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Introduction

Consider n independent Poisson processes (N j (t), j = 1, . . . , n) with unit intensity and n i.i.d. positive random variables (C j , j = 1, . . . , n). Assume that the processes (N j (t), j = 1, . . . , n) and the sequence (C j , j = 1, . . . , n) are independent. Under these assumptions, the random time changed processes (X j (t) = N j (C j t), t ≥ 0) are i.i.d. and such that the conditional distribution of X j given C j = c is the distribution of a time-homogeneous Poisson process with intensity c. The process X j is known as a mixed Poisson process (see e.g. [START_REF] Grandell | Mixed Poisson processes[END_REF], [START_REF] Mikosch | Non-life insurance mathematics[END_REF]). Such processes are of common use in non-life insurance mathematics as well as in numerous other areas of applications (see Fabio et al. and references therein).

In this paper, we assume that the random variables C j have an unknown density f on (0, +∞) and our concern is the nonparametric estimation of f from the observation of a nsample (X j (T ), j = 1, . . . , n) for a given value T . We investigate this subject for large n and both for fixed T and large T with two different methods. The fixed T method performs well for small T (e.g. T = 1) and deteriorates as T increases while the large T method performs better and better as T increases. Thus, the two methods are complementary.

In Section 2, we consider the case T = 1. The distribution of X j (1) = N j (C j ) is given by:

(1)

P(N j (C j ) = ℓ) := α ℓ (f ) = 1 ℓ! +∞ 0 e -c c ℓ f (c)dc, ℓ ≥ 0,
which can be estimated by:

(2)

αℓ = 1 n n j=1 1 (N j (C j )=ℓ) , ℓ ≥ 0.
The problem of estimating f from the discrete observations (N j (C j ), j = 1, . . . , n) is thus an inverse problem, the problem of estimating a mixing density in a Poisson mixture. Several authors have considered this topic whether by kernel or projection methods, see [START_REF] Simar | Maximum likelihood estimation of a compound Poisson process[END_REF], [START_REF] Karr | Combined nonparametric inference and state estimation for mixed Poisson processes[END_REF], [START_REF] Zhang | On estimating mixing densities in discrete exponential family models[END_REF], Loh andZhang (1996, 1997), [START_REF] Hengartner | Adaptive demixing in Poisson mixture models[END_REF]. These authors are mainly interested in estimating f on a compact subset of (0, +∞). We discuss with more details the links between the present results and the previous references in subsection 2. [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging[END_REF].

In this paper, we assume that (H) f ∈ L 2 ((0, +∞)) and propose a solution without any constraint on the support of the unknown function. We study the L 2 ((0, +∞))-risk and prove upper and lower bounds on an adequate function space. Our approach is a penalized projection method (see Massart (1997)) which provides a concrete adaptive estimator of f easily implementable. It is based on the following idea. By relations [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], α ℓ (f ) is the L 2 scalar product of f and the function c → e -c c ℓ /ℓ!. Choosing an orthonormal basis (ϕ k ) of L 2 ((0, +∞)), (1) can be written as:

α ℓ (f ) = k≥0 θ k (f )Ω (ℓ) k where θ k (f ), Ω (ℓ)
k are respectively the k-th component of f and e -c c ℓ /ℓ! on the basis. The problem is to choose a basis such that the mapping (θ k (f ), k ≥ 0) → (α ℓ (f ), ℓ ≥ 0) can be simply and explicitly inverted. Then, by plugging the estimators αℓ in the inverse mapping, we get estimators of the coefficients θ k (f ) and deduce estimators of f . An appropriate choice of (ϕ k ) is thus a key tool: we consider the Laguerre bases defined by (( √ aL k (at)e -at/2 , k ≥ 0)) where (L k (t)) are the Laguerre polynomials. Here, the choice a = 2 is especially relevant. Indeed, with

ϕ k (t) = √ 2L k (2t)e -t , k ≥ 0, t ≥ 0 Ω (3) 
k = 0 for all k > ℓ and the matrix Ω ℓ = (Ω (i) k ) 0≤i,k≤ℓ is lower triangular and explicitly invertible (Propositions 2.1 and 2.2). Therefore, the inverse problem has a solution: the linear mapping on R ℓ+1 [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging[END_REF] α ℓ = (α k (f ), k = 0, . . . , ℓ) ′ → θ ℓ = (θ k (f ), k = 0, . . . , ℓ) ′ = Ω -1 ℓ α ℓ . Moreover, a crucial consistency property holds: the first ℓ -1 coordinates of α ℓ and θ ℓ are equal to those of α ℓ-1 and θ ℓ-1 . Note that, in [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging[END_REF], another type of inverse problem involving functions of L 2 ((0, +∞)), has been solved also using a Laguerre basis.

So, we define a collection of estimators of f by fℓ = ℓ k=0 θk ϕ k , where ( θk ) are defined using [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] and [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging[END_REF]. We study their L 2 -risk (Proposition 2.3). For this, we introduce appropriate regularity subspaces of L 2 ((0, +∞)), the Sobolev-Laguerre spaces with index s > 0. These spaces are defined in [START_REF] Shen | Stable and efficient spectral methods in unbounded domains using Laguerre functions[END_REF] and [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function system?[END_REF]. We precise (see Section 7) the rate of decay of the coefficients of a function f developed in a Laguerre basis when f belongs to a Sobolev-Laguerre space with index s. This allows to evaluate the order of the bias term f -f ℓ 2 where . denotes the L 2 ((0, +∞))-norm. Using these regularity spaces, we discuss the possible rates of convergence of the L 2 -risk of fℓ . Functions belonging to a Sobolev-Laguerre ball with index s yield rates of order O((log n) -s ). This rate is optimal, as we prove a lower-bound result. Afterwards, we propose a data-driven choice l of the dimension ℓ and study the L 2 -risk of the resulting adaptive estimator (Theorem 2.2). We interpret the results in the case where the observation is (N j (C j T ), j = 1, . . . , n). This amounts to a change of scale which multiplies the variance term of the risk by a factor T and implies a deterioration of the estimator as T increases.

Section 3 is devoted to the estimation of f for large T . Our method relies on the property that for each j, C j,T = N j (C j T )/T is a consistent estimator of the random variable C j as T tends to infinity. Then, we use the i.i.d. sample ( C j,T ) 1≤j≤n to build estimators of f . We propose projection estimators on the Laguerre basis (3) using other estimators of the coefficients θ k (f ) together with an adaptive choice of the space dimension (Proposition 3.1, Theorem 3.1). The criterion for the model selection is non standard: it involves a penalization which is the sum of two terms, one depending on n, ℓ and the other on T, ℓ.

Section 4 gives numerical simulation results and some concluding remarks are stated in Section 5. Proofs are gathered in Section 6. In Section 7, regularity spaces associated with Laguerre bases are discussed and useful inequality is recalled in Section 8 .

2.

Estimation of the mixing density for T = 1.

Projection estimator.

The Laguerre polynomials given by ( 5)

L k (t) = k j=0 (-1) j k j t j j! , k ≥ 0
are orthonormal polynomials with respect to the weight function w(t) = e -t on (0, +∞), i.e., for all k, k ′ , +∞ 0

L k (t)L k ′ (t)e -t dt = δ k ′ k where δ k ′ k
is the Kronecker symbol and the sequence (L k ) is an orthonormal basis of the space L 2 ((0, +∞), w). Consequently, for all positive a, ( √ aL k (at), k ≥ 0) is an orthonormal basis of L 2 ((0, +∞), w(a.)). Equivalently, ( √ aL k (at) w(a.), k ≥ 0) is an orthonormal basis of L 2 ((0, +∞)). The choice a = 2 is especially well fitted to our problem. By (H), f admits a development on the basis (3)

(6) f = k≥0 θ k (f ) ϕ k , where θ k (f ) = +∞ 0 f (c)ϕ k (c)dc.
Developing the function c → c ℓ e -c /ℓ! on the same basis, we get

(7) 1 ℓ! c ℓ e -c = k≥0 Ω (ℓ) k ϕ k (c) where Ω (ℓ) k = 1 ℓ! +∞ 0 c ℓ √ 2L k (2c)e -2c dc.
As ( √ 2L k (2c), k ≥ 0) are orthogonal polynomials w.r.t. the weight function w(2c) = e -2c , Ω (ℓ) k = 0 for k > ℓ (see Section 7 for more details). Thus,

1 ℓ! c ℓ e -c = ℓ k=0 Ω (ℓ) k ϕ k (c) and α ℓ (f ) = ℓ k=0 θ k (f )Ω (ℓ) k
The coefficients Ω (ℓ) k are given in the following proposition.

Proposition 2.1. The coefficients Ω (ℓ) k defined by [START_REF] Fabio | A Poisson mixed model with nonnormal random effect distribution[END_REF] are equal to

(8) Ω (ℓ) k = (-1) k √ 2 2 ℓ ℓ k 1 (k≤ℓ) .
Define the vectors

θ ℓ = (θ k (f ), k = 0, . . . , ℓ) ′ α ℓ = (α k (f ), k = 0, . . . , ℓ) ′ and the triangular matrix Ω ℓ := (Ω (i) k ) 0≤i,k≤ℓ where the diagonal terms are Ω (i) i = (-1) i /( √ 2 2 i ).
The matrix Ω ℓ is therefore invertible and its inverse is explicitly computed in the following proposition.

Proposition 2.2. The following equality holds:

Ω -1 ℓ = √ 2 (-1) k j k 2 k 1 (k≤j) 0≤j,k≤ℓ
.

Therefore θ ℓ = Ω -1 ℓ α ℓ . Note that since both Ω ℓ and Ω -1 ℓ are lower triangular, we have the consistency property: the first ℓ -1 coordinates of α ℓ and θ ℓ are equal to those of α ℓ-1 and θ ℓ-1 . Now we have to define estimators of (θ k (f )). For this, consider the empirical estimators (2) of α k := α k (f ) and set [START_REF] Grandell | Mixed Poisson processes[END_REF] αℓ = t (α 0 , α1 , . . . , αℓ )

The vector θ ℓ = (θ k (f ), k = 0, . . . , ℓ) ′ of components of f is estimated by θℓ = Ω -1 ℓ αℓ . By the triangular form of Ω ℓ , αℓ and θℓ have their first ℓ -1 coordinates equal to those of αℓ-1 and θℓ-1 .

