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ADAPTIVE LAGUERRE DENSITY ESTIMATION FOR MIXED POISSON

MODELS.

F. COMTE1 AND V. GENON-CATALOT1

Abstract. In this paper, we consider the observation of n i.i.d. mixed Poisson processes
with random intensity having an unknown density f on R

+. For fixed observation time T , we
propose a nonparametric adaptive strategy to estimate f . We use an appropriate Laguerre basis
to build adaptive projection estimators. Non-asymptotic upper bounds of the L

2-integrated risk
are obtained and a lower bound is provided, which proves the optimality of the estimator. For
large T , the variance of the previous method increases, therefore we propose another adaptive
strategy. The procedures are illustrated on simulated data. March 13, 2014

Keywords. Adaptive estimators. Inverse problem. Laguerre basis. Nonparametric estimation. Poisson

mixture.

AMS Classification. 62G07 - 62C20.

1. Introduction

Consider n independent Poisson processes (Nj(t), j = 1, . . . , n) with unit intensity and n i.i.d.
positive random variables (Cj , j = 1, . . . , n). Assume that the processes (Nj(t), j = 1, . . . , n)
and the sequence (Cj , j = 1, . . . , n) are independent. Under these assumptions, the random time
changed processes (Xj(t) = Nj(Cjt), t ≥ 0) are i.i.d. and such that the conditional distribution
of Xj given Cj = c is the distribution of a time-homogeneous Poisson process with intensity c.
The process Xj is known as a mixed Poisson process (see e.g. Grandell (1997), Mikosch (2009)).
Such processes are of common use in non-life insurance mathematics as well as in numerous other
areas of applications (see Fabio et al. and references therein).

In this paper, we assume that the random variables Cj have an unknown density f on
(0,+∞) and our concern is the nonparametric estimation of f from the observation of a n-
sample (Xj(T ), j = 1, . . . , n) for a given value T . We investigate this subject for large n and
both for fixed T and large T with two different methods. The fixed T method performs well for
small T (e.g. T = 1) and deteriorates as T increases while the large T method performs better
and better as T increases. Thus, the two methods are complementary.

In Section 2, we consider the case T = 1. The distribution of Xj(1) = Nj(Cj) is given by:

(1) P(Nj(Cj) = ℓ) := αℓ(f) =
1

ℓ!

∫ +∞

0
e−ccℓf(c)dc, ℓ ≥ 0,

which can be estimated by:

(2) α̂ℓ =
1

n

n∑

j=1

1(Nj(Cj)=ℓ), ℓ ≥ 0.

The problem of estimating f from the discrete observations (Nj(Cj), j = 1, . . . , n) is thus an
inverse problem, the problem of estimating a mixing density in a Poisson mixture. Several
authors have considered this topic whether by kernel or projection methods, see Simar (1976),
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2 F. COMTE AND V. GENON-CATALOT

Karr (1984), Zhang (1995), Loh and Zhang (1996, 1997), Hengartner (1997). These authors are
mainly interested in estimating f on a compact subset of (0,+∞). We discuss with more details
the links between the present results and the previous references in subsection 2.4.

In this paper, we assume that

(H) f ∈ L
2((0,+∞))

and propose a solution without any constraint on the support of the unknown function. We
study the L

2((0,+∞))-risk and prove upper and lower bounds on an adequate function space.
Our approach is a penalized projection method (see Massart (1997)) which provides a concrete
adaptive estimator of f easily implementable. It is based on the following idea. By relations (1),
αℓ(f) is the L

2 scalar product of f and the function c → e−ccℓ/ℓ!. Choosing an orthonormal
basis (ϕk) of L2((0,+∞)), (1) can be written as:

αℓ(f) =
∑

k≥0

θk(f)Ω
(ℓ)
k

where θk(f),Ω
(ℓ)
k are respectively the k-th component of f and e−ccℓ/ℓ! on the basis. The

problem is to choose a basis such that the mapping (θk(f), k ≥ 0) → (αℓ(f), ℓ ≥ 0) can be
simply and explicitly inverted. Then, by plugging the estimators α̂ℓ in the inverse mapping, we
get estimators of the coefficients θk(f) and deduce estimators of f . An appropriate choice of (ϕk)

is thus a key tool: we consider the Laguerre bases defined by ((
√
aLk(at)e

−at/2, k ≥ 0)) where
(Lk(t)) are the Laguerre polynomials. Here, the choice a = 2 is especially relevant. Indeed, with

(3) ϕk(t) =
√
2Lk(2t)e

−t, k ≥ 0, t ≥ 0

Ω
(ℓ)
k = 0 for all k > ℓ and the matrix Ωℓ = (Ω

(i)
k )0≤i,k≤ℓ is lower triangular and explicitly

invertible (Propositions 2.1 and 2.2). Therefore, the inverse problem has a solution: the linear
mapping on R

ℓ+1

(4) ~αℓ = (αk(f), k = 0, . . . , ℓ)′ → ~θℓ = (θk(f), k = 0, . . . , ℓ)′ = Ω−1
ℓ ~αℓ.

Moreover, a crucial consistency property holds: the first ℓ− 1 coordinates of ~αℓ and ~θℓ are equal

to those of ~αℓ−1 and ~θℓ−1. Note that, in Comte et al. (2013), another type of inverse problem
involving functions of L2((0,+∞)), has been solved also using a Laguerre basis.

So, we define a collection of estimators of f by f̂ℓ =
∑ℓ

k=0 θ̂kϕk, where (θ̂k) are defined
using (2) and (4). We study their L

2-risk (Proposition 2.3). For this, we introduce appropriate
regularity subspaces of L2((0,+∞)), the Sobolev-Laguerre spaces with index s > 0. These spaces
are defined in Shen (2000) and Bongioanni and Torrea (2009). We precise (see Section 7) the
rate of decay of the coefficients of a function f developed in a Laguerre basis when f belongs
to a Sobolev-Laguerre space with index s. This allows to evaluate the order of the bias term
‖f −fℓ‖2 where ‖.‖ denotes the L

2((0,+∞))-norm. Using these regularity spaces, we discuss the

possible rates of convergence of the L
2-risk of f̂ℓ. Functions belonging to a Sobolev-Laguerre ball

with index s yield rates of order O((log n)−s). This rate is optimal, as we prove a lower-bound

result. Afterwards, we propose a data-driven choice ℓ̂ of the dimension ℓ and study the L
2-risk

of the resulting adaptive estimator (Theorem 2.2). We interpret the results in the case where
the observation is (Nj(CjT ), j = 1, . . . , n). This amounts to a change of scale which multiplies
the variance term of the risk by a factor T and implies a deterioration of the estimator as T
increases.

Section 3 is devoted to the estimation of f for large T . Our method relies on the property that

for each j, Ĉj,T = Nj(CjT )/T is a consistent estimator of the random variable Cj as T tends

to infinity. Then, we use the i.i.d. sample (Ĉj,T )1≤j≤n to build estimators of f . We propose
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projection estimators on the Laguerre basis (3) using other estimators of the coefficients θk(f)
together with an adaptive choice of the space dimension (Proposition 3.1, Theorem 3.1). The
criterion for the model selection is non standard: it involves a penalization which is the sum of
two terms, one depending on n, ℓ and the other on T, ℓ.

Section 4 gives numerical simulation results and some concluding remarks are stated in Section
5. Proofs are gathered in Section 6. In Section 7, regularity spaces associated with Laguerre
bases are discussed and useful inequality is recalled in Section 8 .

2. Estimation of the mixing density for T = 1.

2.1. Projection estimator. The Laguerre polynomials given by

(5) Lk(t) =

k∑

j=0

(−1)j
(
k

j

)
tj

j!
, k ≥ 0

are orthonormal polynomials with respect to the weight function w(t) = e−t on (0,+∞), i.e.,

for all k, k′,
∫ +∞
0 Lk(t)Lk′(t)e

−tdt = δk
′

k where δk
′

k is the Kronecker symbol and the sequence

(Lk) is an orthonormal basis of the space L
2((0,+∞), w). Consequently, for all positive a,

(
√
aLk(at), k ≥ 0) is an orthonormal basis of L2((0,+∞), w(a.)). Equivalently, (

√
aLk(at)

√
w(a.), k ≥

0) is an orthonormal basis of L2((0,+∞)). The choice a = 2 is especially well fitted to our prob-
lem. By (H), f admits a development on the basis (3)

(6) f =
∑

k≥0

θk(f) ϕk, where θk(f) =

∫ +∞

0
f(c)ϕk(c)dc.

Developing the function c→ cℓe−c/ℓ! on the same basis, we get

(7)
1

ℓ!
cℓe−c =

∑

k≥0

Ω
(ℓ)
k ϕk(c) where Ω

(ℓ)
k =

1

ℓ!

∫ +∞

0
cℓ
√
2Lk(2c)e

−2cdc.

As (
√
2Lk(2c), k ≥ 0) are orthogonal polynomials w.r.t. the weight function w(2c) = e−2c,

Ω
(ℓ)
k = 0 for k > ℓ (see Section 7 for more details). Thus,

1

ℓ!
cℓe−c =

ℓ∑

k=0

Ω
(ℓ)
k ϕk(c) and αℓ(f) =

ℓ∑

k=0

θk(f)Ω
(ℓ)
k

The coefficients Ω
(ℓ)
k are given in the following proposition.

Proposition 2.1. The coefficients Ω
(ℓ)
k defined by (7) are equal to

(8) Ω
(ℓ)
k =

(−1)k√
2 2ℓ

(
ℓ

k

)
1(k≤ℓ).

Define the vectors ~θℓ = (θk(f), k = 0, . . . , ℓ)′ ~αℓ = (αk(f), k = 0, . . . , ℓ)′ and the triangular

matrix Ωℓ := (Ω
(i)
k )0≤i,k≤ℓ where the diagonal terms are Ω

(i)
i = (−1)i/(

√
2 2i). The matrix Ωℓ is

therefore invertible and its inverse is explicitly computed in the following proposition.

Proposition 2.2. The following equality holds:

Ω−1
ℓ =

√
2

(
(−1)k

(
j

k

)
2k1(k≤j)

)

0≤j,k≤ℓ

.



