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NONPARAMETRIC DENSITY ESTIMATION FOR MIXED POISSON

PROCESSES.

F. COMTE1 AND V. GENON-CATALOT1

Abstract. In this paper, we consider the observation of n i.i.d. mixed Poisson processes with
random intensity having an unknown density f on R

+. Depending on the observation time, we
propose two nonparametric adaptive strategies to estimate f . We use an appropriate Laguerre
basis to build adaptive projection estimators and also propose kernel estimators with adaptive
bandwidths. Non-asymptotic bounds of the L

2-integrated risk are obtained in each case. The
procedures are illustrated on simulated data. July 25, 2013
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1. Introduction

Consider n independent Poisson processes (Nj(t), j = 1, . . . , n) with unit intensity and n i.i.d.
positive random variables (Cj , j = 1, . . . , n). Assume that the processes (Nj(t), j = 1, . . . , n)
and the sequence (Cj , j = 1, . . . , n) are independent. Under these assumptions, the random time
changed processes (Xj(t) = Nj(Cjt), t ≥ 0) are i.i.d. and such that the conditional distribution
of Xj given Cj = c is the distribution of a time-homogeneous Poisson process with intensity c.
The process Xj is known as a mixed Poisson process (see e.g. Grandell (1997), Mikosch (2009)).
Such processes are of common use in non-life insurance mathematics as well as in numerous other
areas of applications (see Fabio et al. and references therein). The value Xj(t) represents for
a subject j the number of occurence of an event during the time interval [0, t] (e.g. the claim
number in insurance mathematics). The randomness of the intensity Cj takes into account the
heterogeneity among subjects which is more realistic. For instance, the distribution of Cj may
be a mixture of distributions. The mixed Poisson process belongs to the more general class of
mixed-effects models where parameters are assumed to be unobserved random variables.

In this paper, we assume that the random variables Cj have an unknown density f on
(0,+∞) and our concern is the nonparametric estimation of f from the observation of a n-
sample (Xj(T ), j = 1, . . . , n) for a given value T . We investigate this subject for large n and
both for fixed T and large T with two different methods. The fixed T method performs well for
small T (e.g. T = 1) and deteriorates as T increases while the large T method performs better
and better as T increases. Thus, the two methods are complementary.

In Section 2, we consider the case T = 1. The distribution of Xj(1) = Nj(Cj) is given by:

(1) P(Nj(Cj) = ℓ) := αℓ(f) =
1

ℓ!

∫ +∞

0
e−ccℓf(c)dc, ℓ ≥ 0,

which can be estimated by:

(2) α̂ℓ =
1

n

n∑

j=1

1(Nj(Cj)=ℓ), ℓ ≥ 0.
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In Simar (1976), it is proved that the cumulative distribution function F (x) of Cj can be consis-
tently estimated using (α̂ℓ). The method is theoretical and concrete implementation is not easy.
Noting that α0(f) is simply the Laplace transform of f , Karr (1984) studies the properties of α̂0

to estimate α0(f) in the more general context of mixed point Poisson processes.
Our approach is a penalized projection method (see Massart (1997)) which provides a concrete

adaptive estimator of f . It is based on the following idea. By relations (1), αℓ(f) is the L
2 scalar

product of f and the function c→ e−ccℓ/l!. This leads us to assume:

(H) f ∈ L
2((0,+∞)).

Then choosing an orthonormal basis (ϕk) of this space, (1) can be written as:

αℓ(f) =
∑

k≥0

θkΩ
(ℓ)
k

where θk,Ω
(ℓ)
k are respectively the k-th component of f and e−ccℓ/l! on the basis. The problem is

to choose a basis such that the mapping (θk, k ≥ 0) → (αℓ(f), ℓ ≥ 0) can be simply and explicitly
inverted. Then, by plugging the estimators α̂ℓ in the inverse mapping, we get estimators of the
coefficients θk and deduce estimators of f . A relevant choice of the basis (ϕk) is thus a key tool.
In what follows, we consider the basis

(3) ϕk(t) =
√
2Lk(2t)e

−t, k ≥ 0

where (Lk(t)) are the Laguerre polynomials. This choice is justified by the fact that Ω
(ℓ)
k = 0

for all k > ℓ and the matrix Ωℓ = (Ω
(i)
j )0≤i,j≤ℓ is lower triangular and explicitly invertible

(Propositions 2.1 and 2.2). This yields that the following linear mapping on R
ℓ+1 is explicit for

all ℓ :

~αℓ = (αk(f), k = 0, . . . , ℓ)′ → ~θℓ = (θk, k = 0, . . . , ℓ)′ = Ω−1
ℓ ~αℓ

with a crucial consistency property: the first ℓ− 1 coordinates of ~αℓ and ~θℓ are equal to those of

~αℓ−1 and ~θℓ−1.