Denote by f ℓ = ℓ k=0 θ k (f )ϕ k the orthogonal projection of f on S ℓ = span(ϕ 0 , ϕ 1 , . . . , ϕ ℓ ). We define the following collection of estimators of f by [START_REF] Hall | Martingale limit theory and its applications[END_REF] fℓ =

ℓ k=0 θk ϕ k , θℓ = Ω -1 ℓ αℓ , ℓ ≥ 0.
Recall that . denotes the L 2 -norm of L 2 ((0, +∞)). The following risk decomposition holds.

Proposition 2.3. The estimator fℓ of f defined by ( 2)-( 8)-( 9)-( 10) satisfies

E( fℓ -f 2 ) ≤ f -f ℓ 2 + 16 15 
2 4ℓ n .
Proposition 2.3 states a squared-bias/variance decomposition, and we need now to specify the bias order on adequate functional spaces, in order to evaluate optimal rates.

2.2.

Rates and rate optimality. As it is always the case in nonparametric estimation 1 , we must link the bias term f -f ℓ 2 with regularity properties of function f . In our context, these should be expressed in relation with the rate of decay of the coefficients (θ k (f )) k≥0 . The Laguerre-Sobolev spaces described in Section 7 provide an adequate solution.

For s ≥ 0, let

W s 2 ((0, +∞), K) = {h : (0, +∞) → R, h ∈ L 2 ((0, +∞)), k≥0 k s θ 2 k (h) ≤ K < +∞} where θ k (h) = +∞ 0 h(u)ϕ k (u)du. (11) 
The subscript 2 corresponds to the scale parameter a = 2 of the basis. In particular, for s integer, if h : (0, +∞) → R belongs to L 2 ((0, +∞)),

(12) k≥0 k s (θ k (h)) 2 < +∞.
is equivalent to the property that h admits derivatives up to order s -1, with h (s-1) absolutely continuous and for m = 0, . . . , s -1, the functions

x (m+1)/2 (he x ) (m+1) e -x = x (m+1)/2 m+1 j=0 m + 1 j h (j)
belong to L 2 ((0, +∞)). Moreover, for m = 0, 1, . . . , s -1,

x (m+1)/2 (he x ) (m+1) e -x 2 = k≥m+1 k(k -1) . . . (k -m)θ 2 k (h).
1 Kernel methods use Hölder spaces for pointwise estimation, Nikol'ski classes for global estimation; projection methods use, on Fourier basis, Sobolev spaces, on wavelet bases, Besov spaces.

For any h ∈ W s 2 ((0, +∞), K), we have h -h ℓ2 = ∞ k=ℓ+1 θ 2 k (h) ≤ K/ℓ s where h ℓ is the orthogonal projection of h on S ℓ . Proposition 2.4. Let for 0 < ǫ < 1,

ℓ ǫ = (1 -ǫ) log(n) 4 log(2) and ℓ ⋆ = 1 4 log(2) (log(n) -s log log(n)) ∨ 1.
We have

sup f ∈W s 2 ((0,+∞),K) E fℓǫ -f 2 ≤ K 4 log(2) 1 -ǫ s (log(n)) -s + 16 15 
1 n ǫ ,
and

sup f ∈W s 2 ((0,+∞),K) E fℓ ⋆ -f 2 ≤ K(4 log(2)) s + 16 15 (log(n)) -s (1 + o(1)).
Note that lǫ does not depend on s and is thus adaptive. With ℓ ⋆ , the bias and variance terms have the same order (log(n)) -s , which is better. In addition, the constant is improved. Nevertheless, this choice depends on s.

Proof. For f ∈ W s 2 (0, +∞), K), the risk bound in Proposition 2.3 writes

E( fℓ -f 2 ) ≤ K ℓ s + 16 15 
2 4ℓ n .
The variance term has exponential order 2 4ℓ with respect to ℓ. Thus, we can not make the classical bias variance compromise. First we can choose ℓ such that the bias term dominates: this is obtained by choosing ℓ = ℓ ǫ . Second, a more precise tuning of both terms is obtained with ℓ = ℓ ⋆ . In both cases, the rate is of order O([log(n)] -s ).

We now prove that, for densities lying in Laguerre-Sobolev balls W s 2 ((0, +∞), K), the rate (log n) -s is optimal. 2 Theorem 2.1. Assume that s is a positive integer and let K ≥ 1. There exists a constant c > 0 such that liminf

n→+∞ (log(n)) s inf fn sup f ∈W s ((0,+∞),K) E f fn -f 2 ≥ c
where inf fn denotes the infimum over all estimators of f based on (N j (C j )) 1≤j≤n .

The proof uses several lemmas established in [START_REF] Zhang | On estimating mixing densities in discrete exponential family models[END_REF] and [START_REF] Loh | Global properties of kernel estimators for mixing densities in discrete exponential family models[END_REF].

Model selection.

Model selection is justified as the bias may have much smaller order. For instance, it can be null if f admits a finite development in the Laguerre basis. Exponential distributions also provide examples of smaller bias. Indeed, consider f an exponential density E(θ). Then

θ k (f ) = +∞ 0 ϕ k (c)θe -θc dc = √ 2θ k j=0 (-1) j k j 2 j j! +∞ 0 c j e -(θ+1)c dc = √ 2 θ θ + 1 θ -1 θ + 1 k . As a consequence f -f ℓ 2 = ∞ k=ℓ+1 θ 2 k (f ) = θ 2 θ -1 θ + 1 2(ℓ+1)
.

Choosing

ℓ = ℓ opt = λ log(n) with λ = 1 2(log(2) + log(|(θ + 1)/(θ -1)|) yields the rate O(n -1/(1+µ) ) with µ = 2 log(2) log(|(θ + 1)/(θ -1)|)
.

The rate depends on θ and can be O(n -β ) for any β < 1. For instance if θ = 5/3 the rate is O(n -1/2 ), for θ = 1/2, the rate is O(n -0.44 ) (see Section 4) and it tends to O(n -1 ) (the parametric rate) when θ tends to 1, which is coherent with the fact that the bias is null for θ = 1. This kind of result can be generalized to the case of a distribution f defined as a mixture of exponential distributions and to Gamma distributions Γ(p, θ), with p an integer. More precisely, if f p is the density Γ(p, θ),

θ k (f p ) = √ 2 Γ(p) θ θ + 1 p S p,k 2 θ + 1 , with S p,k (x) = d p-1 dx p-1 x p-1 (1 -x) k .
This term can be computed explicitly and we get, for

ℓ ≥ p -1, k≥ℓ [θ k (f p )] 2 ≤ θ -1 θ + 1 2(ℓ-(p-1)) C(p, θ), with 0 < C(p, θ) < +∞.
Note that the bias is null for θ = 1 and ℓ > p -1, which is expected since f p ∈ S p-1 . Moreover, the bias order depends on θ, which can be seen in simulations. Now we have to define an automatic selection rule of the adequate dimension ℓ. We make the selection among the following set:

M n = ℓ ∈ {0, 1, . . . , L n }, L n = log(n) log(2) + 1
where [x] denotes the integer part of the real number x. For κ a numerical constant, we define (13) l = arg min ℓ∈Mn -fℓ 2 + pen(ℓ) , with pen(ℓ) = κ ℓ2 4ℓ n .

We can prove the following result Theorem 2.2. Consider the estimator fl defined by [START_REF] Hall | Martingale limit theory and its applications[END_REF] and [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. For any κ ≥ 8, we have

E( fl -f 2 ) ≤ inf ℓ∈Mn 3 f ℓ -f 2 + 4pen(ℓ) + C n .
The infimum in the right-hand-side of the inequality above shows that the estimator is indeed adaptive. Note that the penalty is, up to a constant, equal to the variance multiplied by ℓ. This implies a possible negligible loss in the rate of the adaptive estimator w.r.t. the expected optimal rate.

Remark. Let us now assume that the observation is (N j (C j T ), j = 1, . . . , n). The previous method applies directly to estimate the density f T of C j T i.e. f T (t) = (1/T )f (t/T ). We can deduce the results for f (c) = T f T (T c). The function f is developed on the basis (ϕ

(T ) k := √ T ϕ k (T.
), k ≥ 0) and the following relation holds θ

(T ) k (f ) = √ T θ k (f T ) =< f, ϕ (T ) k >. Denote by f (T ) ℓ
the orthogonal projection of f on the space S (T ) ℓ spanned by (ϕ

(T ) k , k ≤ ℓ). To estimate f (c) = T f T (T c), we set for all ℓ, f (T ) ℓ (c) := T fT,ℓ (T c)
where fT,ℓ is the estimator built for f T using (N j (C j T ), j = 1, . . . , n). The estimator

f (T ) ℓ of f satisfies E( f (T ) ℓ -f 2 ) ≤ f -f (T ) ℓ 2 + T 16 15 
2 4ℓ n .
Moreover, with l defined in ( 13), there exists κ > 0 such that

E( f (T ) l -f 2 ) ≤ inf ℓ∈Mn 3 f (T ) ℓ -f 2 + 4T pen(ℓ) + CT n .
The variance term in the L 2 -risk is multiplied by a factor T . This explains that the method may be worse when T increases. Actually, this was clear on simulated data.

2.4. Related works. In [START_REF] Simar | Maximum likelihood estimation of a compound Poisson process[END_REF], it is proved that the cumulative distribution function F (x) of C j can be consistently estimated using (α ℓ ). The method is theoretical and concrete implementation is not easy. Noting that α 0 (f ) is simply the Laplace transform of f , [START_REF] Karr | Combined nonparametric inference and state estimation for mixed Poisson processes[END_REF] studies the properties of α0 to estimate α 0 (f ) in the more general context of mixed point Poisson processes.