4 F. COMTE AND V. GENON-CATALOT

Therefore ~θℓ = Ω−1
ℓ ~αℓ. Note that since both Ωℓ and Ω−1

ℓ are lower triangular, we have the

consistency property: the first ℓ−1 coordinates of ~αℓ and ~θℓ are equal to those of ~αℓ−1 and ~θℓ−1.
Now we have to define estimators of (θk(f)). For this, consider the empirical estimators (2)

of αk := αk(f) and set

(9) ~̂αℓ =
t(α̂0, α̂1, . . . , α̂ℓ)

The vector ~θℓ = (θk(f), k = 0, . . . , ℓ)′ of components of f is estimated by
~̂
θℓ = Ω−1

ℓ
~̂αℓ. By the

triangular form of Ωℓ, ~̂αℓ and
~̂
θℓ have their first ℓ−1 coordinates equal to those of ~̂αℓ−1 and

~̂
θℓ−1.

Denote by fℓ =
∑ℓ

k=0 θk(f)ϕk the orthogonal projection of f on Sℓ = span(ϕ0, ϕ1, . . . , ϕℓ).
We define the following collection of estimators of f by

(10) f̂ℓ =

ℓ∑

k=0

θ̂kϕk,
~̂
θℓ = Ω−1

ℓ
~̂αℓ, ℓ ≥ 0.

Recall that ‖.‖ denotes the L
2-norm of L2((0,+∞)). The following risk decomposition holds.

Proposition 2.3. The estimator f̂ℓ of f defined by (2)-(8)-(9)-(10) satisfies

E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
16

15

24ℓ

n
.

Proposition 2.3 states a squared-bias/variance decomposition, and we need now to specify the
bias order on adequate functional spaces, in order to evaluate optimal rates.

2.2. Rates and rate optimality. As it is always the case in nonparametric estimation1, we
must link the bias term ‖f − fℓ‖2 with regularity properties of function f . In our context,
these should be expressed in relation with the rate of decay of the coefficients (θk(f))k≥0. The
Laguerre-Sobolev spaces described in Section 7 provide an adequate solution.

For s ≥ 0, let

(11) W s
2 ((0,+∞),K) = {h : (0,+∞) → R, h ∈ L

2((0,+∞)),
∑

k≥0

ksθ2k(h) ≤ K < +∞}

where θk(h) =
∫ +∞
0 h(u)ϕk(u)du. The subscript 2 corresponds to the scale parameter a = 2 of

the basis. In particular, for s integer, if h : (0,+∞) → R belongs to L2((0,+∞)),

(12)
∑

k≥0

ks(θk(h))
2 < +∞.

is equivalent to the property that h admits derivatives up to order s− 1, with h(s−1) absolutely
continuous and for m = 0, . . . , s− 1, the functions

x(m+1)/2(hex)(m+1)e−x = x(m+1)/2
m+1∑

j=0

(
m+ 1

j

)
h(j)

belong to L
2((0,+∞)). Moreover, for m = 0, 1, . . . , s− 1,

‖x(m+1)/2(hex)(m+1)e−x‖2 =
∑

k≥m+1

k(k − 1) . . . (k −m)θ2k(h).

1Kernel methods use Hölder spaces for pointwise estimation, Nikol’ski classes for global estimation; projection
methods use, on Fourier basis, Sobolev spaces, on wavelet bases, Besov spaces.
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For any h ∈ W s
2 ((0,+∞),K), we have ‖h − hℓ‖2 =

∑∞
k=ℓ+1 θ

2
k(h) ≤ K/ℓs where hℓ is the or-

thogonal projection of h on Sℓ.

Proposition 2.4. Let for 0 < ǫ < 1,

ℓǫ =
(1− ǫ) log(n)

4 log(2)
and ℓ⋆ =

[
1

4 log(2)
(log(n)− s log log(n))

]
∨ 1.

We have

sup
f∈W s

2 ((0,+∞),K)
E

[
‖f̂ℓǫ − f‖2

]
≤ K

(
4 log(2)

1− ǫ

)s

(log(n))−s +
16

15

1

nǫ
,

and

sup
f∈W s

2 ((0,+∞),K)
E

[
‖f̂ℓ⋆ − f‖2

]
≤
(
K(4 log(2))s +

16

15

)
(log(n))−s(1 + o(1)).

Note that ℓ̃ǫ does not depend on s and is thus adaptive. With ℓ⋆, the bias and variance
terms have the same order (log(n))−s, which is better. In addition, the constant is improved.
Nevertheless, this choice depends on s.

Proof. For f ∈W s
2 (0,+∞),K), the risk bound in Proposition 2.3 writes

E(‖f̂ℓ − f‖2) ≤ K

ℓs
+

16

15

24ℓ

n
.

The variance term has exponential order 24ℓ with respect to ℓ. Thus, we can not make the
classical bias variance compromise. First we can choose ℓ such that the bias term dominates:
this is obtained by choosing ℓ = ℓǫ. Second, a more precise tuning of both terms is obtained
with ℓ = ℓ⋆. In both cases, the rate is of order O([log(n)]−s). �

We now prove that, for densities lying in Laguerre-Sobolev balls W s
2 ((0,+∞),K), the rate

(log n)−s is optimal.2

Theorem 2.1. Assume that s is a positive integer and let K ≥ 1. There exists a constant c > 0
such that

liminf
n→+∞

(log(n))s inf
f̂n

sup
f∈W s((0,+∞),K)

Ef

[
‖f̂n − f‖2

]
≥ c

where inf f̂n denotes the infimum over all estimators of f based on (Nj(Cj))1≤j≤n.

The proof uses several lemmas established in Zhang (1995) and Loh and Zhang (1996).

2.3. Model selection. Model selection is justified as the bias may have much smaller order.
For instance, it can be null if f admits a finite development in the Laguerre basis. Exponential
distributions also provide examples of smaller bias. Indeed, consider f an exponential density
E(θ). Then

θk(f) =

∫ +∞

0
ϕk(c)θe

−θcdc =
√
2θ

k∑

j=0

(−1)j
(
k

j

)
2j

j!

∫ +∞

0
cje−(θ+1)cdc =

√
2

θ

θ + 1

(
θ − 1

θ + 1

)k

.

2Note that analogous rates occur in the context of deconvolution for ordinary smooth function and super-
smooth noise (severely ill-posed problem). Nevertheless, the logarithmic rate is proved to be optimal, see
Fan (1991).
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As a consequence

‖f − fℓ‖2 =
∞∑

k=ℓ+1

θ2k(f) =
θ

2

(
θ − 1

θ + 1

)2(ℓ+1)

.

Choosing

ℓ = ℓopt = λ log(n) with λ =
1

2(log(2) + log(|(θ + 1)/(θ − 1)|)
yields the rate

O(n−1/(1+µ)) with µ =
2 log(2)

log(|(θ + 1)/(θ − 1)|) .

The rate depends on θ and can be O(n−β) for any β < 1. For instance if θ = 5/3 the rate

is O(n−1/2), for θ = 1/2, the rate is O(n−0.44) (see Section 4) and it tends to O(n−1) (the
parametric rate) when θ tends to 1, which is coherent with the fact that the bias is null for
θ = 1.

This kind of result can be generalized to the case of a distribution f defined as a mixture of
exponential distributions and to Gamma distributions Γ(p, θ), with p an integer. More precisely,
if fp is the density Γ(p, θ),

θk(fp) =

√
2

Γ(p)

(
θ

θ + 1

)p

Sp,k

(
2

θ + 1

)
, with Sp,k(x) =

dp−1

dxp−1

[
xp−1(1− x)k

]
.

This term can be computed explicitly and we get, for ℓ ≥ p− 1,

∑

k≥ℓ

[θk(fp)]
2 ≤

(
θ − 1

θ + 1

)2(ℓ−(p−1))

C(p, θ), with 0 < C(p, θ) < +∞.

Note that the bias is null for θ = 1 and ℓ > p− 1, which is expected since fp ∈ Sp−1. Moreover,
the bias order depends on θ, which can be seen in simulations.

Now we have to define an automatic selection rule of the adequate dimension ℓ. We make the
selection among the following set:

Mn =

{
ℓ ∈ {0, 1, . . . , Ln}, Ln =

[
log(n)

log(2)

]
+ 1

}

where [x] denotes the integer part of the real number x. For κ a numerical constant, we define

(13) ℓ̂ = arg min
ℓ∈Mn

{
−‖f̂ℓ‖2 + pen(ℓ)

}
, with pen(ℓ) = κ

ℓ24ℓ

n
.

We can prove the following result

Theorem 2.2. Consider the estimator f̂ℓ̂ defined by (10) and (13). For any κ ≥ 8, we have

E(‖f̂ℓ̂ − f‖2) ≤ inf
ℓ∈Mn

(
3‖fℓ − f‖2 + 4pen(ℓ)

)
+
C

n
.

The infimum in the right-hand-side of the inequality above shows that the estimator is indeed
adaptive. Note that the penalty is, up to a constant, equal to the variance multiplied by ℓ. This
implies a possible negligible loss in the rate of the adaptive estimator w.r.t. the expected optimal
rate.

Remark. Let us now assume that the observation is (Nj(CjT ), j = 1, . . . , n). The previous
method applies directly to estimate the density fT of CjT i.e. fT (t) = (1/T )f(t/T ). We can

deduce the results for f(c) = TfT (Tc). The function f is developed on the basis (ϕ
(T )
k :=
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√
Tϕk(T.), k ≥ 0) and the following relation holds θ

(T )
k (f) =

√
Tθk(fT ) =< f,ϕ

(T )
k >. Denote

by f
(T )
ℓ the orthogonal projection of f on the space S

(T )
ℓ spanned by (ϕ

(T )
k , k ≤ ℓ). To estimate

f(c) = TfT (Tc), we set for all ℓ,

f̂
(T )
ℓ (c) := T f̂T,ℓ(Tc)

where f̂T,ℓ is the estimator built for fT using (Nj(CjT ), j = 1, . . . , n). The estimator f̂
(T )
ℓ of f

satisfies

E(‖f̂ (T )
ℓ − f‖2) ≤ ‖f − f

(T )
ℓ ‖2 + T

16

15

24ℓ

n
.

Moreover, with ℓ̂ defined in (13), there exists κ > 0 such that

E(‖f̂ (T )

ℓ̂
− f‖2) ≤ inf

ℓ∈Mn

(
3‖f (T )

ℓ − f‖2 + 4Tpen(ℓ)
)
+
CT

n
.

The variance term in the L
2-risk is multiplied by a factor T . This explains that the method may

be worse when T increases. Actually, this was clear on simulated data.