Consequently, we define a collection of estimators of f by f̂ℓ =
∑ℓ

k=0 θ̂kϕk and study their
L
2-risk (Proposition 2.3). By introducing appropriate regularity subspaces of L2((0,+∞)), the

regularity of f is measured in terms of the convergence of series associated with the coefficients
(θk). The justification is detailed in the Section 8. Using these regularity spaces, we discuss

the possible rates of convergence of the L
2-risk of f̂ℓ. Smooth functions f yield rates of order

O((log n)−s). ”Super-smooth” functions yield rates of order O(n−b), b < 1. Afterwards, we

propose a data-driven choice ℓ̂ of the dimension ℓ and study the L
2-risk of the resulting adaptive

estimator (Proposition 2.1).
In Section 3, we interpret the results of Section 2 in the case where the observation is

(Nj(CjT ), j = 1, . . . , n). This amounts to a change of scale which multiplies the variance term
of the risk by a factor T and implies a deterioration of the estimator as T increases.

Section 4 is devoted to the estimation of f for large T . Our methods rely on the property that

for each j, Ĉj,T = Nj(CjT )/T is a consistent estimator of the random variable Cj as T tends to

infinity. Then, we use the i.i.d. sample (Ĉj,T )1≤j≤n, to build estimators of f . First we propose
a kernel estimator with an adaptive bandwidth selection (Proposition 4.1, Theorem 4.1). Then
we study projection estimators on the Laguerre basis (3) with an adaptive choice of the space
dimension (Proposition 4.2, Theorem 4.2).

Section 5 gives numerical simulation results and some concluding remarks are stated in Section
6. Proofs are gathered in Section 7. In Section 8, regularity spaces associated with Laguerre
bases are discussed and auxiliary results are recalled.
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2. Estimation for T = 1.

2.1. Preliminaries. The Laguerre polynomials given by

(4) Lk(t) =
k∑

j=0

(−1)j
(
k

j

)
tj

j!
, k ≥ 0

are orthonormal polynomials with respect to the weight function w(t) = e−t on (0,+∞), i.e.,
for all k, k′, ∫ +∞

0
Lk(t)Lk′(t)e

−tdt = δk
′

k

where δk
′

k is the Kroenecker symbol and the sequence (Lk) is an orthonormal basis of the space
L
2((0,+∞), w). Consequently, for all positive a, (

√
aLk(at), k ≥ 0) is an orthonormal ba-

sis of L
2((0,+∞), w(a.)). Equivalently, (

√
aLk(at)

√
w(a.), k ≥ 0) is an orthonormal basis of

L
2((0,+∞)). The choice a = 2 is especially well fitted to our problem. By (H), f admits a

development on the basis (3)

(5) f =
∑

k≥0

θk ϕk, where θk =

∫ +∞

0
f(c)ϕk(c)dc.

Developing the function c→ cℓe−c/ℓ! on the same basis, we get

(6)
1

ℓ!
cℓe−c =

∑

k≥0

Ω
(ℓ)
k ϕk(c), where Ω

(ℓ)
k =

1

ℓ!

∫ +∞

0
cℓ
√
2Lk(2c)e

−2cdc.

As (
√
2Lk(2c), k ≥ 0) are orthogonal polynomials w.r.t. the weight function w(2c) = e−2c,

Ω
(ℓ)
k = 0 for k > ℓ (see Section 8 for more details). Thus,

1

ℓ!
cℓe−c =

ℓ∑

k=0

Ω
(ℓ)
k ϕk(c) and αℓ(f) =

ℓ∑

k=0

θkΩ
(ℓ)
k

The coefficients Ω
(ℓ)
k are given in the following proposition.

Proposition 2.1. The coefficients Ω
(ℓ)
k defined by (6) are equal to

(7) Ω
(ℓ)
k =

(−1)k√
2 2ℓ

(
ℓ

k

)
1(k≤ℓ).