For comparison purposes, we detail some of the results of Zhang (1995), Hengartner (1995) and Loh andZhang (1996, 1997) in the case of Poisson mixtures. In the case where f has compact support [0, θ ⋆ ], [START_REF] Zhang | On estimating mixing densities in discrete exponential family models[END_REF] gives a kernel estimator of f (a) and studies pointwise quadratic risk on Hölder classes with index r (i.e. functions f admitting ⌊r⌋ derivatives such that f (⌊r⌋)3 is r -⌊r⌋-Hölder). The estimator has a MSE of order [log(n)/ log log(n)] -2r which does not correspond to his lower bound which is [log(n)] -2r . In the case of non compact support for f , the kernel estimator MSE has order (log(n)) -r/2 , with no associated lower bound. [START_REF] Loh | Global properties of kernel estimators for mixing densities in discrete exponential family models[END_REF] generalize the results of [START_REF] Zhang | On estimating mixing densities in discrete exponential family models[END_REF] by studying a weighted-L p -risk.

Hengartner (1997) considers the case where f has a compact support. He builds projection estimators using orthogonal polynomials on the support. The upper bound of MISE has order [log(n)/ log log(n)] -2r on the same class as above and on Sobolev classes with index r. On the latter classes, he proves a lower bound of order [log(n)/ log log(n)] -2r .

Loh and Zhang (1997), in the case of non compact support for f , use Laguerre polynomials and build projection estimators. Thus, the function is estimated by a polynomial; they study a weighted L 2 -risk. The upper bound is O([log(m)] -m/2 ) on the class of functions such that j≥m j m τ 2 j (f ) < M where τ j (f ) is the coefficient of f on the development with respect to the Laguerre polynomials. Their lower bound is O([log(n)] -m ), which does not correspond to the upper bound.

In all cases, the number of coefficients in the projection estimators does not depend on the regularity space. In this sense, the above methods are adaptive.

Let us now clarify our contribution. First, we use a L 2 ((0, +∞))-basis and a usual MISE, which is more fitted to the problem. Second, we clarify the functional spaces associated to the context of Laguerre bases on (0, +∞) and provide explicit links between regularity and coefficients of a development on these spaces. Upper and lower bounds match globally and without weights.

Here, the proof of our lower bound is inspired of Loh and Zhang's constructions. Therefore, our results synthesize and improves all these previous works.

Lastly, when the function under estimation has stronger regularity properties than considered in lower bounds, we show that the rate can be improved (polynomial instead of logarithmic). This justifies the proposal of an adaptive procedure, see Theorem 2.2, which is moreover non asymptotic.

Estimation for large

T Let us set C j,T := 1 T N j (C j T ).
Conditionally to C j = c, we know that C j,T converges almost surely to c as T tends to infinity. Consequently, C j,T converges almost surely to C j . We now use the i.i.d. sample ( C j,T ) 1≤j≤n to build projection estimators of f , where the coefficients θ k (f ) are now estimated as follows.

( 14)

f (T ) ℓ = ℓ k=0 θk ϕ k , θk = 1 n n j=1 ϕ k ( C j,T ).
Note that S ℓ has the norm-connection property:

(15) ∀t ∈ S ℓ , t ∞ := sup x∈R + |t(x)| ≤ 2(ℓ + 1) t ,
as can be seen from Lemma 6.1. We obtain the following risk bound.

Proposition 3.1. Recall that f ℓ is the orthogonal projection of f on S ℓ = span(ϕ 0 , . . . , ϕ ℓ ). Then E( f (T ) ℓ -f 2 ) ≤ f -f ℓ 2 + 2 ℓ + 1 n + 8(ℓ + 1) 5 T 2 s 2 , s 2 := 3E(C 2 1 ) + E(C 1 ) T .
The bound contains the usual decomposition into a squared-bias term f -f ℓ 2 and a variance term. The latter term is the sum of two components: the first one 2(ℓ + 1)/n is classical and no more exponential in ℓ, the second one is due to the approximation of the C j 's by the C j,T 's and gets small when T increases. To define a penalization procedure, we must estimate s 2 . Let ( 16)

s 2 = 1 n n j=1 [3( C j,T ) 2 -2 C j,T T ]. As 3( C j,T ) 2 -2 C j,T /T = C j,T (3N j (C j T ) -2)/T ≥ 0, ŝ2 ≥ 0. Elementary computations using conditioning on C j show that E(ŝ 2 ) = s 2 . Now, set M n,T = 0, 1, . . . , n ∧ T 2/5
and ( 17)

l = arg min ℓ∈M n,T - f (T ) ℓ 2 + pen(ℓ) with pen(ℓ) = κ1 (ℓ + 1) n + κ2 (ℓ + 1) 5 T 2 ŝ2 .
The following holds.

Theorem 3.1. Assume that E(C 8 1 ) < +∞. Let f (T ) l
the estimator defined by ( 14) and ( 17). Then there exist numerical constants κ1 , κ2 such that

E( f (T ) l -f 2 ) ≤ C inf ℓ∈M n,T f -f ℓ 2 + 2κ 1 ℓ + 1 n + 8κ 2 (ℓ + 1) 5 s 2 T 2 + C ′ n
where C is a numerical constant and C ′ a positive constant.

Thus, the estimator f (T ) l is adaptive and its risk automatically reaches the order of the biasvariance compromise.

Numerical simulations

In this paragraph, we illustrate on simulated data the two adaptive projection methods using the Laguerre basis: method 1 corresponds to Section 2 when T = 1, method 2 corresponds to section 3 for large T . We consider different distributions for the C j 's:

(1) a Gamma Γ(p, θ)

for p = 3, θ = 1, (2) 
a mixed Gamma density 0.3Γ(3, 0.25) + 0.7Γ(10, 0.6).

(

) an exponential E(θ), with θ = 1/2, f θ (x) = θe -θx 1 x>0 , ( 3 
) a Pareto density f (p,θ) (x) = p(1 + pθx) -1-1/p 1 x>0 , with p = 5 and θ = 1/2, 4 
a Weibull density f (p,θ) (x) = θp -θ x θ-1 e -(x/p) θ 1 x>0 for p = 3 and θ = 2. Note that, as θ = 1, the density (1) has only three nonzero coefficients θ 0 , θ 1 , θ 2 in its exact development in the Laguerre basis. For density (3), we know that the rate of the L 2 risk depends on the value of θ (n -0.44 for θ = 1/2, see Section 2). In Figures 12345, we illustrate the first method for T = 1 and n = 10000, n = 100000 and the second for sample sizes n = 1000 and T = 10, and n = 4000, T = 40, for the five densities defined above. We plot 25 consecutive estimates on the same picture together with the unknown density to recover, to show variability bands and illustrate the stability of the procedures.

• Comments on method 1. The method is easy to implement. As it is standard for penalized methods, the theoretical constant is too large and in practice, is calibrated by preliminary simulations. We have selected the constant κ = 0.001 in the penalty. This prevents from possible explosion of the variance, which has exponential order. The adaptive estimator performs reasonably well for large values of n (n ≥ 10000) but is very sensitive to the parameter values for distributions Gamma or exponential, as expected. The mixture density and the Pareto and Weibull densities, which do not admit finite developments in the basis, are correctly estimated. Increasing n improves significantly the estimation. We choose to select ℓ in {0, 1, . . . , 2⌊log(n)⌋ -1}.

On the examples, the algorithm selects values of l belonging to {0, 1, . . . , 4}.

• Comments on method 2. The method is also easy to implement. We have selected the constants κ1 = 1.5, κ2 = 10 -5 . The very small value of κ2 simply kills the effect of the second term in the penalty in order to allow not too large values of T . This second method gives better results than the first method, as soon as T ≥ 10 (even T ≥ 5 provides good estimators). The number of observations need not be very large. We kept the same set of possible values for ℓ in the selection algorithm; here again, the selected values l are in {0, 1, . . . , 4}. 

Concluding remarks

In this paper, we study the nonparametric density estimation of a positive random variable C from the observation of (N j (C j T ), j = 1, . . . , n), where (N j ) are i.i.d. Poisson processes with unit intensity, (C j ) are i.i.d. random variables distributed as C, and (N j ) and (C j ) are independent. Under the assumption that the unknown density f of the unobserved variables (C j ) is in L 2 ((0, +∞)) and for a fixed value T , we express the nonparametric problem as an inverse problem, which can be solved by using a Laguerre basis of L 2 ((0, +∞)). Explicit estimators of the coefficients of f on the basis are proposed and used to define a collection of projection estimators. The space dimension is then selected by a data driven criterion. For functions belonging to Sobolev-Laguerre spaces described in Section 2, f is estimated at a rate O((log(n)) -s ). So, an interesting question is to know whether there exist other functions than those of these spaces estimated at the same rate. This problem amounts to finding maximal functional classes for which a given rate of convergence of the estimators can be achieved.

For large T , estimators C j,T of the C j 's are used to build adaptive projection estimators in the Laguerre basis. In this approach, a moment condition on C j is required.

The numerical simulation results show that the Laguerre basis is indeed appropriate, to obtain estimators with no boundary effects at 0.

Possible developments of this work are the following. We may use specific kernel estimators on R + , as in Comte and Genon-Catalot 

Ω (ℓ) k = 1 ℓ! k j=0 (-1) j k j +∞ 0 √ 2 (2c) j j! c ℓ e -2c dc = 1 ℓ! 1 √ 2 2 ℓ k j=0 (-1) j k j (ℓ + j)! j! .
Finally, ( 18)

Ω (ℓ) k = 1 √ 22 ℓ k j=0 (-1) j k j (ℓ + j)(ℓ + j -1) . . . (ℓ + 1) j!
where we know that Ω (ℓ)

k = 0 for k > ℓ. Therefore ℓ → 2 ℓ Ω (ℓ)
k is a polynomial of degree k which is equal to 0 for ℓ = 0, 1, . . . , k -1. Hence, we have

2 ℓ Ω (ℓ) k ∝ ℓ(ℓ -1)(ℓ -2) . . . (ℓ -k + 1). The proportionality coefficient is equal to the coefficient of ℓ k is (-1) k /( √ 2 k!).
Hence the result.