2.4. Related works. In Simar (1976), it is proved that the cumulative distribution function
F (x) of Cj can be consistently estimated using (α̂ℓ). The method is theoretical and concrete
implementation is not easy. Noting that α0(f) is simply the Laplace transform of f , Karr (1984)
studies the properties of α̂0 to estimate α0(f) in the more general context of mixed point Poisson
processes.

For comparison purposes, we detail some of the results of Zhang (1995), Hengartner (1995)
and Loh and Zhang (1996, 1997) in the case of Poisson mixtures. In the case where f has
compact support [0, θ⋆], Zhang (1995) gives a kernel estimator of f(a) and studies pointwise
quadratic risk on Hölder classes with index r (i.e. functions f admitting ⌊r⌋ derivatives such

that f (⌊r⌋)3 is r − ⌊r⌋-Hölder). The estimator has a MSE of order [log(n)/ log log(n)]−2r which
does not correspond to his lower bound which is [log(n)]−2r. In the case of non compact support

for f , the kernel estimator MSE has order (log(n))−r/2, with no associated lower bound. Loh
and Zhang (1996) generalize the results of Zhang (1995) by studying a weighted-Lp-risk.

Hengartner (1997) considers the case where f has a compact support. He builds projection
estimators using orthogonal polynomials on the support. The upper bound of MISE has order
[log(n)/ log log(n)]−2r on the same class as above and on Sobolev classes with index r. On the
latter classes, he proves a lower bound of order [log(n)/ log log(n)]−2r.

Loh and Zhang (1997), in the case of non compact support for f , use Laguerre polynomials
and build projection estimators. Thus, the function is estimated by a polynomial; they study
a weighted L

2-risk. The upper bound is O([log(m)]−m/2) on the class of functions such that∑
j≥m j

mτ2j (f) < M where τj(f) is the coefficient of f on the development with respect to the

Laguerre polynomials. Their lower bound is O([log(n)]−m), which does not correspond to the
upper bound.

In all cases, the number of coefficients in the projection estimators does not depend on the
regularity space. In this sense, the above methods are adaptive.

Let us now clarify our contribution. First, we use a L
2((0,+∞))-basis and a usual MISE, which

is more fitted to the problem. Second, we clarify the functional spaces associated to the context
of Laguerre bases on (0,+∞) and provide explicit links between regularity and coefficients of
a development on these spaces. Upper and lower bounds match globally and without weights.

3where ⌊r⌋ is the largest integer previous r
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Here, the proof of our lower bound is inspired of Loh and Zhang’s constructions. Therefore, our
results synthesize and improves all these previous works.

Lastly, when the function under estimation has stronger regularity properties than considered
in lower bounds, we show that the rate can be improved (polynomial instead of logarithmic).
This justifies the proposal of an adaptive procedure, see Theorem 2.2, which is moreover non
asymptotic.

3. Estimation for large T

Let us set

Ĉj,T :=
1

T
Nj(CjT ).

Conditionally to Cj = c, we know that Ĉj,T converges almost surely to c as T tends to infinity.

Consequently, Ĉj,T converges almost surely to Cj. We now use the i.i.d. sample (Ĉj,T )1≤j≤n to
build projection estimators of f , where the coefficients θk(f) are now estimated as follows.

(14) f̃
(T )
ℓ =

ℓ∑

k=0

θ̃kϕk, θ̃k =
1

n

n∑

j=1

ϕk(Ĉj,T ).

Note that Sℓ has the norm-connection property:

(15) ∀t ∈ Sℓ, ‖t‖∞ := sup
x∈R+

|t(x)| ≤
√

2(ℓ+ 1)‖t‖,

as can be seen from Lemma 6.1. We obtain the following risk bound.

Proposition 3.1. Recall that fℓ is the orthogonal projection of f on Sℓ = span(ϕ0, . . . , ϕℓ).
Then

E(‖f̃ (T )
ℓ − f‖2) ≤ ‖f − fℓ‖2 + 2

ℓ+ 1

n
+

8(ℓ+ 1)5

T 2
s2, s2 := 3E(C2

1 ) +
E(C1)

T
.

The bound contains the usual decomposition into a squared-bias term ‖f−fℓ‖2 and a variance
term. The latter term is the sum of two components: the first one 2(ℓ+1)/n is classical and no

more exponential in ℓ, the second one is due to the approximation of the Cj’s by the Ĉj,T ’s and
gets small when T increases. To define a penalization procedure, we must estimate s2. Let

(16) ŝ2 =
1

n

n∑

j=1

[3(Ĉj,T )
2 − 2

Ĉj,T

T
].

As 3(Ĉj,T )
2 − 2Ĉj,T/T = Ĉj,T (3Nj(CjT ) − 2)/T ≥ 0, ŝ2 ≥ 0. Elementary computations using

conditioning on Cj show that E(ŝ2) = s2. Now, set

Mn,T =
{
0, 1, . . . , n ∧ T 2/5

}

and

(17) ℓ̃ = arg min
ℓ∈Mn,T

{
−‖f̃ (T )

ℓ ‖2 + p̃en(ℓ)
}

with p̃en(ℓ) = κ̃1
(ℓ+ 1)

n
+ κ̃2

(ℓ+ 1)5

T 2
ŝ2.

The following holds.

Theorem 3.1. Assume that E(C8
1 ) < +∞. Let f̃

(T )

ℓ̃
the estimator defined by (14) and (17).

Then there exist numerical constants κ̃1, κ̃2 such that

E(‖f̃ (T )

ℓ̃
− f‖2) ≤ C inf

ℓ∈Mn,T

(
‖f − fℓ‖2 + 2κ̃1

ℓ+ 1

n
+

8κ̃2(ℓ+ 1)5s2
T 2

)
+
C ′

n
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where C is a numerical constant and C ′ a positive constant.

Thus, the estimator f̃
(T )

ℓ̃
is adaptive and its risk automatically reaches the order of the bias-

variance compromise.

4. Numerical simulations

In this paragraph, we illustrate on simulated data the two adaptive projection methods using
the Laguerre basis: method 1 corresponds to Section 2 when T = 1, method 2 corresponds to
section 3 for large T .
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Figure 1. Estimation of the Gamma(3,1) density with method 1 (top left n =
10000 and top right n = 100000, for T = 1) and method 2 (bottom left, n =
1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line and 25

estimated (dashed (red) lines). Most of the time ℓ̂ = 2 for both methods.

We consider different distributions for the Cj ’s:

(1) a Gamma Γ(p, θ) for p = 3, θ = 1,
(2) a mixed Gamma density 0.3Γ(3, 0.25) + 0.7Γ(10, 0.6).
(3) an exponential E(θ), with θ = 1/2, fθ(x) = θe−θx1x>0,

(4) a Pareto density f(p,θ)(x) = p(1 + pθx)−1−1/p1x>0, with p = 5 and θ = 1/2,

(5) a Weibull density f(p,θ)(x) = θp−θxθ−1e−(x/p)θ1x>0 for p = 3 and θ = 2.

Note that, as θ = 1, the density (1) has only three nonzero coefficients θ0, θ1, θ2 in its exact
development in the Laguerre basis. For density (3), we know that the rate of the L

2 risk depends
on the value of θ (n−0.44 for θ = 1/2, see Section 2). In Figures 1-5, we illustrate the first method
for T = 1 and n = 10000, n = 100000 and the second for sample sizes n = 1000 and T = 10,
and n = 4000, T = 40, for the five densities defined above. We plot 25 consecutive estimates on
the same picture together with the unknown density to recover, to show variability bands and
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Figure 2. Estimation of the mixed Gamma density with method 1 (top left
n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left,
n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line
and 25 estimated (dashed (red) lines). The selected ℓ is 3 except for the bottom
right plot where it is 4.

illustrate the stability of the procedures.

• Comments on method 1. The method is easy to implement. As it is standard for penalized
methods, the theoretical constant is too large and in practice, is calibrated by preliminary sim-
ulations. We have selected the constant κ = 0.001 in the penalty. This prevents from possible
explosion of the variance, which has exponential order. The adaptive estimator performs reason-
ably well for large values of n (n ≥ 10000) but is very sensitive to the parameter values for distri-
butions Gamma or exponential, as expected. The mixture density and the Pareto and Weibull
densities, which do not admit finite developments in the basis, are correctly estimated. Increas-
ing n improves significantly the estimation. We choose to select ℓ in {0, 1, . . . , 2⌊log(n)⌋ − 1}.
On the examples, the algorithm selects values of ℓ̂ belonging to {0, 1, . . . , 4}.

• Comments on method 2. The method is also easy to implement. We have selected the constants
κ̃1 = 1.5, κ̃2 = 10−5. The very small value of κ̃2 simply kills the effect of the second term in
the penalty in order to allow not too large values of T . This second method gives better results
than the first method, as soon as T ≥ 10 (even T ≥ 5 provides good estimators). The number of
observations need not be very large. We kept the same set of possible values for ℓ in the selection
algorithm; here again, the selected values ℓ̃ are in {0, 1, . . . , 4}.
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Figure 3. Estimation of the Exponential density with projection method 1 (top
left n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left,
n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line

and 25 estimated (dashed (red) lines). Most of the time ℓ̂ = 2.

5. Concluding remarks

In this paper, we study the nonparametric density estimation of a positive random variable
C from the observation of (Nj(CjT ), j = 1, . . . , n), where (Nj) are i.i.d. Poisson processes
with unit intensity, (Cj) are i.i.d. random variables distributed as C, and (Nj) and (Cj) are
independent. Under the assumption that the unknown density f of the unobserved variables (Cj)
is in L

2((0,+∞)) and for a fixed value T , we express the nonparametric problem as an inverse
problem, which can be solved by using a Laguerre basis of L2((0,+∞)). Explicit estimators of the
coefficients of f on the basis are proposed and used to define a collection of projection estimators.
The space dimension is then selected by a data driven criterion. For functions belonging to
Sobolev-Laguerre spaces described in Section 2, f is estimated at a rate O((log(n))−s). So, an
interesting question is to know whether there exist other functions than those of these spaces
estimated at the same rate. This problem amounts to finding maximal functional classes for
which a given rate of convergence of the estimators can be achieved.

For large T , estimators Ĉj,T of the Cj’s are used to build adaptive projection estimators in
the Laguerre basis. In this approach, a moment condition on Cj is required.