Define the vectors

~θℓ = (θk, k = 0, . . . , ℓ)′ ~αℓ = (αk(f), k = 0, . . . , ℓ)′

and the triangular matrix

(8) Ωℓ =




Ω
(0)
0 0 . . . 0

Ω
(1)
0 Ω

(1)
1 . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

Ω
(ℓ)
0 Ω

(ℓ)
1 . . . Ω

(ℓ)
ℓ



,

where the diagonal terms are Ω
(i)
i = (−1)i/(

√
2 2i). The matrix Ωℓ is therefore invertible and its

inverse is explicitly computed in the following proposition.
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Proposition 2.2. The following equality holds:

Ω−1
ℓ =

√
2

(
(−1)k

(
j

k

)
2k1(k≤j)

)

0≤k,j≤ℓ

.

Therefore ~θℓ = Ω−1
ℓ ~αℓ.

Note that since both Ωℓ and Ω−1
ℓ are lower triangular, we have the consistency property: the

first ℓ− 1 coordinates of ~αℓ and ~θℓ are equal to those of ~αℓ−1 and ~θℓ−1.

2.2. Estimation of the density of the random effect.

2.2.1. Projection estimators. We consider the empirical estimators (2) of αk := αk(f) and set

(9) ~̂αℓ =
t(α̂0, α̂1, . . . , α̂ℓ)

The vector ~θℓ = (θk, k = 0, . . . , ℓ)′ of components of f is estimated by
~̂
θℓ = Ω−1

ℓ
~̂αℓ.

By the triangular form of Ωℓ, ~̂αℓ and
~̂
θℓ have their first ℓ − 1 coordinates equal to those of

~̂αℓ−1 and
~̂
θℓ−1. Denote by fℓ the orthogonal projection of f on

Sℓ = span(ϕ0, ϕ1, . . . , ϕℓ),

namely fℓ =
∑ℓ

k=0 θkϕk. We estimate f by f̂ℓ =
∑ℓ

k=0 θ̂kϕk. We denote by ‖.‖ the L
2-norm

of L2((0,+∞)) and by |.| the usual Euclidean norm in R
ℓ+1. The following risk decomposition

holds.

Proposition 2.3. The estimator of f defined by

(10) f̂ℓ =
ℓ∑

k=0

θ̂kϕk,
~̂
θℓ = Ω−1

ℓ
~̂αℓ

where ~̂αℓ is defined by (2) and (9) and Ωℓ by (7)-(8), satisfies

E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
16

15

24ℓ

n
.

Let us discuss the possibles rates implied by Proposition 2.3. Consider the following regularity
function spaces, for s, u, v ≥ 0,

(11) W s,u,v(R+,K) = {h : R+ → R, h ∈ L
2(R+),

∑

k≥0

ks exp(ukv)θ2k(h) ≤ K < +∞}

where θk(h) =
∫ +∞
0 h(u)ϕk(u)du. For u = 0, we simply note W s(R+,K). Regularity spaces

linked with Laguerre bases are discussed in Section 8. In particular, for s integer, if h : (0,+∞) →
R belongs to L2((0,+∞)),

(12)
∑

k≥0

ks(θk(h))
2 < +∞.

is equivalent to the property that f admits derivatives up to order s− 1, with f (s−1) absolutely
continuous and for m = 0, . . . , s − 1, the functions δm ◦ . . . ◦ δ1 ◦ δ0f belong to L2((0,+∞))
where δαf =

√
xf ′ + 1

2(
√
x− α√

x
)f. Thus, W s(R+,K) corresponds to a space of functions with

regularity s. For any h ∈ W s(R+,K), we have ‖h − hℓ‖2 =
∑∞

k=ℓ+1 θ
2
k(h) ≤ K/ℓs where hℓ is
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the orthogonal projection of h on Sℓ.
Consequently, for f ∈W s(R+,K), the risk bound in Proposition 2.3 writes

E(‖f̂ℓ − f‖2) ≤ K

ℓs
+

16

15

24ℓ

n
.

