Nonparametric density estimation for mixed Poisson processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Nonparametric density estimation for mixed Poisson processes

Fabienne Comte
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 836340

Résumé

In this paper, we consider the observation of $n$ i.i.d. mixed Poisson processes with random intensity having an unknown density $f$ on ${\mathbb R}^+$. Depending on the observation time, we propose two nonparametric adaptive strategies to estimate $f$. We use an appropriate Laguerre basis to build adaptive projection estimators and also propose kernel estimators with adaptive bandwidths. Non-asymptotic bounds of the ${\mathbb L}^2$-integrated risk are obtained in each case. The procedures are illustrated on simulated data.
Fichier principal
Vignette du fichier
mixedpoissonlevy3.pdf (499.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00848158 , version 1 (25-07-2013)
hal-00848158 , version 2 (13-03-2014)

Identifiants

  • HAL Id : hal-00848158 , version 1

Citer

Fabienne Comte, Valentine Genon-Catalot. Nonparametric density estimation for mixed Poisson processes. 2013. ⟨hal-00848158v1⟩
196 Consultations
284 Téléchargements

Partager

More