The numerical simulation results show that the Laguerre basis is indeed appropriate, to obtain
estimators with no boundary effects at 0.

Possible developments of this work are the following. We may use specific kernel estimators
on R

+, as in Comte and Genon-Catalot (2012), to compare them with projection Laguerre
estimators. As in Fabio et al. (2012), we may enrich the data by considering several observation
times. Another relevant extension is to study mixed compound Poisson processes, e.g. using the
approach of Comte et al. (2014), or more general mixed Lévy processes.
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Figure 4. Estimation of the Pareto density with projection method 1 (top left
n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left,
n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line

and 25 estimated (dashed (red) lines). Most of the time ℓ̂ = 2 for the top pictures
and 0 for the bottom ones.

6. Proofs

6.1. Proof of Proposition 2.1. Using (5), we have

Ω
(ℓ)
k =

1

ℓ!

k∑

j=0

(−1)j
(
k

j

)∫ +∞

0

√
2
(2c)j

j!
cℓe−2cdc =

1

ℓ!

1√
2 2ℓ

k∑

j=0

(−1)j
(
k

j

)
(ℓ+ j)!

j!
.

Finally,

(18) Ω
(ℓ)
k =

1√
22ℓ

k∑

j=0

(−1)j
(
k

j

)
(ℓ+ j)(ℓ+ j − 1) . . . (ℓ+ 1)

j!

where we know that Ω
(ℓ)
k = 0 for k > ℓ. Therefore ℓ → 2ℓΩ

(ℓ)
k is a polynomial of degree k which

is equal to 0 for ℓ = 0, 1, . . . , k − 1. Hence, we have 2ℓΩ
(ℓ)
k ∝ ℓ(ℓ− 1)(ℓ − 2) . . . (ℓ− k + 1). The

proportionality coefficient is equal to the coefficient of ℓk is (−1)k/(
√
2 k!). Hence the result. �

6.2. Proof of proposition 2.2. Denote by Rℓ[X] the space of polynomials with real coefficients
and degree less than or equal to ℓ. The transpose of the matrix

√
2Ωℓ represents the linear

application of Rℓ[X], P (X) 7→ P
(
1−X
2

)
, in the canonical basis (1,X, . . . ,Xℓ). The inverse linear

mapping is Q(X) 7→ Q (1− 2X). Hence the result. �

6.3. Proof of Proposition 2.3. We define by |.| the usual Euclidean norm in R
ℓ+1.
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Figure 5. Estimation of the Weibull density with method 1 (top left n = 10000
and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10
and bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated
(dashed (red) lines). The selected ℓ’s are 2, 3 or 4.

We have

E(‖f̂ℓ − f‖2) = ‖f − fℓ‖2 + E(‖f̂ℓ − fℓ‖2) = ‖f − fℓ‖2 + E

(
ℓ∑

k=0

(θ̂k − θk)
2

)

= ‖f − fℓ‖2 + E(|Ω−1
ℓ (~̂αℓ − ~αℓ)|2).

Next, we write the variance term as follows:

(19) E(|Ω−1
ℓ (α̂ℓ − αℓ)|2) = E

(
t(~̂αℓ − ~αℓ)

tΩ−1
ℓ Ω−1

ℓ (~̂αℓ − ~αℓ)
)
.

Now, note that, if M = (mi,j)0≤i,j≤ℓ is a (ℓ+ 1)× (ℓ+ 1) matrix,

E( t(~̂αℓ − ~αℓ)M(~̂αℓ − ~αℓ)) =
∑

0≤i,j≤ℓ

cov(α̂i, α̂j)mi,j

where cov(α̂i, α̂j) = (αiδ
j
i − αiαj)/n and δji is the Kronecker symbol. Thus, for M symmetric

and nonnegative,

E( t(~̂αℓ − ~αℓ)M(~̂αℓ − ~αℓ)) ≤ Tr(MDα)/n

where Dα = diag(α0, . . . , αℓ). Here, we get

(20) E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
1

n
Tr( tΩ−1

ℓ Ω−1
ℓ Dα).
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Since 0 ≤ αk ≤ 1 and [ tΩ−1
ℓ Ω−1

ℓ ]k,k ≥ 0 for all k, we have

E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
1

n
Tr( tΩ−1

ℓ Ω−1
ℓ ).

Note that Tr( tΩ−1
ℓ Ω−1

ℓ ) is known as the squared Frobenius norm of the matrix Ω−1
ℓ . It follows

from Proposition 2.2 that

(21) Tr( tΩ−1
ℓ Ω−1

ℓ ) = 2
ℓ∑

k=0

k∑

j=0

((
k

j

))2

22j ≤ 2
ℓ∑

k=0

22k
k∑

j=0

((
k

j

))2

.

Noting that
k∑

j=0

((
k

j

))2

=

(
2k

k

)
≤ 22k−1,

we get

(22) Tr( tΩ−1
ℓ Ω−1

ℓ ) ≤
ℓ∑

k=0

24k =
24(ℓ+1) − 1

24 − 1
≤ 16

15
24ℓ.

As a consequence, we obtain the risk decomposition announced in Proposition 2.3.�

6.4. Proof of Theorem 2.1. From Tsybakov (2009) Chapter 2, we have to define two functions
f0n, f1n such that

(1) f0n and f1n are densities,
(2) For some K > 0, f0n and f1n belong to W s

2 ((0,+∞),K),
(3) For j = 0, 1, let Pjn = (αx(fjn), x ∈ N), then

V (P1n, P0n) =
+∞∑

x=0

|αx(f1n)− αx(f0n)| = O(1/n).

(4) ‖f0n − f1n‖2 ≥ C(log(n))−s.

For the construction of the fjn, j = 0, 1, we follow Loh and Zhang (1996,1997). Let f0(c) = e−c,
0 < c0 < c1 < b < c2 < c3, and

fu,v(c) = 1[c0,c1[(c)ℓ1,u,v(c) + 1[c1,c2[(c)γu,v(c) + 1[c2,c3[(c)ℓ2,u,v(c),

where γu,v(c) = (vu/Γ(u))cu−1e−vc is the gamma density with parameter (u, v), ℓi,u,v, i = 1, 2
are polynomials of degree 2s+ 1 such that fu,v is of class Cs. We set

un = δ0 log n := u, vn = un/b := v.

Set χi(c) = 1[ci,ci+1[(c), i = 0, 1, 2. Then, for ε > 0, we set

f0n(c) = f0(c) + 3(ε/u1/4) (c2/u)
s/2 (fu,v(c)− wonf0(c)) .

We choose w0n such that
∫
f0n = 1. As

∫
f0 = 1, we find

w0n =

∫ c3

c0

fu,v(c)dc.

Now, we define

f1n(c) = f0n(c) + (ε/u1/4) (c2/u)
s/2

(
cos

(
u
c− b

c2

)
− w1n/w0n

)
fu,v(c).
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Then, w1n is chosen such that
∫
f1n = 1 which yields:

w1n =

∫ c3

c0

cos

(
u
c− b

c2

)
fu,v(c)dc.

Finally, δ0 is chosen by

(23) δ0 = max{c2/(c3 − c2)

log (c3/c2)
,

2

log (1 + b2/c22)
,

1

c1/b− 1− log (c1/b)
,

1

c2/b− 1− log (c2/b)
}

• Step 1: w0n = 1 + o(1), fjn ≥ 0, j = 0, 1.

Proof. We first study f0n. By construction,

ℓ
(j)
1,u,v(c0) = ℓ

(j)
2,u,v(c3) = 0, ℓ

(j)
1,u,v(c1) = γ(j)u,v(c1), ℓ

(j)
2,u,v(c2) = γ(j)u,v(c2), j = 0, . . . , s.

On the space of polynomials of degree 2s+ 1 on [c0, c1],

‖Q‖0 =

s∑

j=0

|Q(j)(c0)|+ |Q(j)(c1)|

is a norm and all norms are equivalent. Therefore, there exists C such that

‖ℓ1,u,vχ0‖∞ ≤ C‖ℓ1,u,vχ0‖0 = C

s∑

j=0

|γ(j)u,v(c1)|, ‖ℓ2,u,vχ2‖∞ ≤ C

s∑

j=0

|γ(j)u,v(c2)|.

By Lemma 3 of Loh and Zhang (1996), |γ(j)u,v(c1)| + |γ(j)u,v(c2)| = O(n−1uj+(1/2)), and ‖γu,v(1 −
1[c1,c2])‖p = O(1)n−1u(p−1)/(2p), 1 ≤ p ≤ ∞. Thus,

s∑

j=0

|γ(j)u,v(c1)| = O(n−1us+(1/2)), ‖γu,v(1− 1[c1,c2])‖∞ = O(1)n−1u1/2.

We deduce

w0n =

∫ c1

c0

ℓ1,u,v +

∫ c2

c1

γu,v +

∫ c3

c2

ℓ2,u,v = 1 +O(u1/2/n) + (us+(1/2)/n)O(1) = 1 + o(1).

We have

f0n(χ0 + χ2) = f0(χ0 + χ2)(1− 3(ε/u1/4) (c2/u)
s/2 w0n)

+3(ε/u1/4) (c2/u)
s/2 (ℓ1,u,vχ0 + ℓ2,u,vχ2)

and ‖ℓ1,u,vχ0 + ℓ2,u,vχ2‖∞ = (us+(1/2)/n)O(1). Therefore, provided that ε is small enough, the

first term of f0n(χ0 +χ2) is lower bounded as c0 > 0 and the second term is O(u(s/2)+(1/4)/n) =
o(1). Thus, we can choose ε small enough to have f0n((χ0 + χ2) ≥ 0.
Then, f0nχ1 > 0 and f0n1[c0,c3]c > 0. Therefore, f0n ≥ 0.
We have

|w1n| ≤
∫ c2

c1

γu,v + (us+(1/2)/n)O(1) = w0n + o(1).

We check that f1n ≥ 0 in the same way as for f0n. �

• Step 2. For j = 0, 1, fjn ∈W s
2 ((0,+∞),K) for all K ≥ 1.
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Proof. This part is specific to our context as we do not have the same function spaces as Loh
and Zhang (1996,1997). Step 2 is equivalent to proving that

‖|fjn‖|2s := ‖cs/2 (fjn(c)ec)(s) e−c‖2 =
∑

k≥s

k(k − 1) . . . (k − s+ 1)θ2k(fjn) ≤ K.

