β k . We have assumed that ϕ h,Ω L 2 (W n ;C 2 ) = 1 and then χ 0 ϕ h B.K.W. ) 2 L 2 (W n ;C 2 ) -1 = O(h p ) for any p > 0.

)

  and φ is the real function satisfying the eikonal equation|∇φ(x)| 2 = v(x) -|w(x)| -E 0 ,(5.3) equal to d(x) in a neighbourhood of 0.(r 11 and the a k,11 are defined by (1.1) and (1.3). E 0 and τ 1 are defined by (2.2) and (2.4)).

Using

  W n ;C 2 ) W n ([P h (x, hD); χ]ϕ h,Ω )(x -ω).(χϕ h,Ω )(x

  2) we can change W n into W n ∩ O, where O is any neighbourhood of the minimal geodesics between 0 and the ±β k , such that d(x) = d(0, x) ∈ C ∞ (O). In this case the B.K.W. method is valid in W n ∩ O. If ϕ h B.K.W. is the B.K.W. approximation of ϕ h,Ω in W n ∩ O,then, thanks to (4.1), for any p 0 > 0 there exists C p 0 such thath n k=1 (D x k I -A k )e d(x)/h χ 0 (ϕ h,Ω -ϕ h B.K.W. ) 2 L 2 (W n ;C 2 )

  .,11 (x)) = It is feasible thanks to the existence of a smooth real and Γ periodic function ψ(x) such that ∆ψ(x) = div(a .,11 (x)). Let O be any open set of R n (or one can take also O = T n ). Conjugation of P h (x, hD) by the unitary operator J ψ on L 2 (O; C 2 ) : .,11 (x) for a .,11 (x) -∇ψ(x) and a .,21 (x) for e 2iψ(x) a .,21 (x); the new a .,22 (x) is equal to minus the new a .,11 (x), and the new a .,12 (x) remains the conjugate of the new a .,21 (x). So by (2.8) we have a .,11 = β∇α -α∇β + δ∇ρ -ρ∇δ -∇ψ , a .,21 = e 2iψ [(ρ∇β -β∇ρ + δ∇α -α∇δ) + i(α∇ρ -ρ∇α + δ∇β -β∇δ)] a .,22 = -a .,11 , a .,12 = a .,21 ∆ψ = div(β∇α -α∇β + δ∇ρ -ρ∇δ)

	J ψ =	e iψ 0 e -iψ , 0	(5.5)
	leads to changing a		
		n	
		∂ x k a k,11 (x) = 0 .	(5.4)
		k=1	

  .,11 ) 2 + r 11 (i∇ + a .,11 ).a .,21 + a .,21 .(i∇ -a .,11 ) + r 12 a .,21 .(i∇ + a .,11 ) + (i∇ + a .,11 ).a .,21 + r 21 (i∇ -a .,11 ) 2 + r 22

		-2i∇φ.a .,21	11 )	-2i∇φ.a .,21 ∆φ -2i∇φ.(i∇ -a .,11 )	,
	and			
	W 2 (x, D) =	(i∇ + a		

with κ 0 (x) = (W 0 (x) -e 0 I)f 0 (x) κ 1 (x) = (W 1 (x, D) -e 1 I)f 0 (x) + (W 0 (x) -e 0 I)f 1 (x) κ 2 (x) = (W 2 (x, D) -e 2 I)f 0 (x) + (W 1 (x, D) -e 1 I)f 1 (x) + (W 0 (x) -e 0 I)f 2 (x) κ j (x) = -e j f 0 (x) -j-3 ℓ=1 e j-ℓ f ℓ (x) + (W 2 (x, D) -

We recall that f j = (f + j , f - j ) and we want that κ j (x) = 0, ∀j. 1) Term of order 0

(5.8)

2) Term of order 1.

As |∇φ(x)| has a simple zero at x 0 = 0, the equation κ + 1 (x) = 0 can be solved only when e 1 = ∆φ(0). In this case there exists a unique function f + 0 (x) such that f + 0 (0) = 1 and κ + 1 (x) = 0. We can conclude that the study of the term of order 1 leads to

The unknown function f + 1 (x) must give κ + 2 (x) = 0 in (5.10). This equation, with the initial condition f + 1 (0) = 0, can be solved only if

As (6.2) remains valid if we change ϕ h,Ω into χ 0 ϕ h,Ω , the estimate (6.3) allows also to change ϕ h,Ω into χ 0 ϕ h B.K.W. . As a consequence, Theorem 6.1 follows easily, if in W n ∩ O, χ(x) = χ 1 (d(x)) for a decreasing function χ 1 on [0, +∞[ with compact support, equal to 1 in a neighborhood of 0. In this case (6.2) becomes

) . We remind that for any y in a minimal geodesic joining 0 to ±β k , if y = 0 and y = ±β k , then the function d(x) + d(x ∓ β k ), when it is restricted to any hypersurface orthogonal to the geodesic through y, has a non degenerate minimum S 0 at y
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