6.2. Proof of proposition 2.2. Denote by R ℓ [X] the space of polynomials with real coefficients and degree less than or equal to ℓ. The transpose of the matrix √ 2Ω ℓ represents the linear application of R ℓ [X], P (X) → P 1-X 2 , in the canonical basis (1, X, . . . , X ℓ ). The inverse linear mapping is Q(X) → Q (1 -2X). Hence the result. We have

E( fℓ -f 2 ) = f -f ℓ 2 + E( fℓ -f ℓ 2 ) = f -f ℓ 2 + E ℓ k=0 ( θk -θ k ) 2 = f -f ℓ 2 + E(|Ω -1 ℓ ( αℓ -α ℓ )| 2
). Next, we write the variance term as follows:

(19) E(|Ω -1 ℓ (α ℓ -α ℓ )| 2 ) = E t ( αℓ -α ℓ ) t Ω -1 ℓ Ω -1 ℓ ( αℓ -α ℓ ) . Now, note that, if M = (m i,j ) 0≤i,j≤ℓ is a (ℓ + 1) × (ℓ + 1) matrix, E( t ( αℓ -α ℓ )M ( αℓ -α ℓ )) = 0≤i,j≤ℓ cov(α i , αj )m i,j
where cov(α i , αj ) = (α i δ j i -α i α j )/n and δ j i is the Kronecker symbol. Thus, for M symmetric and nonnegative,

E( t ( αℓ -α ℓ )M ( αℓ -α ℓ )) ≤ Tr(M D α )/n
where D α = diag(α 0 , . . . , α ℓ ). Here, we get ( 20)

E( fℓ -f 2 ) ≤ f -f ℓ 2 + 1 n Tr( t Ω -1 ℓ Ω -1 ℓ D α ). Since 0 ≤ α k ≤ 1 and [ t Ω -1 ℓ Ω -1 ℓ ] k,k ≥ 0 for all k, we have E( fℓ -f 2 ) ≤ f -f ℓ 2 + 1 n Tr( t Ω -1 ℓ Ω -1 ℓ ).
Note that Tr( t Ω -1 ℓ Ω -1 ℓ ) is known as the squared Frobenius norm of the matrix Ω -1 ℓ . It follows from Proposition 2.2 that ( 21)

Tr( t Ω -1 ℓ Ω -1 ℓ ) = 2 ℓ k=0 k j=0 k j 2 2 2j ≤ 2 ℓ k=0 2 2k k j=0 k j 2 .
Noting that

k j=0 k j 2 = 2k k ≤ 2 2k-1 ,
we get ( 22)

Tr( t Ω -1 ℓ Ω -1 ℓ ) ≤ ℓ k=0 2 4k = 2 4(ℓ+1) -1 2 4 -1 ≤ 16 15 2 4ℓ .
As a consequence, we obtain the risk decomposition announced in Proposition 2.3.

6.4. Proof of Theorem 2.1. From Tsybakov (2009) Chapter 2, we have to define two functions f 0n , f 1n such that (1) f 0n and f 1n are densities, (2) For some K > 0, f 0n and f 1n belong to W s 2 ((0, +∞), K), (3) For j = 0, 1, let P jn = (α x (f jn ), x ∈ N), then

V (P 1n , P 0n ) = +∞ x=0 |α x (f 1n ) -α x (f 0n )| = O(1/n). (4) f 0n -f 1n 2 ≥ C(log(n)) -s .
For the construction of the f jn , j = 0, 1, we follow Loh andZhang (1996,1997). Let f 0 (c) = e -c , 0 < c 0 < c 1 < b < c 2 < c 3 , and

f u,v (c) = 1 [c 0 ,c 1 [ (c)ℓ 1,u,v (c) + 1 [c 1 ,c 2 [ (c)γ u,v (c) + 1 [c 2 ,c 3 [ (c)ℓ 2,u,v (c),
where γ u,v (c) = (v u /Γ(u))c u-1 e -vc is the gamma density with parameter (u, v), ℓ i,u,v , i = 1, 2 are polynomials of degree 2s + 1 such that f u,v is of class C s . We set

u n = δ 0 log n := u, v n = u n /b := v. Set χ i (c) = 1 [c i ,c i+1 [ (c), i = 0, 1, 2. Then, for ε > 0, we set f 0n (c) = f 0 (c) + 3(ε/u 1/4 ) (c 2 /u) s/2 (f u,v (c) -w on f 0 (c)) .
We choose w 0n such that f 0n = 1. As f 0 = 1, we find

w 0n = c 3 c 0 f u,v (c)dc.

Now, we define

f 1n (c) = f 0n (c) + (ε/u 1/4 ) (c 2 /u) s/2 cos u c -b c 2 -w 1n /w 0n f u,v (c).
Then, w 1n is chosen such that f 1n = 1 which yields:

w 1n = c 3 c 0 cos u c -b c 2 f u,v (c)dc.
Finally, δ 0 is chosen by

(23) δ 0 = max{ c 2 /(c 3 -c 2 ) log (c 3 /c 2 ) , 2 log (1 + b 2 /c 2 2 ) , 1 c 1 /b -1 -log (c 1 /b) , 1 c 2 /b -1 -log (c 2 /b) } • Step 1: w 0n = 1 + o(1), f jn ≥ 0, j = 0, 1.
Proof. We first study f 0n . By construction,

ℓ (j) 1,u,v (c 0 ) = ℓ (j) 2,u,v (c 3 ) = 0, ℓ (j) 1,u,v (c 1 ) = γ (j) u,v (c 1 ), ℓ (j) 2,u,v (c 2 ) = γ (j) u,v (c 2 ), j = 0, . . . , s.
On the space of polynomials of degree 2s + 1 on [c 0 , c 1 ],

Q 0 = s j=0 |Q (j) (c 0 )| + |Q (j) (c 1 )|
is a norm and all norms are equivalent. Therefore, there exists C such that

ℓ 1,u,v χ 0 ∞ ≤ C ℓ 1,u,v χ 0 0 = C s j=0 |γ (j) u,v (c 1 )|, ℓ 2,u,v χ 2 ∞ ≤ C s j=0 |γ (j) u,v (c 2 )|.
By Lemma 3 of Loh and Zhang (1996), |γ

(j) u,v (c 1 )| + |γ (j) u,v (c 2 )| = O(n -1 u j+(1/2) ), and γ u,v (1 - 1 [c 1 ,c 2 ] ) p = O(1)n -1 u (p-1)/(2p) , 1 ≤ p ≤ ∞. Thus, s j=0 |γ (j) u,v (c 1 )| = O(n -1 u s+(1/2) ), γ u,v (1 -1 [c 1 ,c 2 ] ) ∞ = O(1)n -1 u 1/2 .
We deduce

w 0n = c 1 c 0 ℓ 1,u,v + c 2 c 1 γ u,v + c 3 c 2 ℓ 2,u,v = 1 + O(u 1/2 /n) + (u s+(1/2) /n)O(1) = 1 + o(1).
We have

f 0n (χ 0 + χ 2 ) = f 0 (χ 0 + χ 2 )(1 -3(ε/u 1/4 ) (c 2 /u) s/2 w 0n ) +3(ε/u 1/4 ) (c 2 /u) s/2 (ℓ 1,u,v χ 0 + ℓ 2,u,v χ 2 ) and ℓ 1,u,v χ 0 + ℓ 2,u,v χ 2 ∞ = (u s+(1/2) /n)O(1)
. Therefore, provided that ε is small enough, the first term of f 0n (χ 0 + χ 2 ) is lower bounded as c 0 > 0 and the second term is O(u (s/2)+(1/4) /n) = o(1). Thus, we can choose ε small enough to have f 0n ((

χ 0 + χ 2 ) ≥ 0. Then, f 0n χ 1 > 0 and f 0n 1 [c 0 ,c 3 ] c > 0. Therefore, f 0n ≥ 0.
We have

|w 1n | ≤ c 2 c 1 γ u,v + (u s+(1/2) /n)O(1) = w 0n + o(1).
We check that f 1n ≥ 0 in the same way as for f 0n .

• Step 2. For j = 0, 1, f jn ∈ W s 2 ((0, +∞), K) for all K ≥ 1.

Proof. This part is specific to our context as we do not have the same function spaces as Loh andZhang (1996,1997).

Step 2 is equivalent to proving that

|f jn | 2 s := c s/2 (f jn (c)e c ) (s) e -c 2 = k≥s k(k -1) . . . (k -s + 1)θ 2 k (f jn ) ≤ K.
Note that, for a function f ,

c s/2 (f (c)e c ) (s) e -c = c s/2 s j=0 s j f (j) (c).
We apply Lemmas 3 and 4 of [START_REF] Loh | Global properties of kernel estimators for mixing densities in discrete exponential family models[END_REF]. We have, for j = 0, . . . , s, l

(j) 1,u,v χ 0 2 = O(n -1 u s+1/2 ), l (j) 2,u,v χ 2 2 = O(n -1 u s+1/2 ).
Moreover, for j = 0, . . . , s, u -1/4 γ (j)

u,v 2 = O(u j/2
). Consequently, 1)). The same holds for f 1n . We can choose any K ≥ 1.

εu -1/4 (c 2 /u) s/2 c s/2 s j=0 s j f (j) u,v (c) 2 ≤ Cεu -1/4 (c 2 /u) s/2 c s/2 3 s j=0 s j u j/2 u 1/4 = Cεc s/2 3 (1 + u 1/2 ) s (c 2 /u) s/2 = εO(1). Recall that f 0n (c) = f 0 (c)(1 -3(ε/u 1/4 ) (c 2 /u) s/2 w 0n ) + 3(ε/u 1/4 ) (c 2 /u) s/2 f u,v (c) where the coefficient of f 0 (c) is 1 + o(1). Therefore |f 0n | s ≤ |f 0 | s (1 + εo(1)) + εO(1). We have θ 0 (f 0 ) = √ 2/2, θ k (f 0 ) = 0, k ≥ 1. Therefore, |f 0 | 2 s = 1/2 and |f 0n | 2 s = (1/2)(1 + εO(
• Step 3. w 1n /w 0n = O(1/n) and

V (P 1n , P 0n ) = +∞ x=0 |α x (f 1n ) -α x (f 0n )| = o(1/n).
Proof. The proof is identical to Step 2 of Theorem 3 in Loh and Zhang (1996), p.574-575 (α ′ = s). The choice of δ 0 by formula (23) is used in particular here and comes from [START_REF] Zhang | On estimating mixing densities in discrete exponential family models[END_REF].