Note that, for a function f ,

cs/2 (f(c)ec)(s) e−c = cs/2
s∑

j=0

(
s

j

)
f (j)(c).

We apply Lemmas 3 and 4 of Loh and Zhang (1996). We have, for j = 0, . . . , s,

‖l(j)1,u,vχ0‖2 = O(n−1us+1/2), ‖l(j)2,u,vχ2‖2 = O(n−1us+1/2).

Moreover, for j = 0, . . . , s, u−1/4‖γ(j)u,v‖2 = O(uj/2). Consequently,

εu−1/4(c2/u)
s/2‖cs/2

s∑

j=0

(
s

j

)
f (j)u,v(c)‖2 ≤ Cεu−1/4(c2/u)

s/2c
s/2
3

s∑

j=0

(
s

j

)
uj/2u1/4

= Cεc
s/2
3 (1 + u1/2)s(c2/u)

s/2 = εO(1).

Recall that

f0n(c) = f0(c)(1 − 3(ε/u1/4) (c2/u)
s/2w0n) + 3(ε/u1/4) (c2/u)

s/2 fu,v(c)

where the coefficient of f0(c) is 1 + o(1). Therefore

‖|f0n‖|s ≤ ‖|f0‖|s(1 + εo(1)) + εO(1).

We have θ0(f0) =
√
2/2, θk(f0) = 0, k ≥ 1. Therefore, ‖|f0‖|2s = 1/2 and ‖|f0n‖|2s = (1/2)(1 +

εO(1)). The same holds for f1n. We can choose any K ≥ 1. �

• Step 3. w1n/w0n = O(1/n) and

V (P1n, P0n) =
+∞∑

x=0

|αx(f1n)− αx(f0n)| = o(1/n).

Proof. The proof is identical to Step 2 of Theorem 3 in Loh and Zhang (1996), p.574-575 (α′ = s).
The choice of δ0 by formula (23) is used in particular here and comes from Zhang (1995). �

• Step 4. There exists C > 0 such that

‖f1n − f0n‖2 ≥ C(log n)−s.

Proof. This part is also specific to our study: we only use two functions instead of three and our
bound is global and not local. We have

(f1n − f0n)
2 =

ε2cs2
u1/2+s

(
cos2

(
u
c− b

c2

)
− 2w1n/w0n cos

(
u
c− b

c2

)
+ (w1n/w0n)

2

)
f2u,v,

where w1n/w0n = o(1/n) and | cos | ≤ 1. Therefore, it is enough to bound from below:
∫
f2u,v(c) cos

2

(
u
c− b

c2

)
dc.

And as

‖ℓ1,u,vχ0 + ℓ2,u,vχ2‖2 = (us+(1/2)/n)O(1),
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we only look at
∫
χ1(c)γ

2
u,v(c) cos

2

(
u
c− b

c2

)
dc =

1

2

∫
χ1(c)γ

2
u,v(c)

(
1 + cos

(
2u
c− b

c2

))
dc := T1 + T2

First T1 = O(
√
u) because, by Lemma 3 of Loh and Zhang (1996, p.573),

‖γu,v‖2 ∼ 1

2
√
πb

√
u, ‖γu,v(1− χ1)‖2 =

u1/2

n2
O(1).

Next, we write

T2 =
1

2

∫ +∞

0
γ2u,v(c) cos

(
2u
c− b

c2

)
dc− 1

2

∫ +∞

0
(1− χ1(c))γ

2
u,v(c) cos

(
2u
c− b

c2

)
dc := T ′

2 + T ′′
2

and as above T ′′
2 = u1/2/n2O(1). Moreover

T ′
2 =

1

2

v2u

Γ2(u)

Γ(2u− 1)

(2v)2u−1
Re

(∫ ∞

0
γ2u−1,2v(c)e

2iu c−b
c2 dc

)

Now, notice that
v2u

Γ2(u)

Γ(2u− 1)

(2v)2u−1
= ‖γu,v‖2 = O(

√
u).

Moreover

J :=

∫ ∞

0
γ2u−1,2v(c)e

2iu c−b
c2 dc = e

i 2ub
c2

(
2v

2v − 2iu
c2

)2u−1

= e
i 2ub

c2

(
1

1− ib/c2

)2u−1

,

so that

|J | =


 1

1 + b2

c22




u− 1
2

=

(
1 +

b2

c22

)1/2

n
−δ0 log(1+

b2

c2
2
)
= O(1/n2)

by the choice of δ0. Therefore T ′
2 = O(

√
u/n2). Consequently

T1 + T2 =
1

2
√
πb

√
u

(
1 +O(

1

n2
)

)
.

It follows that

‖f1n − f0n‖2 =
ε2cs2
u1/2+s

1

2
√
πb

√
u(1 +O(1/n)) =

ε2cs2
2
√
πb

1

us
(1 +O(1/n)).

This concludes step 3 as u = δ0 log(n). �

6.5. Proof of Theorem 2.2. For simplicity, we set Ln = L. We define Sℓ = {t = t(t0, t1, . . . , tℓ, 0, . . . , 0) ∈
R
L+1}, which can also be associated with the function t =

∑ℓ
k=0 tkϕk in Sℓ and |t| = ‖t‖.

Now define, for t in any of the Sℓ’s with ℓ ≤ L,

γn(t) = |t|2 − 2〈t,Ω−1
L
~̂αL〉.

For t ∈ Sℓ, note that γn(t) = |t(ℓ)|2 − 2〈t(ℓ),Ω−1
ℓ
~̂αℓ〉, where t(ℓ) = t(t0, t1, . . . , tℓ). Moreover, the

vector f̂ℓ =
t(θ̂0, . . . , θ̂ℓ, 0, . . . , 0) is such that f̂ℓ = argmint∈Sℓ

γn(t) and satisfies

γn(f̂ℓ) = −‖f̂ℓ‖2 = −|̂fℓ|2 = −|Ω−1
ℓ
~̂αℓ|2.

For s ∈ Sℓ′ and t ∈ Sℓ, the following decomposition holds:

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2〈t − s,Ω−1
L (~̂αL − ~αL)〉



18 F. COMTE AND V. GENON-CATALOT

where ‖t − f‖2 =
∑L

k=0(tk − θk)
2 +

∑∞
k=L+1 θ

2
k, for all k, θk = 〈f, ϕk〉 and tℓ+1, . . . , tL are null

when t ∈ Sℓ.
The integer ℓ̂ is given by

ℓ̂ = arg min
ℓ∈Mn

(γn(f̂ℓ) + pen(ℓ)), where f̂ℓ =
t(θ̂0, . . . , θ̂ℓ, 0, . . . , 0) ∈ R

L+1.

By definition of ℓ̂, γn(f̂ℓ̂) + pen(ℓ̂) ≤ γn(fℓ) + pen(ℓ) which implies

‖f̂ℓ̂ − f‖2 ≤ ‖fℓ − f‖2 + pen(ℓ) + 2〈f̂ℓ̂ − fℓ,Ω
−1
L (~̂αL − ~αL)〉 − pen(ℓ̂).

Now we have

2〈f̂ℓ̂ − fℓ,Ω
−1
L (~̂αL − ~αL)〉 ≤

1

4
|̂fℓ̂ − fℓ|2 + 4 sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2

and |̂fℓ̂ − fℓ|2 ≤ 2‖f̂ℓ̂ − f‖2 + 2‖fℓ − f‖2. Thus we get

E(‖f̂ℓ̂ − f‖2) ≤ 3‖fℓ − f‖2 + 2pen(ℓ) + 8E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+E(8p(ℓ, ℓ̂)− 2pen(ℓ̂)).(24)

The following Proposition gives the appropriate choice for p(ℓ, ℓ′).

Proposition 6.1. Let p(ℓ, ℓ′) = 2ℓ∗24ℓ∗/n with ℓ∗ = ℓ ∨ ℓ′. Then, we have

E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+

≤ C ′

n

The result of Proposition 6.1 inserted in Inequality (24), shows that for κ ≥ 8, we obtain

4p(ℓ, ℓ̂) ≤ pen(ℓ̂) + pen(ℓ) and

E(‖f̂ℓ̂ − f‖2) ≤ 3‖fℓ − f‖2 + 4pen(ℓ) +
8C ′

n

which is the result of Proposition 2.2. �

Proof of Proposition 6.1. We apply the Talagrand Inequality recalled in Lemma 8.1 of Section
8. First note that

E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+

≤
∑

ℓ′∈Mn

E

(
sup

t∈Sℓ∗ ,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ′)

)

+

.

Let us define ‖M‖2 = Tr( tMM) and ρ2(M) the largest eigenvalue of tMM . We consider the
centered empirical process given by

νn(t) =
1

n

n∑

i=1

〈t,Ω−1
L (~βi,L − ~αL)〉 =

1

n

n∑

i=1

(ψt(~βi,L)− Eψt(~βi,L))

where t~βi,L = (1Ni(Ci∆)=0, . . . , 1Ni(Ci∆)=L) are L + 1-dimensional i.i.d. vectors and ψt(~x) =

〈t,Ω−1
L ~x〉. If t is in Sℓ, νn(t) = 〈t,Ω−1

ℓ (~̂αℓ − ~αℓ)〉.
Recall that ℓ∗ = ℓ ∨ ℓ′ and define the unit ball for the maximization by Bℓ∗ = {t ∈ Sℓ∗ , |t| = 1}.

To apply Lemma 8.1, we specify ǫ, H2, M and v2.
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Clearly

E

(
sup
t∈Bℓ∗

ν2n(t)

)
≤ E(|Ω−1

ℓ∗ (~̂αℓ∗ − ~αℓ∗)|2) ≤
16

15

24ℓ
∗

n
:= H2.

This bound was obtained in the computation of (20) (see (19), (21), (22)).

Next since ~βi,L has only one nonzero coordinate, equal to 1, we have to bound ψt(~x) =

〈t,Ω−1
L ~x〉 for ~x = ej vector of the canonical basis of RL+1, with j ≤ ℓ∗ and t ∈ Bℓ∗ . For such

vectors ~x,

|ψt(~x)| ≤ ρ(Ω−1
ℓ∗ ) ≤ ‖Ω−1

ℓ∗ ‖ ≤
√

16/15 22ℓ
∗
:=M.

