Text Recognition in Multimedia Documents: A Study of two Neural-based OCRs Using and Avoiding Character Segmentation - Archive ouverte HAL
Article Dans Une Revue International Journal on Document Analysis and Recognition Année : 2014

Text Recognition in Multimedia Documents: A Study of two Neural-based OCRs Using and Avoiding Character Segmentation

Khaoula Elagouni
  • Fonction : Auteur
  • PersonId : 762988
  • IdRef : 181689650
Franck Mamalet
Pascale Sébillot

Résumé

Text embedded in multimedia documents represents an important semantic information that helps to automatically access the content. This paper proposes two neural-based OCRs that handle the text recognition problem in different ways. The first approach segments a text image into individual characters before recognizing them, while the second one avoids the segmentation step by integrating a multi-scale scanning scheme that allows to jointly localize and recognize characters at each position and scale. Some linguistic knowledge is also incorporated into the proposed schemes to remove errors due to recognition confusions. Both OCR systems are applied to caption texts embedded in videos and in natural scene images and provide outstanding results showing that the proposed approaches outperform the state-of-the-art methods.
Fichier principal
Vignette du fichier
IJDAR_LastVersion.pdf (652 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00867225 , version 1 (27-09-2013)

Identifiants

Citer

Khaoula Elagouni, Christophe Garcia, Franck Mamalet, Pascale Sébillot. Text Recognition in Multimedia Documents: A Study of two Neural-based OCRs Using and Avoiding Character Segmentation. International Journal on Document Analysis and Recognition, 2014, 17 (1), pp.19-31. ⟨10.1007/s10032-013-0202-7⟩. ⟨hal-00867225⟩
1155 Consultations
858 Téléchargements

Altmetric

Partager

More