• Step 4. There exists C > 0 such that f 1n -f 0n 2 ≥ C(log n) -s .
Proof. This part is also specific to our study: we only use two functions instead of three and our bound is global and not local. We have

(f 1n -f 0n ) 2 = ε 2 c s 2 u 1/2+s cos 2 u c -b c 2 -2w 1n /w 0n cos u c -b c 2 + (w 1n /w 0n ) 2 f 2 u,v ,
where w 1n /w 0n = o(1/n) and | cos | ≤ 1. Therefore, it is enough to bound from below:

f 2 u,v (c) cos 2 u c -b c 2 dc.
And as

ℓ 1,u,v χ 0 + ℓ 2,u,v χ 2 2 = (u s+(1/2) /n)O(1),
we only look at

χ 1 (c)γ 2 u,v (c) cos 2 u c -b c 2 dc = 1 2 χ 1 (c)γ 2 u,v (c) 1 + cos 2u c -b c 2 dc := T 1 + T 2
First T 1 = O( √ u) because, by Lemma 3 of Loh and Zhang (1996, p.573),

γ u,v 2 ∼ 1 2 √ πb √ u, γ u,v (1 -χ 1 ) 2 = u 1/2 n 2 O(1).
Next, we write

T 2 = 1 2 +∞ 0 γ 2 u,v (c) cos 2u c -b c 2 dc - 1 2 +∞ 0 (1 -χ 1 (c))γ 2 u,v (c) cos 2u c -b c 2 dc := T ′ 2 + T ′′ 2
and as above

T ′′ 2 = u 1/2 /n 2 O(1). Moreover T ′ 2 = 1 2 v 2u Γ 2 (u) Γ(2u -1) (2v) 2u-1 Re ∞ 0 γ 2u-1,2v (c)e 2iu c-b c 2 dc Now, notice that v 2u Γ 2 (u) Γ(2u -1) (2v) 2u-1 = γ u,v 2 = O( √ u). Moreover J := ∞ 0 γ 2u-1,2v (c)e 2iu c-b c 2 dc = e i 2ub c 2 2v 2v -2iu c 2 2u-1 = e i 2ub c 2 1 1 -ib/c 2 2u-1 , so that |J| =   1 1 + b 2 c 2 2   u-1 2 = 1 + b 2 c 2 2 1/2 n -δ 0 log(1+ b 2 c 2 2 ) = O(1/n 2 )
by the choice of δ 0 . Therefore T ′ 2 = O( √ u/n 2 ). Consequently

T 1 + T 2 = 1 2 √ πb √ u 1 + O( 1 n 2 ) .
It follows that

f 1n -f 0n 2 = ε 2 c s 2 u 1/2+s 1 2 √ πb √ u(1 + O(1/n)) = ε 2 c s 2 2 √ πb 1 u s (1 + O(1/n)).
This concludes step 3 as u = δ 0 log(n).

6.5. Proof of Theorem 2.2. For simplicity, we set L n = L. We define S ℓ = {t = t (t 0 , t 1 , . . . , t ℓ , 0, . . . , 0) ∈ R L+1 }, which can also be associated with the function t = ℓ k=0 t k ϕ k in S ℓ and |t| = t . Now define, for t in any of the S ℓ 's with ℓ ≤ L,

γ n (t) = |t| 2 -2 t, Ω -1 L αL . For t ∈ S ℓ , note that γ n (t) = |t (ℓ) | 2 -2 t (ℓ) , Ω -1
ℓ αℓ , where t (ℓ) = t (t 0 , t 1 , . . . , t ℓ ). Moreover, the vector fℓ = t ( θ0 , . . . , θℓ , 0, . . . , 0) is such that fℓ = arg min t∈S ℓ γ n (t) and satisfies

γ n ( fℓ ) = -fℓ 2 = -| fℓ | 2 = -|Ω -1 ℓ αℓ | 2 .
For s ∈ S ℓ ′ and t ∈ S ℓ , the following decomposition holds:

γ n (t) -γ n (s) = t -f 2 -s -f 2 -2 t -s, Ω -1 L ( αL -α L )
where t -

f 2 = L k=0 (t k -θ k ) 2 + ∞ k=L+1 θ 2
k , for all k, θ k = f, ϕ k and t ℓ+1 , . . . , t L are null when t ∈ S ℓ .

The integer l is given by l = arg min ℓ∈Mn (γ n ( fℓ ) + pen(ℓ)), where fℓ = t ( θ0 , . . . , θℓ , 0, . . . , 0) ∈ R L+1 .

By definition of l, γ n ( fl ) + pen( l) ≤ γ n (f ℓ ) + pen(ℓ) which implies

fl -f 2 ≤ f ℓ -f 2 + pen(ℓ) + 2 fl -f ℓ , Ω -1 L ( αL -α L ) -pen( l). Now we have 2 fl -f ℓ , Ω -1 L ( αL -α L ) ≤ 1 4 | fl -f ℓ | 2 + 4 sup t∈S l∨ℓ ,|t|=1 t, Ω -1 L ( αL -α L ) 2 and | fl -f ℓ | 2 ≤ 2 fl -f 2 + 2 f ℓ -f 2 . Thus we get E( fl -f 2 ) ≤ 3 f ℓ -f 2 + 2pen(ℓ) + 8E sup t∈S l∨ℓ ,|t|=1 t, Ω -1 L ( αL -α L ) 2 -p(ℓ, l) +E(8p(ℓ, l) -2pen( l)). ( 24 
)
The following Proposition gives the appropriate choice for p(ℓ, ℓ ′ ). Proposition 6.1. Let p(ℓ, ℓ ′ ) = 2ℓ * 2 4ℓ * /n with ℓ * = ℓ ∨ ℓ ′ . Then, we have

E sup t∈S l∨ℓ ,|t|=1 t, Ω -1 L ( αL -α L ) 2 -p(ℓ, l) + ≤ C ′ n
The result of Proposition 6.1 inserted in Inequality ( 24), shows that for κ ≥ 8, we obtain 4p(ℓ, l) ≤ pen( l) + pen(ℓ) and

E( fl -f 2 ) ≤ 3 f ℓ -f 2 + 4pen(ℓ) +
8C ′ n which is the result of Proposition 2.2. Proof of Proposition 6.1. We apply the Talagrand Inequality recalled in Lemma 8.1 of Section 8. First note that

E sup t∈S l∨ℓ ,|t|=1 t, Ω -1 L ( αL -α L ) 2 -p(ℓ, l) + ≤ ℓ ′ ∈Mn E sup t∈S ℓ * ,|t|=1 t, Ω -1 L ( αL -α L ) 2 -p(ℓ, ℓ ′ ) + .
Let us define M 2 = Tr( t M M ) and ρ 2 (M ) the largest eigenvalue of t M M . We consider the centered empirical process given by

ν n (t) = 1 n n i=1 t, Ω -1 L ( β i,L -α L ) = 1 n n i=1 (ψ t ( β i,L ) -Eψ t ( β i,L ))
where

t β i,L = (1 N i (C i ∆)=0 , . . . , 1 N i (C i ∆)=L ) are L + 1-dimensional i.i.d. vectors and ψ t ( x) = t, Ω -1 L x . If t is in S ℓ , ν n (t) = t, Ω -1 ℓ ( αℓ -α ℓ ) .
Recall that ℓ * = ℓ ∨ ℓ ′ and define the unit ball for the maximization by B ℓ * = {t ∈ S ℓ * , |t| = 1}.

To apply Lemma 8.1, we specify ǫ, H 2 , M and v 2 .

Clearly

E sup t∈B ℓ * ν 2 n (t) ≤ E(|Ω -1 ℓ * ( αℓ * -α ℓ * )| 2 ) ≤ 16 15 2 4ℓ * n := H 2 .
This bound was obtained in the computation of (20) (see [START_REF] Simar | Maximum likelihood estimation of a compound Poisson process[END_REF], ( 21), ( 22)).

Next since β i,L has only one nonzero coordinate, equal to 1, we have to bound ψ t ( x) = t, Ω -1 L x for x = e j vector of the canonical basis of R L+1 , with j ≤ ℓ * and t ∈ B ℓ * . For such vectors x,

|ψ t ( x)| ≤ ρ(Ω -1 ℓ * ) ≤ Ω -1 ℓ * ≤ 16/15 2 2ℓ * := M. Lastly sup t∈B ℓ * Var(ψ t ( β i,L )) ≤ ρ 2 (Ω -1 ℓ * )E( β i,L 2 ) ≤ ρ 2 (Ω -1 ℓ * ) ≤ Ω -1 ℓ * 2 ≤ 15 16 2 4ℓ * := v 2 as E( β i,L 2 ) = E( L k=0 1 2 N i (C i )=k ) = P(N i (C i ) ∈ {0, 1, . . . , L}) ≤ 1. We have nH/M = √ n and nH 2 /v 2 = 1.
We take ǫ 2 = δℓ * and for δ to be chosen afterwards, we get

E sup t∈S ℓ * ,|t|=1 t, Ω -1 L ( αL -α L ) 2 -2(1 + 2δℓ * )H 2 + ≤ C 1 n 2 4ℓ * e -C 2 δℓ * + e -C 3 δℓ * √ n+4ℓ * log(2) ≤ C 1 n 2 4ℓ * e -C 2 δℓ * + e -C 3 δℓ * √ n/2 , where C 1 , C 2 , C 3 are numerical constants, provided that δ ≥ 8 log(2)/C 3 . Then choosing δ ≥ max(log(2)/C 2 + 1, 8 log(2) 
/C 3 ) and ℓ * ≥ 1 gives the result.