Lastly

sup
t∈Bℓ∗

Var(ψt(~βi,L)) ≤ ρ2(Ω−1
ℓ∗ )E(‖~βi,L‖2) ≤ ρ2(Ω−1

ℓ∗ ) ≤ ‖Ω−1
ℓ∗ ‖2 ≤ 15

16
24ℓ

∗
:= v2

as E(‖~βi,L‖2) = E(
∑L

k=0 1
2
Ni(Ci)=k) = P(Ni(Ci) ∈ {0, 1, . . . , L}) ≤ 1.

We have nH/M =
√
n and nH2/v2 = 1. We take ǫ2 = δℓ∗ and for δ to be chosen afterwards,

we get

E

(
sup

t∈Sℓ∗ ,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − 2(1 + 2δℓ∗)H2

)

+

≤ C1

n

(
24ℓ

∗
e−C2δℓ∗ + e−C3δℓ∗

√
n+4ℓ∗ log(2)

)

≤ C1

n

(
24ℓ

∗
e−C2δℓ∗ + e−C3δℓ∗

√
n/2
)
,

where C1, C2, C3 are numerical constants, provided that δ ≥ 8 log(2)/C3. Then choosing δ ≥
max(log(2)/C2 + 1, 8 log(2)/C3) and ℓ∗ ≥ 1 gives the result. �

6.6. Proof of Proposition 3.1.

Lemma 6.1. ∀x ≥ 0, |ϕk(x)| ≤
√
2, |ϕ′

k(x)| ≤
√
2(2k + 1) ≤ 2

√
2(k + 1) and |ϕ′′

k(x)| ≤
2
√
2(k + 1)2.

As a consequence,
∑ℓ

k=0 ϕ
2
k(x) ≤ 2(ℓ+1),

∑ℓ
k=0[ϕ

′
k(x)]

2 ≤ 8(ℓ+1)3,
∑ℓ

k=0[ϕ
′′
k(x)]

2 ≤ 8(ℓ+1)5.

Proof of Lemma 6.1. The proof uses the Laguerre polynomials Lα
k , see Section 7, and relies on

the relations [Lα
k (x)]

′ = −Lα+1
k−1(x) and the bound (34). Recall that ϕk(x) =

√
2Lk(2x)e

−x =√
2L0

k(2x)e
−x. Bound (34) implies straightforwardly that |ϕk(x)| ≤

√
2, ∀x ≥ 0. The sec-

ond bound is obtained by writing that ϕ′
k(x) =

√
2(2L′

k(2x) − Lk(2x))e
−xand |L′

k(x)| = | −
L1
k−1(x)| ≤ kex/2 and the third one by computing ϕ′′

k(x) =
√
2(4L′′

k(2x)− 4L′
k(x) + Lk(2x))e

x/2

and |L′′
k(x)| = | − [L1

k−1(x)]
′| = |L2

k−2(x)| ≤ k(k − 1)ex/2/2. �

First, by Pythagoras, ‖f̃ (T )
ℓ − f‖2 = ‖f̃ (T )

ℓ − E(f̃
(T )
ℓ ) + E(f̃

(T )
ℓ )− fℓ‖2 + ‖fℓ − f‖2 and next,

(25) E(‖f̃ (T )
ℓ − f‖2) = E(‖f̃ (T )

ℓ − E(f̃
(T )
ℓ )‖2) + ‖E(f̃ (T )

ℓ )− fℓ‖2 + ‖fℓ − f‖2.
We have

E(‖f̃ (T )
ℓ − E(f̃

(T )
ℓ )‖2) = E




ℓ∑

j=0

(θ̃j − E(θ̃j))
2


 =

1

n

ℓ∑

j=0

Var
(
ϕj(Ĉ1,T )

)

which yields with Lemma 6.1,

(26) E(‖f̃ (T )
ℓ − E(f̃

(T )
ℓ )‖2) ≤ 1

n
E(

ℓ∑

j=0

ϕ2
j (Ĉ1,T )) ≤

2(ℓ+ 1)

n
.
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Note that, for N a Poisson variable with parameter λ, E((N − λ)4) = λ(1 + 3λ). This implies

(27) E

[
(C1 − Ĉ1,T )

4
]
=

1

T 4
E (C1T (1 + 3C1T )) =

s2
T 2
.

Now, for some ξT ∈ (C1, Ĉ1,T ), using Lemma 6.1 and (27), we get

‖E(f̃ (T )
ℓ )− fℓ‖2 =

ℓ∑

j=0

[
E(ϕj(Ĉ1,T )− ϕj(C1))

]2
=

ℓ∑

j=0

[E((Ĉ1,T − C1)
2ϕ′′

j (ξT ))]
2

≤ E



(Ĉ1,T − C1)

4
ℓ∑

j=0

[ϕ′′
j (ξT )]

2



 ≤ 8

(ℓ+ 1)5

T 2
s2.(28)

Gathering (25), (26) and (28) yields the result. �

6.7. Proof of Theorem 3.1. Let

τn(t) =
1

n

n∑

j=1

[t(Ĉj,T )− 〈t, f〉] := ν̃n(t) +R(t),

ν̃n(t) =
1

n

n∑

j=1

[t(Ĉj,T )− E(t(Ĉj,T ))], R(t) = E[t(Ĉ1,T )]− 〈t, f〉.

Let γ̃n(t) = ‖t‖2 − 2n−1
∑n

j=1 t(Ĉj,T ). Remark that f̃
(T )
ℓ = argmint∈Sℓ

γ̃n(t) and γ̃n(f̃
(T )
ℓ ) =

−‖f̃ (T )
ℓ ‖2. Moreover we have

γ̃n(t)− γ̃n(s) = ‖t− f‖2 − ‖s− f‖2 − 2τn(t− s)

and by definition of the penalty, ∀ℓ ∈ Mn,T , γ̃n(f̃
(T )

ℓ̃
) + p̃en(ℓ̃) ≤ γ̃n(fℓ) + p̃en(ℓ). Therefore

(29) ‖f̃ (T )

ℓ̃
− f‖2 ≤ ‖fℓ − f‖2 + p̃en(ℓ) + 2τn(f̃

(T )

ℓ̃
− fℓ)− p̃en(ℓ̃).

Using that t 7→ τn(t) is linear and 2xy ≤ x2/4 + 4y2, we get

2τn(f̃
(T )

ℓ̃
− fℓ) ≤ 2‖f̃ (T )

ℓ̃
− fℓ‖ sup

t∈B
ℓ̃∨ℓ

|τn(t)| ≤
1

4
‖f̃ (T )

ℓ̃
− fℓ‖2 + 4 sup

t∈B
ℓ̃∨ℓ

|τn(t)|2,

where Bℓ = {t ∈ Sℓ, ‖t‖ = 1}. Plugging this in (29) and using that ‖f̃ (T )

ℓ̃
− fℓ‖2 ≤ 2‖f̃ (T )

ℓ̃
−

f‖2 + 2‖f − fℓ‖2 , we get

‖f̃ (T )

ℓ̃
− f‖2 ≤ 3‖fℓ − f‖2 + 2p̃en(ℓ) + 8 sup

t∈B
ℓ̃∨ℓ

|τn(t)|2 − 2p̃en(ℓ̃)

≤ 3‖fℓ − f‖2 + 2p̃en(ℓ) + 16

(
sup

t∈B
ℓ̃∨ℓ

|ν̃n(t)|2 − p1(ℓ, ℓ̃)

)

+

+16

(
sup

t∈B
ℓ̃∨ℓ

|R(t)|2 − p2(ℓ, ℓ̃)

)

+

+ 16p1(ℓ, ℓ̃) + 16p2(ℓ, ℓ̃)− 2p̃en(ℓ̃).

We define pi(ℓ, ℓ
′) in the following results:
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Proposition 6.2. Assume that E(C8
1 ) < +∞. Define p1(ℓ, ℓ

′) = 4(ℓ ∨ ℓ′ + 1)/n, p2(ℓ, ℓ
′) =

8ŝ2(ℓ ∨ ℓ′ + 1)5/T 2. Then

E

(
sup

t∈B
ℓ̃∨ℓ

|ν̃n(t)|2 − p1(ℓ, ℓ̃)

)

+

≤ c

n
, E

(
sup

t∈B
ℓ̃∨ℓ

|R(t)|2 − p2(ℓ, ℓ̃)

)

+

≤ c′

n

where c, c′ are positive constants.

The proof of Proposition 6.2 is given in Section 6.8. Now, the definitions of p1, p2 and p̃en(.)
imply that

8p1(ℓ, ℓ
′) + 8p2(ℓ, ℓ

′) ≤ p̃en(ℓ) + p̃en(ℓ′)

for κ̃1 ≥ 32 and κ̃2 ≥ 64, ∀ℓ, ℓ′ ∈ Mn,T . Therefore, we obtain

‖f̃ (T )

ℓ̃
− f‖2 ≤ 3‖fℓ − f‖2 + 4p̃en(ℓ) +

c”

n

which ends the proof of Theorem 3.1. �

6.8. Proof of Proposition 6.2. First we study ν̃n(t) and apply the Talagrand Inequality. To
do this, we evaluate the bounds H2,M, v as defined in Lemma 8.1. Clearly

E

(
sup

t∈Bℓ′∨ℓ

|ν̃n(t)|2
)

≤
ℓ∨ℓ′∑

k=0

Var(ν̃n(ϕk)) =
1

n

ℓ∨ℓ′∑

k=0

Var(ϕ(Ĉ1,T )) ≤
2(1 + ℓ ∨ ℓ′)

n
:= H2

by Lemma 6.1. Moreover, using (15), on Bℓ∨ℓ′ , ‖t‖∞ ≤
√

2(ℓ ∨ ℓ′ + 1) := M . Next, to find v,
we split in two parts:

sup
t∈Bℓ′∨ℓ

Var(t(Ĉ1,T )) ≤ 2(T1 + T2)

where

T1 := sup
t∈Bℓ′∨ℓ

E(t2(C1,T )) ≤ sup
t∈Bℓ′∨ℓ

‖t‖∞
(∫

t2
∫
f2
)1/2

≤
√

2(1 + ℓ ∨ ℓ′)‖f‖

and

T2 := sup
t∈Bℓ′∨ℓ

E[(t(Ĉ1,T )− t(C1,T ))
2].

We write that

(t(Ĉ1,T )− t(C1,T ))
2 = (Ĉ1,T )− C1,T )

2[t′(ξT )]
2 ≤ (Ĉ1,T )− C1,T )

2
ℓ∑

k=0

(ϕ′
k(ξT ))

2

where we apply the Taylor Formula and ξT ∈ (C1, Ĉ1,T ). Using Lemma 6.1 again, we get

T2 ≤ E[(Ĉ1,T )− C1,T )
2]8(1 + ℓ ∨ ℓ′)3.