The variance term has exponential order 24ℓ with respect to ℓ. Thus, we can not make the classical
bias variance compromise and must choose ℓ so that the variance term does not explode. The
bias becomes the dominating term. For instance, we can choose ℓ such that 24ℓ/n = 1/

√
n,

which yields ℓ = log(n)/(8 log(2)) and a rate of order O([log(n)]−s).
Note that analogous rates occur in the context of deconvolution for ordinary smooth function
and super-smooth noise (severely ill-posed problem). Nevertheless, the logarithmic rate is proved
to be optimal, see Fan (1991).
The logarithmic rate can be improved for f ∈W s,u,v(R+,K) with u > 0. For instance, consider
for f an exponential density E(θ). In this case,

θk =

∫ +∞

0
ϕk(c)θe

−θcdc =
√
2θ

k∑

j=0

(−1)j
(
k

j

)
2j

j!

∫ +∞

0
cje−(θ+1)cdc

=
√
2

θ

θ + 1

k∑

j=0

(−1)j
(
k

j

)(
2

θ + 1

)j

=
√
2

θ

θ + 1

(
θ − 1

θ + 1

)k

.

As a consequence

‖f − fℓ‖2 =
∞∑

k=ℓ+1

θ2k =
θ

2

(
θ − 1

θ + 1

)2(ℓ+1)

.

Note that the bias is null for θ = 1, since then, f = ϕ0. Choosing

ℓ = ℓopt = λ log(n) with λ =
1

2(log(2) + log(|(θ + 1)/(θ − 1)|)
yields the rate

O(n−1/(1+µ)) with µ =
2 log(2)

log(|(θ + 1)/(θ − 1)|) .

The rates depend on θ and can be O(n−b) for any b < 1. For instance if θ = 5/3 the rate is

O(n−1/2), and it tends to O(n−1) (the parametric rate) when θ tends to 1.
This kind of result can be generalized to the case of a distribution f defined as a mixture of

exponential distributions and to Gamma distributions Γ(p, θ), with p an integer. More precisely,
if fp is the density Γ(p, θ),

θk(fp) =

√
2

Γ(p)

(
θ

θ + 1

)p

Sp,k

(
2

θ + 1

)
, with Sp,k(x) =

dp−1

dxp−1

[
xp−1(1− x)k

]
.

This term can be computed explicitly and we get, for ℓ ≥ p− 1,

∑

k≥ℓ

[θk(fp)]
2 ≤

(
θ − 1

θ + 1

)2(ℓ−(p−1))

C(p, θ), with 0 < C(p, 1) < +∞.

Note that the bias is null for θ = 1, which is expected since fp ∈ Sp−1. Moreover, the bias order
depends on θ, which can be seen in simulations.
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2.2.2. Model selection. Now we have to define an automatic selection rule of the adequate di-
mension ℓ. We make the selection among the following set, which guaranties that the variance
remains bounded. Let

Mn =

{
ℓ ∈ {0, 1, . . . , Ln}, Ln =

[
1

4

log(n)

log(2)

]
+ 1

}

where [x] denotes the integer part of the real number x. For κ a numerical constant, we define

(13) ℓ̂ = arg min
ℓ∈Mn

{
−‖f̂ℓ‖2 + pen(ℓ)

}
, with pen(ℓ) = κ

ℓ24ℓ

n
.

We can prove the following result

Theorem 2.1. Consider the estimator f̂ℓ̂ defined by (10) and (13). Then there exists κ > 0
such that

E(‖f̂ℓ̂ − f‖2) ≤ inf
ℓ∈Mn

(
3‖fℓ − f‖2 + 4pen(ℓ)

)
+
C

n
.

The infimum in the right-hand-side of the inequality above shows that the estimator is indeed
adaptive.

Note that the penalty is, up to a constant, equal to the variance multiplied by ℓ. This implies
a possible negligible loss in the rate of the adaptive estimator w.r.t. the expected optimal rate.

3. Estimation for general fixed T

Let us now assume that the observation is (Nj(CjT ), j = 1, . . . , n). The previous method
applies directly to estimate the density fT de CjT i.e. fT (t) = (1/T )f(t/T ). We can deduce the
results for f(c) = TfT (Tc).
Developping fT on the basis (ϕk, k ≥ 0) yields coefficients θk(fT ), k ≥ 0. Now, developping f on

the basis (ϕ
(T )
k :=

√
Tϕk(T.), k ≥ 0) yields coefficients

θ
(T )
k (f) =

√
Tθk(fT ).