6.6. Proof of Proposition 3.1. 5 . Proof of Lemma 6.1. The proof uses the Laguerre polynomials L α k , see Section 7, and relies on the relations [L α k (x)] ′ = -L α+1 k-1 (x) and the bound (34). Recall that

Lemma 6.1. ∀x ≥ 0, |ϕ k (x)| ≤ √ 2, |ϕ ′ k (x)| ≤ √ 2(2k + 1) ≤ 2 √ 2(k + 1) and |ϕ ′′ k (x)| ≤ 2 √ 2(k + 1) 2 . As a consequence, ℓ k=0 ϕ 2 k (x) ≤ 2(ℓ + 1), ℓ k=0 [ϕ ′ k (x)] 2 ≤ 8(ℓ + 1) 3 , ℓ k=0 [ϕ ′′ k (x)] 2 ≤ 8(ℓ + 1)
ϕ k (x) = √ 2L k (2x)e -x = √ 2L 0 k (2x)e -x . Bound (34) implies straightforwardly that |ϕ k (x)| ≤ √ 2, ∀x ≥ 0. The sec- ond bound is obtained by writing that ϕ ′ k (x) = √ 2(2L ′ k (2x) -L k (2x))e -x and |L ′ k (x)| = | - L 1 k-1 (x)| ≤ ke x/2
and the third one by computing

ϕ ′′ k (x) = √ 2(4L ′′ k (2x) -4L ′ k (x) + L k (2x))e x/2 and |L ′′ k (x)| = | -[L 1 k-1 (x)] ′ | = |L 2 k-2 (x)| ≤ k(k -1)e x/2 /2.
First, by Pythagoras,

f (T ) ℓ -f 2 = f (T ) ℓ -E( f (T ) ℓ ) + E( f (T ) ℓ ) -f ℓ 2 + f ℓ -f 2 and next, (25) E( f (T ) ℓ -f 2 ) = E( f (T ) ℓ -E( f (T ) ℓ ) 2 ) + E( f (T ) ℓ ) -f ℓ 2 + f ℓ -f 2 .
We have

E( f (T ) ℓ -E( f (T ) ℓ ) 2 ) = E   ℓ j=0 ( θj -E( θj )) 2   = 1 n ℓ j=0 Var ϕ j ( C 1,T )
which yields with Lemma 6.1,

(26) E( f (T ) ℓ -E( f (T ) ℓ ) 2 ) ≤ 1 n E( ℓ j=0 ϕ 2 j ( C 1,T )) ≤ 2(ℓ + 1) n .
Note that, for N a Poisson variable with parameter λ, E((N -λ) 4 ) = λ(1 + 3λ). This implies

(27) E (C 1 -C 1,T ) 4 = 1 T 4 E (C 1 T (1 + 3C 1 T )) = s 2 T 2 .
Now, for some ξ T ∈ (C 1 , C 1,T ), using Lemma 6.1 and (27), we get

E( f (T ) ℓ ) -f ℓ 2 = ℓ j=0 E(ϕ j ( C 1,T ) -ϕ j (C 1 )) 2 = ℓ j=0 [E(( C 1,T -C 1 ) 2 ϕ ′′ j (ξ T ))] 2 ≤ E    ( C 1,T -C 1 ) 4 ℓ j=0 [ϕ ′′ j (ξ T )] 2    ≤ 8 (ℓ + 1) 5 T 2 s 2 . (28) 
Gathering ( 25), ( 26) and (28) yields the result.

6.7. Proof of Theorem 3.1. Let τ n (t) = 1 n n j=1 [t( C j,T ) -t, f ] := νn (t) + R(t), νn (t) = 1 n n j=1 [t( C j,T ) -E(t( C j,T ))], R(t) = E[t( C 1,T )] -t, f . Let γn (t) = t 2 -2n -1 n j=1 t( C j,T ). Remark that f (T ) ℓ = arg min t∈S ℓ γn (t) and γn ( f (T ) ℓ ) = - f (T ) ℓ 2 . Moreover we have γn (t) -γn (s) = t -f 2 -s -f 2 -2τ n (t -s)
and by definition of the penalty, ∀ℓ ∈ M n,T , γn ( f (T ) l ) + pen( l) ≤ γn (f ℓ ) + pen(ℓ). Therefore (29)

f (T ) l -f 2 ≤ f ℓ -f 2 + pen(ℓ) + 2τ n ( f (T ) l -f ℓ ) -pen( l).
Using that t → τ n (t) is linear and 2xy ≤ x 2 /4 + 4y 2 , we get

2τ n ( f (T ) l -f ℓ ) ≤ 2 f (T ) l -f ℓ sup t∈B l∨ℓ |τ n (t)| ≤ 1 4 f (T ) l -f ℓ 2 + 4 sup t∈B l∨ℓ |τ n (t)| 2 ,
where B ℓ = {t ∈ S ℓ , t = 1}. Plugging this in (29) and using that

f (T ) l -f ℓ 2 ≤ 2 f (T ) l - f 2 + 2 f -f ℓ 2 , we get f (T ) l -f 2 ≤ 3 f ℓ -f 2 + 2 pen(ℓ) + 8 sup t∈B l∨ℓ |τ n (t)| 2 -2 pen( l) ≤ 3 f ℓ -f 2 + 2 pen(ℓ) + 16 sup t∈B l∨ℓ |ν n (t)| 2 -p 1 (ℓ, l) + +16 sup t∈B l∨ℓ |R(t)| 2 -p 2 (ℓ, l) + + 16p 1 (ℓ, l) + 16p 2 (ℓ, l) -2 pen( l).
We define p i (ℓ, ℓ ′ ) in the following results:

Proposition 6.2. Assume that E(C 8 1 ) < +∞. Define p 1 (ℓ, ℓ ′ ) = 4(ℓ ∨ ℓ ′ + 1)/n, p 2 (ℓ, ℓ ′ ) = 8ŝ 2 (ℓ ∨ ℓ ′ + 1) 5 /T 2 . Then E sup t∈B l∨ℓ |ν n (t)| 2 -p 1 (ℓ, l) + ≤ c n , E sup t∈B l∨ℓ |R(t)| 2 -p 2 (ℓ, l) + ≤ c ′ n
where c, c ′ are positive constants.

The proof of Proposition 6.2 is given in Section 6.8. Now, the definitions of p 1 , p 2 and pen(.)

imply that 8p 1 (ℓ, ℓ ′ ) + 8p 2 (ℓ, ℓ ′ ) ≤ pen(ℓ) + pen(ℓ ′ )
for κ1 ≥ 32 and κ2 ≥ 64, ∀ℓ, ℓ ′ ∈ M n,T . Therefore, we obtain

f (T ) l -f 2 ≤ 3 f ℓ -f 2 + 4 pen(ℓ) +
c" n which ends the proof of Theorem 3.1.

6.8. Proof of Proposition 6.2. First we study νn (t) and apply the Talagrand Inequality. To do this, we evaluate the bounds H 2 , M, v as defined in Lemma 8.1. Clearly

E sup t∈B ℓ ′ ∨ℓ |ν n (t)| 2 ≤ ℓ∨ℓ ′ k=0 Var(ν n (ϕ k )) = 1 n ℓ∨ℓ ′ k=0 Var(ϕ( C 1,T )) ≤ 2(1 + ℓ ∨ ℓ ′ ) n := H 2
by Lemma 6.1. Moreover, using [START_REF] Loh | Estimating mixing densities in exponential family models for discrete variables[END_REF], on B ℓ∨ℓ ′ , t ∞ ≤ 2(ℓ ∨ ℓ ′ + 1) := M . Next, to find v, we split in two parts: sup

t∈B ℓ ′ ∨ℓ Var(t( C 1,T )) ≤ 2(T 1 + T 2 )
where

T 1 := sup t∈B ℓ ′ ∨ℓ E(t 2 (C 1,T )) ≤ sup t∈B ℓ ′ ∨ℓ t ∞ t 2 f 2 1/2 ≤ 2(1 + ℓ ∨ ℓ ′ ) f and T 2 := sup t∈B ℓ ′ ∨ℓ E[(t( C 1,T ) -t(C 1,T )) 2 ].
We write that

(t( C 1,T ) -t(C 1,T )) 2 = ( C 1,T ) -C 1,T ) 2 [t ′ (ξ T )] 2 ≤ ( C 1,T ) -C 1,T ) 2 ℓ k=0 (ϕ ′ k (ξ T )) 2
where we apply the Taylor Formula and ξ T ∈ (C 1 , C 1,T ). Using Lemma 6.1 again, we get

T 2 ≤ E[( C 1,T ) -C 1,T ) 2 ]8(1 + ℓ ∨ ℓ ′ ) 3 .
To conclude we use that E

[( C 1,T ) -C 1,T ) 2 ] = E(C 1 )/T and that by definition of M n,T , (1 + ℓ ∨ ℓ ′ ) 2 /T ≤ √ 1 + ℓ ∨ ℓ ′ . Therefore, we obtain v = C √ 1 + ℓ ∨ ℓ ′
. Now the Talagrand Inequality implies that there exist constants A i , i = 1, 2, 3 such that

E sup t∈B ℓ ′ ∨ℓ |ν n (t)| 2 - 8(1 + ℓ ∨ ℓ ′ ) n + ≤ A 1 n (ℓ ∨ ℓ ′ )e -A 2 √ ℓ∨ℓ ′ + ℓ ∨ ℓ ′ n e -A 3
√ n so that as

E sup t∈B l∨ℓ |ν n (t)| 2 -p 1 (ℓ, l) + ≤ ℓ ′ ∈M n,T E sup t∈B ℓ ′ ∨ℓ |ν n (t)| 2 - 8(1 + ℓ ∨ ℓ ′ ) n + ≤ c/n
which is the announced bound. Now we study R(t). Let D = sup t∈B l∨ℓ |R(t)| 2 -p 2 (ℓ, l)

+ . E(D) ≤ ℓ ′ ∈M n,T E   ℓ ′ ∨ℓ j=0 E[ϕ j ( C 1,T ) -ϕ j (C 1 )] 2 -4 s 2 (1 + ℓ ′ ∨ ℓ) 5 T 2   + +E 8( s 2 2 -ŝ2 ) + (1 + l ∨ ℓ) 5 T 2
By Inequality (28), the first rhs term is zero. To deal with the second term, let