To conclude we use that E[(Ĉ1,T ) − C1,T )
2] = E(C1)/T and that by definition of Mn,T , (1 +

ℓ ∨ ℓ′)2/T ≤
√
1 + ℓ ∨ ℓ′. Therefore, we obtain v = C

√
1 + ℓ ∨ ℓ′. Now the Talagrand Inequality

implies that there exist constants Ai, i = 1, 2, 3 such that

E

(
sup

t∈Bℓ′∨ℓ

|ν̃n(t)|2 −
8(1 + ℓ ∨ ℓ′)

n

)

+

≤ A1

n

(
(ℓ ∨ ℓ′)e−A2

√
ℓ∨ℓ′ +

ℓ ∨ ℓ′
n

e−A3
√
n

)
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so that as

E

(
sup

t∈B
ℓ̃∨ℓ

|ν̃n(t)|2 − p1(ℓ, ℓ̃)

)

+

≤
∑

ℓ′∈Mn,T

E

(
sup

t∈Bℓ′∨ℓ

|ν̃n(t)|2 −
8(1 + ℓ ∨ ℓ′)

n

)

+

≤ c/n

which is the announced bound.

Now we study R(t). Let D =
(
supt∈B

ℓ̃∨ℓ
|R(t)|2 − p2(ℓ, ℓ̃)

)
+
.

E(D) ≤
∑

ℓ′∈Mn,T

E




ℓ′∨ℓ∑

j=0

{
E[ϕj(Ĉ1,T )− ϕj(C1)]

}2
− 4

s2(1 + ℓ′ ∨ ℓ)5
T 2




+

+E

(
8(
s2
2

− ŝ2)+
(1 + ℓ̃ ∨ ℓ)5

T 2

)

By Inequality (28), the first rhs term is zero. To deal with the second term, let Ω = {|ŝ2 − s2| ≤ s2/2} .
Using the definition of Mn,T , we get

E(D) ≤ E(81IΩc(
s2
2

− ŝ2)+).

since (12s2 − ŝ2)+1Ω = 0. By the Markov inequality, we have P(Ωc) ≤ (2/s2)
4
E(|ŝ2 − s2|4) and

we use the Rosenthal Inequality (see Hall and Heyde (1980, p.23)) to get

E(|ŝ2 − s2|4) ≤ Cp(n
−3m4

4 + n−2m4
2)

where m4 is the fourth centered moment of Xj = 3Ĉ2
j,T − 2Ĉj,T/T and m2

2 the variance of Xj .
We write

Xj−E(Xj) = 3(Ĉj,T −Cj)
2+3(C2

j −E(C2
j ))+6(Cj −

2

T
)(Ĉj,T −Cj)−

2

T
(Cj−E(Cj))+

3

T
E(Cj).

After some elementary computations using the centered moments of a Poisson distribution, we
obtain that, if E(C8

j ) < +∞, then there exist constants c1, c2 such that m4
4 ≤ c1 and m2

2 ≤ c2.

Finally E(D) ≤ c/n.

7. Sobolev-Laguerre spaces

7.1. Laguerre polynomials and associated regularity spaces: General properties. For
ρ : R+ → R

+ a Borel function, let

L
2(R+, ρ) = {g : R+ → R,

∫ +∞

0
g2(x)ρ(x)dx := ‖g‖2ρ < +∞}.

When ρ ≡ 1, we denote this space as usual by L
2(R+) with ‖g‖2 =

∫ +∞
0 g2(x)dx. Obviously,

g ∈ L
2(R+, ρ) is equivalent to g

√
ρ ∈ L

2(R+) and ‖g‖ρ = ‖g√ρ‖. For any orthonormal basis

(φρk) of L2(R+, ρ), (
√
ρφρk) is an orthonormal basis of L

2(R+). We are especially interested in
the weight functions

(30) ρ(x) = xαe−x = wα(x), α ≥ 0

and the associated orthonormal bases of L2(R+, wα), namely the Laguerre polynomials. Consider
the second order differential equation:

(31) Lαg = −kg, with Lαg = xg′′ + (α+ 1− x)g′.
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The solution is g(x) = Lα
k (x) the Laguerre polynomial with index α and order k. The function

Lα
k is a polynomial of degree k, and the sequence (Lα

k ) is orthogonal with respect to the weight
function wα. The orthogonality relations are equivalent to:

(32)

∫ +∞

0
xℓLα

k (x)wα(x)dx = 0 for k > ℓ.

We have

(33) Lα
k (x) =

1

k!
exx−α dk

dxk

(
xk+αe−x

)
, (Lα

k (x))
′ = −Lα+1

k−1(x).

The following holds, for all integer k and α ≥ 0 :

(34)

∫ +∞

0
(Lα

k (x))
2 wα(x)dx =

Γ(k + α+ 1)

k!
, ∀x, |Lα

k (x)| ≤
Γ(k + α+ 1)

k!Γ(α+ 1)
ex/2.

Setting

(35) φαk (x) = Lα
k (x)

(
k!

Γ(k + α+ 1

)1/2

,

the sequence (φαk ), k ≥ 0) constitutes an orthonormal basis of the space L2((0,+∞), wα). In
particular, φ0k(x) = L0

k(x) = Lk(x), k ≥ 0 constitute an orthonormal basis of L
2((0,+∞), w),

with w(x) = w0(x) = e−x. Noting that
(
xα+1e−x

)′
= xαe−x(α + 1 − x), we obtain, using (31)

and (33),

(36)
d

dx

(
xα+1e−xLα+1

k−1(x)
)
= xαe−xkLα

k (x).

For these formulas, see Abramowitz and Stegun (1964).
We can now prove the following result.

Proposition 7.1. For s integer, w(x) = e−x and g : (0,+∞) → R, the following two statements
are equivalent:

(1) g admits derivatives up to order s−1, g(s−1) is absolutely continuous and for 0 ≤ m ≤ s,

xm/2g(m) belongs to L2((0,+∞), w) (g(s) is the Radon-Nikodym derivative of g(s−1)).
(2) g belongs to L2((0,+∞), w) and

(37)
∑

k≥0

ksτ2k (g) < +∞,

where τk(g) =
∫ +∞
0 g(x)Lk(x)w(x)dx is the k-th component of g on the basis (Lk′ , k

′ ≥ 0)

of L2((0,+∞), w).

For all m = 0, . . . , s, ‖xm/2g(m)‖2w =
∑

k≥m k(k − 1) . . . (k − m + 1)τ2k (g). If πℓ denotes the

orthogonal projection of g on the space spanned in L2((0,+∞), w) by (Lk, k ≤ ℓ),

‖g − πℓg‖2w ≤ 1

ℓ(ℓ− 1) . . . (ℓ− s+ 1)
‖xs/2g(k)‖2w.

We can now define for s ≥ 0, the Sobolev-Laguerre space4 with weight function w by:

(38) W s((0,+∞), w) = {g ∈ L2((0,+∞), w),
∑

k≥0

ksτ2k (g) < +∞}.

4Bongioanni and Torrea (2009) introduce Sobolev-Laguerre spaces but do not establish the link with the
coefficients of a function on a Laguerre basis.
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Consider, for a > 0, the space L2(R+, w(a.)) corresponding to the weight function w(ax) =
e−ax. The sequence (

√
aLk(at)) is an orthonormal basis of L2(R+, w(a.)). Setting ga(t) =

(t/
√
a)g(t/a)),

τk,a(g) :=

∫ +∞

0
g(x)

√
aLn(ax)w(ax)dx = τk(ga).

So we can define

(39) W s((0,+∞), w(a.)) = {g ∈ L2((0,+∞), w(a.)),
∑

k≥0

ksτ2k,a(g) < +∞}.

For s integer, g ∈ W s((0,+∞), w(a.)) is equivalent to g ∈ L2((0,+∞), w(a.)) and g admits
derivatives up to order s − 1, g(s−1) is absolutely continuous and for 0 ≤ m ≤ s, xm/2g(m)

belongs to L2((0,+∞), w(a.)).

Let us now interpret the result of Proposition 7.1 in terms of bases of L
2((0,+∞)). The

Laguerre functions are defined using the normalized Laguerre polynomials by

(40) Lα
k (x) = e−x/2xα/2φαk (x),

where φαk is defined in (35). The sequence (Lα
k , k ≥ 0) is an orthonormal basis of L2((0,+∞)).

With Lα given in (31), we have

xα/2e−x/2Lα(e
x/2x−α/2f) = −Lαf +

α+ 1

2
f, with Lαf = −xf ′′ − f ′ + (

x

4
+
α2

4x
)f.

Now,

f ∈ L
2((0,+∞)) ⇐⇒ g = fe(x/2) ∈ L

2((0,+∞), w)

and

τk(g) = θ0k(f) :=

∫ +∞

0
f(x)L0

k(x)dx.

We can thus set:

(41) W s((0,+∞)) = {f ∈ L
2((0,+∞)),

∑

k≥0

ks(θ0k(f))
2 < +∞}.

We have to deduce the properties of W s((0,+∞)) from those of W s((0,+∞), w). Using that

f ∈ L
2((0,+∞)) ⇐⇒ gα ∈ L

2((0,+∞), wα), with gα = fx−α/2ex/2

and the fact that f is abolutely continuous if and only if gα is, a simple computation yields,

(42) g′αe
−x/2x(α+1)/2 = δαf where δαf =

√
xf ′ +

1

2
(
√
x− α√

x
)f.

Observing that ταk (gα) =
∫ +∞
0 gα(x)φ

α
k (x)dx = θαk (f) =

∫ +∞
0 f(x)Lα

k (x)dx, we get τα+1
k−1 (g

′
α) =

θα+1
k−1 (δ

αf) and

g′α ∈ L
2((0,+∞), wα+1) ⇐⇒ x(α+1)/2g′α ∈ L

2((0,+∞), w) ⇐⇒ δαf ∈ L
2((0,+∞)).