Let us denote by

f
(T )
ℓ =

ℓ∑

k=0

θ
(T )
k (f)ϕ

(T )
k

the orthogonal projection of f on the space S
(T )
ℓ spanned by (ϕ

(T )
k , k ≤ ℓ). The following relation

holds for all ℓ ≥ 0:

f
(T )
ℓ (c) = T fT,ℓ(cT )

where fT,ℓ denotes as above the orthogonal projection of fT on the space Sℓ spanned by (ϕk, k ≤
ℓ). This implies:

‖f − f
(T )
ℓ ‖2 = T‖fT − fT,ℓ‖2

The coefficients

αk(fT ) = α
(T )
k (f) =

∫ +∞

0
f(c)e−cT (cT )

k

k!
dc = P(Nj(CjT ) = k)

are estimated by

(14) α̂k =
1

n

n∑

j=1

1(Nj(CjT )=k), k ≥ 0.
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To estimate f(c) = TfT (Tc), we set for all ℓ,

f̂
(T )
ℓ (c) := T f̂T,ℓ(Tc)

where f̂T,ℓ is the estimator built for fT using (Nj(CjT ), j = 1, . . . , n). Therefore,

‖f̂ (T )
ℓ − f‖2 = T‖f̂T,ℓ − f‖2.

Consequently, applying Proposition 2.3 for fT yields the following result.

Proposition 3.1. The estimator f̂
(T )
ℓ of f satisfies

E(‖f̂ (T )
ℓ − f‖2) ≤ ‖f − f

(T )
ℓ ‖2 + T

16

15

24ℓ

n
.

The construction of the estimator f̂
(T )
ℓ uses the basis (ϕ

(T )
k ). The variance term in the L

2-risk
is multiplied by a factor T . This explains the deterioration of the method when T increases.

With ℓ̂ defined in (13), we set f̂
(T )

ℓ̂
(c) := T f̂T,ℓ̂(Tc). The following result holds for the adaptive

estimator.

Theorem 3.1. There exists κ > 0 such that

E(‖f̂ (T )

ℓ̂
− f‖2) ≤ inf

ℓ∈Mn

(
3‖f (T )

ℓ − f‖2 + 4Tpen(ℓ)
)
+
CT

n
.

4. Estimation for large T

Let us set

Ĉj,T :=
1

T
Nj(CjT ).

Conditionally to Cj = c, we know that Ĉj,T converges almost surely to c as T tends to infinity.

Consequently, Ĉj,T converges almost surely to Cj. We now use the i.i.d. sample (Ĉj,T )1≤j≤n to
build estimators of f .

4.1. Kernel estimator and adaptive bandwidth. Consider K : R → R a C2 function,
integrable, with

∫
R
K(u)du = 1 and

(15)

∫

R

K2(u)du < +∞,

∫

R

(K”)2(u)du < +∞.

Let Kh(.) = (1/h)K(./h) and set for h > 0,

(16) f̂h(x) =
1

nh

n∑

j=1

K

(
x− Ĉj,T

h

)
, x ∈ R.

Obviously f = f1f≥0. To distinguish the L
2-norm on R of the L

2-norm on R
+, we set ‖h‖22 =∫

R
f2(x)dx.
The following Proposition gives the risk of the kernel estimator (16) with fixed bandwidth.

Proposition 4.1. Consider the estimator f̂h given by (16) under (H) and (15). Assume more-
over that E(C2

1 ) < +∞. Then

(17) E(‖f̂h − f‖22) ≤ 2‖f − fh‖22 +
‖K‖22
nh

+
2‖K”‖22
3h5T 2

(
3E(C2

1 ) +
E(C1)

T

)

where fh(x) = f ∗Kh(x) and ∗ denotes the convolution product.
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Under weak regularity assumptions on f , the bias term ‖f − fh‖22 tends to zero when h tends
to zero. On the other hand, the bandwidth h must be such that 1/(nh)+1/(T 2h5) tends to zero.
Since n is the number of i.i.d. observations, we express the rate of the L

2-risk as a function of
n and let T and h be also expressed as functions of n.

Recall that a kernel of order ℓ satisfies
∫
R
xkK(x)dx = 0 for k = 1, . . . , ℓ. For constants β > 0

and Σ > 0, the Nikol’ski class N (β,Σ) is defined by:

N (β,Σ) =

{
f : R 7→ R :

[∫ (
f (ℓ)(x+ t)− f (ℓ)(x)

)2
dx

}1/2

≤ Σ|t|β−ℓ , ∀t ∈ R

}
,

where ℓ = ⌊β⌋.
The following corollary holds:

Corollary 4.1. Assume that f belongs to N (β,Σ) and that the kernel K has order ℓ = ⌊β⌋ with∫
R
|x|β |K(x)|dx < +∞. Under the condition

(18) h ∝ n−1/(2β+1) and T 2 ≥ n(2β+5)/(2β+1),

we have

(19) E(‖f̂h − f‖22) ≤ Cn−2β/(2β+1).