Ω = {| s 2 -s 2 | ≤ s 2 /2} .
Using the definition of M n,T , we get

E(D) ≤ E(81 I Ω c ( s 2 2 -ŝ2 ) + ).
since ( 1 2 s 2 -s 2 ) + 1 Ω = 0. By the Markov inequality, we have

P(Ω c ) ≤ (2/s 2 ) 4 E(| s 2 -s 2 | 4
) and we use the Rosenthal Inequality (see Hall and Heyde (1980, p.23)) to get

E(| s 2 -s 2 | 4 ) ≤ C p (n -3 m 4 4 + n -2 m 4 2
) where m 4 is the fourth centered moment of X j = 3 C 2 j,T -2 C j,T /T and m 2 2 the variance of X j . We write

X j -E(X j ) = 3( C j,T -C j ) 2 + 3(C 2 j -E(C 2 j )) + 6(C j - 2 T )( C j,T -C j ) - 2 T (C j -E(C j )) + 3 T E(C j ).
After some elementary computations using the centered moments of a Poisson distribution, we obtain that, if E(C 8 j ) < +∞, then there exist constants c 1 , c 2 such that m 4 4 ≤ c 1 and m 2 2 ≤ c 2 . Finally E(D) ≤ c/n. 7. Sobolev-Laguerre spaces 7.1. Laguerre polynomials and associated regularity spaces: General properties. For ρ : R + → R + a Borel function, let

L 2 (R + , ρ) = {g : R + → R, +∞ 0 g 2 (x)ρ(x)dx := g 2 ρ < +∞}.
When ρ ≡ 1, we denote this space as usual by L 2 (R + ) with g 2 = +∞ 0

g 2 (x)dx. Obviously, g ∈ L 2 (R + , ρ) is equivalent to g √ ρ ∈ L 2 (R + ) and g ρ = g √ ρ .
For any orthonormal basis

(φ ρ k ) of L 2 (R + , ρ), ( √ ρφ ρ k ) is an orthonormal basis of L 2 (R + ).
We are especially interested in the weight functions (30) ρ(x) = x α e -x = w α (x), α ≥ 0 and the associated orthonormal bases of L 2 (R + , w α ), namely the Laguerre polynomials. Consider the second order differential equation:

(31) L α g = -kg, with L α g = xg ′′ + (α + 1 -x)g ′ .
The solution is g(x) = L α k (x) the Laguerre polynomial with index α and order k. The function L α k is a polynomial of degree k, and the sequence (L α k ) is orthogonal with respect to the weight function w α . The orthogonality relations are equivalent to:

(32) +∞ 0

x ℓ L α k (x)w α (x)dx = 0 for k > ℓ.

We have

(33) L α k (x) = 1 k! e x x -α d k dx k x k+α e -x , (L α k (x)) ′ = -L α+1 k-1 (x).
The following holds, for all integer k and α ≥ 0 :

(34) +∞ 0 (L α k (x)) 2 w α (x)dx = Γ(k + α + 1) k! , ∀x, |L α k (x)| ≤ Γ(k + α + 1) k!Γ(α + 1) e x/2 . Setting (35) φ α k (x) = L α k (x) k! Γ(k + α + 1 1/2
, the sequence (φ α k ), k ≥ 0) constitutes an orthonormal basis of the space L 2 ((0, +∞), w α ). In particular, φ 0 k (x) = L 0 k (x) = L k (x), k ≥ 0 constitute an orthonormal basis of L 2 ((0, +∞), w), with w(x) = w 0 (x) = e -x . Noting that x α+1 e -x ′ = x α e -x (α + 1 -x), we obtain, using (31) and ( 33), (36)

d dx x α+1 e -x L α+1 k-1 (x) = x α e -x kL α k (x).
For these formulas, see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF].

We can now prove the following result.

Proposition 7.1. For s integer, w(x) = e -x and g : (0, +∞) → R, the following two statements are equivalent:

(1) g admits derivatives up to order s -1, g (s-1) is absolutely continuous and for 0 ≤ m ≤ s, x m/2 g (m) belongs to L 2 ((0, +∞), w) (g (s) is the Radon-Nikodym derivative of g (s-1) ).

(2) g belongs to L 2 ((0, +∞), w) and

(37) k≥0 k s τ 2 k (g) < +∞, where τ k (g) = +∞ 0 g(x)L k (x)w(x)dx is the k-th component of g on the basis (L k ′ , k ′ ≥ 0) of L 2 ((0, +∞), w). For all m = 0, . . . , s, x m/2 g (m) 2 w = k≥m k(k -1) . . . (k -m + 1)τ 2 k (g). If π ℓ denotes the orthogonal projection of g on the space spanned in L 2 ((0, +∞), w) by (L k , k ≤ ℓ), g -π ℓ g 2 w ≤ 1 ℓ(ℓ -1) . . . (ℓ -s + 1)
x s/2 g (k) 2 w .

We can now define for s ≥ 0, the Sobolev-Laguerre space4 with weight function w by:

(38) W s ((0, +∞), w) = {g ∈ L 2 ((0, +∞), w), k≥0 k s τ 2 k (g) < +∞}.
Consider, for a > 0, the space L 2 (R + , w(a.)) corresponding to the weight function w(ax) = e -ax . The sequence ( √ aL k (at)) is an orthonormal basis of L 2 (R + , w(a.)). Setting g a

(t) = (t/ √ a)g(t/a)), τ k,a (g) := +∞ 0 g(x) √ aL n (ax)w(ax)dx = τ k (g a ).
So we can define (39) W s ((0, +∞), w(a.)) = {g ∈ L 2 ((0, +∞), w(a.)), k≥0 k s τ 2 k,a (g) < +∞}.

For s integer, g ∈ W s ((0, +∞), w(a.)) is equivalent to g ∈ L 2 ((0, +∞), w(a.)) and g admits derivatives up to order s -1, g (s-1) is absolutely continuous and for 0 ≤ m ≤ s, x m/2 g (m) belongs to L 2 ((0, +∞), w(a.)).

Let us now interpret the result of Proposition 7.1 in terms of bases of L 2 ((0, +∞)). The Laguerre functions are defined using the normalized Laguerre polynomials by (40)

L α k (x) = e -x/2 x α/2 φ α k (x), where φ α k is defined in (35). The sequence (L α k , k ≥ 0) is an orthonormal basis of L 2 ((0, +∞)). With L α given in (31), we have

x α/2 e -x/2 L α (e x/2 x -α/2 f ) = -L α f + α + 1 2 f, with L α f = -xf ′′ -f ′ + ( x 4 + α 2 4x )f. Now, f ∈ L 2 ((0, +∞)) ⇐⇒ g = f e (x/2) ∈ L 2 ((0, +∞), w) and τ k (g) = θ 0 k (f ) := +∞ 0 f (x)L 0 k (x)dx.
We can thus set:

(41) W s ((0, +∞)) = {f ∈ L 2 ((0, +∞)), k≥0 k s (θ 0 k (f )) 2 < +∞}.
We have to deduce the properties of W s ((0, +∞)) from those of W s ((0, +∞), w). Using that

f ∈ L 2 ((0, +∞)) ⇐⇒ g α ∈ L 2 ((0, +∞), w α ), with g α = f x -α/2 e x/2
and the fact that f is abolutely continuous if and only if g α is, a simple computation yields, (42)

g ′ α e -x/2 x (α+1)/2 = δ α f where δ α f = √ xf ′ + 1 2 ( √ x - α √ x )f. Observing that τ α k (g α ) = +∞ 0 g α (x)φ α k (x)dx = θ α k (f ) = +∞ 0 f (x)L α k (x)dx, we get τ α+1 k-1 (g ′ α ) = θ α+1 k-1 (δ α f ) and g ′ α ∈ L 2 ((0, +∞), w α+1 ) ⇐⇒ x (α+1)/2 g ′ α ∈ L 2 ((0, +∞), w) ⇐⇒ δ α f ∈ L 2 ((0, +∞)).
We can state: Proposition 7.2. For s integer, the following properties are equivalent:

(1) f ∈ W s ((0, +∞)) ⇐⇒ g = f e x/2 ∈ W s ((0, +∞), w),

(2) f ∈ L 2 ((0, +∞)), f ′ , f ′′ , . . . , f (s-1) exist, f (s-1) is absolutely continuous and for m = 0, . . . , s -1, δ m • . . . • δ 1 • δ 0 f ∈ L 2 ((0, +∞)), where, with δ α given in (42), we have

δ m • . . . • δ 1 • δ 0 f = x (m+1)/2 g (m+1) e -x/2 (43) and k≥m k(k -1) . . . (k -m + 1)(θ 0 k (f )) 2 = δ m-1 • . . . • δ 0 f 2 .
The proof of the above proposition is simply deduced from Proposition 7.1 that is proved below.

It remains to interpret also the results for the scale changed bases ( √ aL k (ax)e (-ax/2) , k ≥ 0) of L 2 ((0, +∞)). For all a > 0 and α ≥ 0, f ∈ L 2 ((0, +∞)) ⇐⇒ g α,a ∈ L 2 ((0, +∞), x α e -ax ), with g α,a = f x -α/2 e ax/2 , and (44)

x (α+1)/2 e -ax/2 g ′ α,a = δ α a f, with δ α a f = √ xf ′ + f ( a √ x 2 - α 2 √ x
).

Noting that with g = f e ax/2 ,

τ 0 k,a (g) = +∞ 0 g(x) √ aL k (ax)e -ax dx = θ 0 k,a (f ) = +∞ 0 f (x) √ aL k (ax)e (-ax/2) dx,
we can set:

(45) W s a ((0, +∞)) = {f ∈ L 2 ((0, +∞)), k≥0 k s (θ 0 k,a (f )) 2 }.
We have f ∈ W s a ((0, +∞)) ⇐⇒ g = f e ax/2 ∈ W s ((0, +∞), e -ax ) and the statement analogous to Proposition 7.2 holds with δ α a instead of δ α and w(ax) = e -ax instead of w.