We can state:

Proposition 7.2. For s integer, the following properties are equivalent:

(1) f ∈W s((0,+∞)) ⇐⇒ g = fex/2 ∈W s((0,+∞), w),
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(2) f ∈ L
2((0,+∞)), f ′, f ′′, . . . , f (s−1) exist, f (s−1) is absolutely continuous and for m =

0, . . . , s− 1, δm ◦ . . . ◦ δ1 ◦ δ0f ∈ L
2((0,+∞)), where, with δα given in (42), we have

δm ◦ . . . ◦ δ1 ◦ δ0f = x(m+1)/2g(m+1)e−x/2

(43) and
∑

k≥m

k(k − 1) . . . (k −m+ 1)(θ0k(f))
2 = ‖δm−1 ◦ . . . ◦ δ0f‖2.

The proof of the above proposition is simply deduced from Proposition 7.1 that is proved
below.

It remains to interpret also the results for the scale changed bases (
√
aLk(ax)e

(−ax/2), k ≥ 0)
of L2((0,+∞)). For all a > 0 and α ≥ 0,

f ∈ L
2((0,+∞)) ⇐⇒ gα,a ∈ L

2((0,+∞), xαe−ax), with gα,a = fx−α/2eax/2,

and

(44) x(α+1)/2e−ax/2g′α,a = δαa f, with δαa f =
√
xf ′ + f(

a
√
x

2
− α

2
√
x
).

Noting that with g = feax/2,

τ0k,a(g) =

∫ +∞

0
g(x)

√
aLk(ax)e

−axdx = θ0k,a(f) =

∫ +∞

0
f(x)

√
aLk(ax)e

(−ax/2)dx,

we can set:

(45) W s
a ((0,+∞)) = {f ∈ L

2((0,+∞)),
∑

k≥0

ks(θ0k,a(f))
2}.

We have

f ∈W s
a ((0,+∞)) ⇐⇒ g = feax/2 ∈W s((0,+∞), e−ax)

and the statement analogous to Proposition 7.2 holds with δαa instead of δα and w(ax) = e−ax

instead of w.
Let us state the analogous of Proposition 7.2 with the scaled-changed basis corresponding to

a = 2.

Proposition 7.3. For s integer, the following properties are equivalent:

(1) f ∈W s
2 ((0,+∞)) ⇐⇒ g = fex ∈W s((0,+∞), w(2.)),

(2) f ∈ L
2((0,+∞)), f ′, f ′′, . . . , f (s−1) exist, f (s−1) is absolutely continuous and for m =

0, . . . , s− 1, δm2 ◦ . . . ◦ δ12 ◦ δ02f ∈ L
2((0,+∞)), where, with δαa given in (42), we have

δm2 ◦ . . . ◦ δ12 ◦ δ02f = x(m+1)/2(fex)(m+1)e−x = x(m+1)/2
m+1∑

j=0

(
m+ 1

j

)
f (j).

(46) and
∑

k≥m

k(k − 1) . . . (k −m+ 1)(θ0k,2(f))
2 = ‖δm−1

2 ◦ . . . ◦ δ02f‖2.

In the text, we have set θ0k,2(f) = θk(f) and ϕk(t) =
√
2Lk(2t)e

−t.
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7.2. Proof of Proposition 7.1.

Proof. Recall that, for a function g : (0,+∞) → R,

xm/2g ∈ L2((0,+∞), w) ⇐⇒ g ∈ L2((0,+∞), wm)

and ‖xm/2g‖2w =
∫ +∞
0 xmg2(x)w(x)dx = ‖g‖2wm

.

We start by proving that (1) ⇒ (2). For h ∈ L
2((0,+∞), wα), let ταk (h) =

∫ +∞
0 h(x)φαk (x)dx

denote the k-th component of h on the basis (φαk′ = Lk′ , k
′ ≥ 0), and for α = 0, τ0k (h) = τk(h).

The proof relies on the following Lemma:

Lemma 7.1. Let α ≥ 0. If g : (0,+∞) → R is absolutely continuous with xα/2g ∈ L2((0,+∞), w)

and x(α+1)/2g′ ∈ L2((0,+∞), w), then for all k ≥ 1,
√
kταk (g) = −τα+1

k−1 (g
′).

Proof. By the assumption, g is continuous on (0,+∞). For k ≥ 1, using (36) yields

k

∫ +∞

0
g(x)Lα

k (x)x
αe−xdx =

∫ +∞

0
g(x)

d

dx

(
xα+1e−xLα+1

k−1(x)
)
dx

=
[
g(x)xα+1e−xLα+1

k−1(x)
]+∞
0

−
∫ +∞

0
g′(x)xα+1e−xLα+1

k−1 (x)dx

where the integrals are well-defined by assumption. We multiply both sides by ((k − 1)!/Γ(k +

α + 1))1/2. On the left-hand side, appears
√
kφαk , on the right-hand side, φα+1

k−1 . Hence, to get

the result, it is enough to prove that [. . .]+∞
0 = 0. Using that xa ≤ xa+1 for x ≥ 1, we get∫ +∞

1 e−xg2(x)xα−1dx < +∞, and

(

∫ +∞

1
|g(x)g′(x)|xαe−xdx)2 ≤

∫ +∞

1
g2(x)xαe−xdx

∫ +∞

1
(g′(x))2xαe−xdx < +∞.

Thus,
∫ +∞

1
g2(x)xαe−xdx = −[g2(x)xαe−x]+∞

1 +

∫ +∞

1
e−x(2g(x)g′(x)xα + αg2(x)xα−1)dx.

The integrals in the left-hand side and right-hand side above are finite. Therefore, the limit of
g2(x)xαe−x as x tends to infinity exists. As

∫ +∞
1 g2(x)xαe−xdx < +∞, this limit is necessarily

equal to 0. This implies limx→+∞ g(x)xα/2e−x/2 = 0. Therefore,

lim
x→+∞

g(x)xα+1e−xLα+1
k−1 (x) = 0.

The assumption on g implies
∫ +∞
0 |g(x)|xαe−xdx < +∞ and

∫ +∞
0 |g′(x)|xα+1e−xdx < +∞.

Thus,
∫ 1
0 |g(x)|xαdx < +∞ and

∫ 1
0 |g′(x)|xα+1dx < +∞. We have:

∫ 1

0
g(x)xαdx =

1

α+ 1
[g(x)xα+1]10 −

1

α+ 1

∫ 1

0
g′(x)xα+1dx.

Therefore, the limit of g(x)xα+1 as x tends to 0+, exists and is finite. As
∫ 1
0 x

α|g(x)|dx < +∞,
this limit is necessarily equal to 0. This implies

lim
x→0

g(x)xα+1e−xLα+1
k−1 (x) = 0.

�
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Now, let g satisfy (1). By the Lemma,
√
kτk(g) = −τ1k−1(g

′),
√
k − 1τ1k−1(g

′) = −τ2k−2(g
′′)

and so on. By elementary induction, we get for m = 0, 1, . . . , s and k ≥ m,

(k(k − 1) . . . , (k −m+ 1))1/2τk(g) = (−1)mτmk−m(g(m)).

Therefore,
∑

k≥0

k(k − 1) . . . (k − s+ 1)τ2k (g) =
∑

k≥0

(
τ sk(g

(s))
)2

= ‖g(s)‖2ws
= ‖x(s/2)g(s)‖w < +∞.

So we have (2). Moreover ‖g−πℓg‖2w ≤ [ℓ(ℓ− 1) . . . (ℓ− s+1)]−1‖x(s/2)g(s)‖w. Let us prove that
(2) ⇒ (1). We have an analogous lemma.

Lemma 7.2. Let α ≥ 0. Assume that g : (0,+∞) → R belongs to L2((0,+∞), wα) and that∑
k≥0 k (ταk (g))

2 < +∞. Then, g is absolutely continuous, g′ belongs to L2((0,+∞), wα+1) and

for all k ≥ 1, τα+1
k−1 (g

′) = −
√
kταk (g).

Proof. We have g =
∑

k≥0 τ
α
k (g)φ

α
k with φα0 a constant. Thus,

g(y)− g(x) =
∑

k≥1

ταk (g)

∫ y

x
(φαk (t))

′dt = −
∑

k≥1

√
kταk (g)

∫ y

x
φα+1
k−1 (t)dt.

The function h(t) =
∑

k≥1

√
kταk (g)φ

α+1
k−1 (t) is well-defined and hN (t) =

∑N
k=1

√
kταk (g)φ

α+1
k−1 (t)

converges to h in L
2((0,+∞), wα+1), thus in L1((0,+∞), wα+1) also. Consequently, for 0 < x ≤

y,

inf
u∈[x,y]

(uα+1e−u)

∫ y

x
|hN (t)− h(t)|dt ≤

∫ y

x
|hN (t)− h(t)|tα+1e−tdt →N→+∞ 0.

This implies g(y) − g(x) = −
∫ y
x h(t)dt. Thus, g is absolutely continuous with g′ = h and

−τα+1
k−1 (g

′) =
√
kτkα(g). As

∑
k≥0 k(τ

α
k (g))

2 < +∞, g′ ∈ L
2((0,+∞), wα+1) which is equivalent

to t(α+1)/2g′ ∈ L
2((0,+∞), w). �

Now, let g satisfy (2). Applying the lemma, we get that g is absolutely continuous and that

g′ = −∑k≥1

√
kτk(g)φ

1
k−1(t) belongs to L

2((0,+∞), w1). Then, we have that g′ is absolutely

continuous with g′′ = (−1)2
∑

k≥2

√
k(k − 1)τk(g)φ

2
k−2(t) belonging to L

2((0,+∞), w2).

By induction, for m = 0, . . . , s, g(m) belongs to L
2((0,+∞), wm) with

g(m) = (−1)m
∑

k≥m

(k(k − 1) . . . (k −m+ 1))1/2τk(g)φ
m
k−m.

Thus, tm/2g(m) belongs to L
2((0,+∞), w) for m = 0, . . . , s. So the proof of the proposition is

complete. �

8. A useful inequality.

We recall the Talagrand inequality. The result below follows from the Talagrand concentration
inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the
proof of their Corollary 2 page 354).

Lemma 8.1. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables, let νn,Y (f) =
(1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable class of uniformly bounded measurable

functions. Then for ǫ2 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ǫ2)H2
]
+

≤ 4

K1

(
v2

n
e−K1ǫ2

nH2

v2 +
98M2

K1n2C2(ǫ2)
e
− 2K1C(ǫ2)ǫ

7
√

2
nH
M

)
,
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with C(ǫ2) =
√
1 + ǫ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E

[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1

n

n∑

k=1

Var(f(Yk)) ≤ v2.

By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.
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