Adaptive Laguerre density estimation for mixed Poisson models - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2015

Adaptive Laguerre density estimation for mixed Poisson models

Fabienne Comte
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 836340

Résumé

In this paper, we consider the observation of $n$ i.i.d. mixed Poisson processes with random intensity having an unknown density $f$ on ${\mathbb R}^+$. For fixed observation time $T$, we propose a nonparametric adaptive strategy to estimate $f$. We use an appropriate Laguerre basis to build adaptive projection estimators. Non-asymptotic upper bounds of the ${\mathbb L}^2$-integrated risk are obtained and a lower bound is provided, which proves the optimality of the estimator. For large $T$, the variance of the previous method increases, therefore we propose another adaptive strategy. The procedures are illustrated on simulated data.
Fichier principal
Vignette du fichier
PoissonMixtCGC.pdf (510.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00848158 , version 1 (25-07-2013)
hal-00848158 , version 2 (13-03-2014)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Fabienne Comte, Valentine Genon-Catalot. Adaptive Laguerre density estimation for mixed Poisson models. Electronic Journal of Statistics , 2015, 9, pp.1112-1148. ⟨10.1214/15-EJS1028⟩. ⟨hal-00848158v2⟩
196 Consultations
284 Téléchargements

Altmetric

Partager

More