Let us state the analogous of Proposition 7.2 with the scaled-changed basis corresponding to a = 2. Proposition 7.3. For s integer, the following properties are equivalent:

(1) f ∈ W s 2 ((0, +∞)) ⇐⇒ g = f e x ∈ W s ((0, +∞), w(2.)), (2) f ∈ L 2 ((0, +∞)), f ′ , f ′′ , . . . , f (s-1) exist, f (s-1) is absolutely continuous and for m = 0, . . . , s -1, δ m 2 • . . . • δ 1 2 • δ 0 2 f ∈ L 2 ((0, +∞))
, where, with δ α a given in (42), we have

δ m 2 • . . . • δ 1 2 • δ 0 2 f = x (m+1)/2 (f e x ) (m+1) e -x = x (m+1)/2 m+1 j=0 m + 1 j f (j) . (46) and k≥m k(k -1) . . . (k -m + 1)(θ 0 k,2 (f )) 2 = δ m-1 2 • . . . • δ 0 2 f 2 .
In the text, we have set

θ 0 k,2 (f ) = θ k (f ) and ϕ k (t) = √ 2L k (2t)e -t .
7.2. Proof of Proposition 7.1.

Proof. Recall that, for a function g : (0, +∞) → R,

x m/2 g ∈ L 2 ((0, +∞), w) ⇐⇒ g ∈ L 2 ((0, +∞), w m ) and x m/2 g 2 w =

+∞ 0

x m g 2 (x)w(x)dx = g 2 wm . We start by proving that (1) ⇒ (2). For h ∈ L 2 ((0, +∞),

w α ), let τ α k (h) = +∞ 0 h(x)φ α k (x)dx denote the k-th component of h on the basis (φ α k ′ = L k ′ , k ′ ≥ 0)
, and for α = 0, τ 0 k (h) = τ k (h). The proof relies on the following Lemma: Lemma 7.1. Let α ≥ 0. If g : (0, +∞) → R is absolutely continuous with x α/2 g ∈ L 2 ((0, +∞), w) and x (α+1)/2 g ′ ∈ L 2 ((0, +∞), w), then for all k ≥ 1, √ kτ α k (g) = -τ α+1 k-1 (g ′ ). Proof. By the assumption, g is continuous on (0, +∞). For k ≥ 1, using (36) yields where the integrals are well-defined by assumption. We multiply both sides by ((k -1)!/Γ(k + α + 1)) 1/2 . On the left-hand side, appears √ kφ α k , on the right-hand side, φ α+1 k-1 . Hence, to get the result, it is enough to prove that [. . .] +∞ 0 = 0. Using that x a ≤ x a+1 for x ≥ 1, we get +∞ 1 e -x g 2 (x)x α-1 dx < +∞, and e -x (2g(x)g ′ (x)x α + αg 2 (x)x α-1 )dx.

The integrals in the left-hand side and right-hand side above are finite. Therefore, the limit of g 2 (x)x α e -x as x tends to infinity exists. As +∞ 1 g 2 (x)x α e -x dx < +∞, this limit is necessarily equal to This implies lim x→+∞ g(x)x α/2 e -x/2 = 0. Therefore, lim x→+∞ g(x)x α+1 e -x L α+1 k-1 (x) = 0.

The assumption on g implies +∞ 0

|g(x)|x α e -x dx < +∞ and +∞ 0

|g ′ (x)|x α+1 e -x dx < +∞. Thus, 1 0 |g(x)|x α dx < +∞ and 1 0 |g ′ (x)|x α+1 dx < +∞. We have:

1 0 g(x)x α dx = 1 α + 1 [g(x)x α+1 ] 1 0 - 1 α + 1 1 0 g ′ (x)x α+1 dx.
Therefore, the limit of g(x)x α+1 as x tends to 0 + , exists and is finite. As 1 0 x α |g(x)|dx < +∞, this limit is necessarily equal to 0. This implies lim x→0 g(x)x α+1 e -x L α+1 k-1 (x) = 0. Now, let g satisfy [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. By the Lemma, √ kτ k (g) = -τ 1 k-1 (g ′ ), √ k -1τ 1 k-1 (g ′ ) = -τ 2 k-2 (g ′′ ) and so on. By elementary induction, we get for m = 0, 1, . . . , s and k ≥ m, (k(k -1) . . . , (k -m + 1)) 1/2 τ k (g) = (-1) m τ m k-m (g (m) ). Therefore, k≥0 k(k -1) . . . (k -s + 1)τ 2 k (g) = k≥0 τ s k (g (s) ) 2 = g (s) 2 ws = x (s/2) g (s) w < +∞.

So we have (2). Moreover g -π ℓ g 2 w ≤ [ℓ(ℓ -1) . . . (ℓ -s + 1)] -1 x (s/2) g (s) w . Let us prove that (2) ⇒ (1). We have an analogous lemma. Lemma 7.2. Let α ≥ 0. Assume that g : (0, +∞) → R to L 2 ((0, +∞), w α ) and that k≥0 k (τ α k (g)) 2 < +∞. Then, g is absolutely continuous, g ′ belongs to L 2 ((0, +∞), w α+1 ) and for all k ≥ 1, τ α+1 k-1 (g ′ ) = -√ kτ α k (g). Proof. We have g = k≥0 τ α k (g)φ α k with φ α 0 a constant. Thus, g(y) -g(x) = The function h(t) = k≥1 √ kτ α k (g)φ α+1 k-1 (t) is well-defined and h N (t) = N k=1 √ kτ α k (g)φ α+1 k-1 (t) converges to h in L 2 ((0, +∞), w α+1 ), thus in L 1 ((0, +∞), w α+1 ) also. Consequently, for 0 < x ≤ y, This implies g(y) -g(x) = -y x h(t)dt. Thus, g is absolutely continuous with g ′ = h and -τ α+1 k-1 (g ′ ) = √ kτ k α(g). As k≥0 k(τ α k (g)) 2 < +∞, g ′ ∈ L 2 ((0, +∞), w α+1 ) which is equivalent to t (α+1)/2 g ′ ∈ L 2 ((0, +∞), w). Now, let g satisfy (2). Applying the lemma, we get that g is absolutely continuous and that g ′ = -k≥1 √ kτ k (g)φ 1 k-1 (t) belongs to L 2 ((0, +∞), w 1 ). Then, we have that g ′ is absolutely continuous with g ′′ = (-1) 2 k≥2 k(k -1)τ k (g)φ 2 k-2 (t) belonging to L 2 ((0, +∞), w 2 ). By induction, for m = 0, . . . , s, g (m) belongs to L 2 ((0, +∞), w m ) with g (m) = (-1) m k≥m (k(k -1) . . . (k -m + 1)) 1/2 τ k (g)φ m k-m .

Thus, t m/2 g (m) belongs to L 2 ((0, +∞), w) for m = 0, . . . , s. So the proof of the proposition is complete.

A useful inequality.

We recall the Talagrand inequality. The result below follows from the Talagrand concentration inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] 

(f ) = (1/n) n i=1 [f (Y i ) -E(f (Y i ))
] and let F be a countable class of uniformly bounded measurable functions. Then for ǫ 2 > 0 By standard density arguments, this result can be extended to the case where F is a unit ball of a linear normed space, after checking that f → ν n (f ) is continuous and F contains a countable dense family.
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Figure 1 .

 1 Figure 1. Estimation of the Gamma(3,1) density with method 1 (top left n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). Most of the time l = 2 for both methods.

Figure 2 .

 2 Figure 2. Estimation of the mixed Gamma density with method 1 (top left n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). The selected ℓ is 3 except for the bottom right plot where it is 4.

Figure 3 .

 3 Figure 3. Estimation of the Exponential density with projection method 1 (top left n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). Most of the time l = 2.

  (2012), to compare them with projection Laguerre estimators. As in Fabio et al. (2012), we may enrich the data by considering several observation times. Another relevant extension is to study mixed compound Poisson processes, e.g. using the approach of Comte et al. (2014), or more general mixed Lévy processes.
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 461 Figure 4. Estimation of the Pareto density with projection method 1 (top left n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). Most of the time l = 2 for the top pictures and 0 for the bottom ones.

6. 3 .

 3 Proof of Proposition 2.3. We define by |.| the usual Euclidean norm in R ℓ+1 .

Figure 5 .

 5 Figure 5. Estimation of the Weibull density with method 1 (top left n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated (dashed (red) lines). The selected ℓ's are 2, 3 or 4.
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  )L α k (x)x α e -x dx = +∞ 0 g(x) d dx x α+1 e -x L α+1 k-1 (x) dx = g(x)x α+1 e -x L α+1 k-1 (x) ′ (x)x α+1 e -x L α+1 k-1 (x)dx

1 g 2 1 ( 1 g 2 1 +

 121121 )g ′ (x)|x α e -x dx) 2 ≤ +∞ (x)x α e -x dx +∞ g ′ (x)) 2 x α e -x dx < +∞. Thus, +∞ (x)x α e -x dx = -[g 2 (x)x α e -x ] +∞ +∞ 1

  inf u∈[x,y] (u α+1 e -u ) y x |h N (t) -h(t)|dt ≤

  t) -h(t)|t α+1 e -t dt → N →+∞ 0.

  and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354).

Lemma 8 . 1 .

 81 (Talagrand Inequality) Let Y 1 , . . . , Y n be independent random variables, let ν n,Y

1 + ǫ 2 - 1 ,

 121 K 1 = 1/6, and sup f ∈F f ∞ ≤ M, E sup f ∈F |ν n,Y (f )| ≤ H, sup (Y k )) ≤ v 2 .

Note that analogous rates occur in the context of deconvolution for ordinary smooth function and supersmooth noise (severely ill-posed problem). Nevertheless, the logarithmic rate is proved to be optimal, see[START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF].

[START_REF] Bongioanni | What is a Sobolev space for the Laguerre function system?[END_REF] introduce Sobolev-Laguerre spaces but do not establish the link with the coefficients of a function on a Laguerre basis.