Corollary 4.1 standardly follows from Proposition 4.1. Indeed, if f belongs to N (β,Σ) and
if the kernel K has order ℓ = ⌊β⌋, then ‖f − fh‖22 ≤ C2h2β with C = Σ

∫
R
|u|β |K(u)|du/ℓ!

(see Tsybakov, 2009). For the first two terms in the r.h.s. of (17), the classical rate-optimal

compromise imposes that h ∝ n−1/(2β+1) thus implying h2β + 1/(nh) ∝ n−2β/(2β+1). Fitting

the last term with this rate requires that 1/(T 2h5) ≤ n−2β/(2β+1). If T 2 ≥ n(2β+5)/(2β+1), then

n5/(2β+1)/T 2 ≤ n−2β/(2β+1). This constraint holds for any nonnegative β if T ≥ n5/2.
The conditions in (18) yield the rate (19).

We now define a data driven selection of the bandwidth h. The method developed by Golden-
shluger and Lepski (2011) using iterated kernel estimators is applied. Here we have moreover to

deal with the substitution of the unobserved Cj’s by the Ĉj,T ’s. As usual, bandwidth selection
has to reproduce the bias-variance compromise. This requires to estimate the right-hand side of
(17) for all h. Let

s2 = 3E(C2
1 ) +

E(C1)

T
and ŝ2 =

1

n

n∑

j=1

[3(Ĉj,T )
2 − 2

Ĉj,T

T
].

As

3(Ĉj,T )
2 − 2

Ĉj,T

T
= Ĉj,T

3Nj(CjT )− 2

T
≥ 0,

ŝ2 ≥ 0. Elementary computations using conditioning on Cj show that E(ŝ2) = s2. We denote by

(20) V (h) = V1(h) + V2(h) where V1(h) = κ1‖K‖21
‖K‖22
nh

, V2(h) = κ2‖K‖21
‖K”‖22
h5T 2

ŝ2,

and κ1 and κ2 are two numerical constants. Note that ‖K‖1 ≥ 1. The term V (h) is, up to
multiplicative constants, an unbiased estimator of the variance term in the bound (17). To

estimate the bias term ‖f − fh‖22, we introduce the iterated kernel estimators f̂h,h′(x) = Kh′ ∗
f̂h(x). The idea is to estimate the bias term by suph′ ‖f̂h,h′ − f̂h′‖22, where h′ is in an appropriate
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finite set denoted by Hn,T . However this introduces an additional variance term which must be
subtracted. Hence, to estimate the bias term, we set

(21) A(h) = sup
h′∈Hn,T

(
‖f̂h,h′ − f̂h′‖22 − V (h′)

)
+
.

The adaptive bandwidth is now defined by

(22) ĥ = arg min
h∈Hn,T

(A(h) + V (h)) .

We consider the adaptive estimatorf̂ĥ, for which a risk bound is given in Theorem below.

Theorem 4.1. Assume that
∫
|K(u)|4/3du < +∞ and E(C8

j ) < +∞. Assume moreover that the

bandwidth collection Hn,T is such that: card(Hn,T ) ≤ n, ∀h ∈ Hn,T , 1/(nh) ≤ 1 and 1/(h5T 2) ≤
1, and for any c > 0, there exists a finite constant Σ(c) (independent of n and T ) such that

(23)
∑

h∈Hn,T

h−1/2e−c/h ≤ Σ(c) .

Recall that fh = Kh ∗ f . Then there exist constants κ1, κ2 such that

(24) E

(
‖f̂ĥ − f‖22

)
≤ C inf

h∈Hn,T

(
‖f − fh‖22 +

‖K‖21‖K‖22
nh

+
‖K‖21‖K”‖22s2

h5T 2

)
+ C ′ 1

n
,

where C is a numerical constant and C ′ is a constant depending on ‖f‖2, ‖K‖4/3, ‖K‖2.

The estimator f̂ĥ is indeed adaptive: the infimum in the right-hand-side of Inequality (24)
shows that the bias variance compromise is automatically realized.

For instance, if T ≥ n5/2, we can choose Hn,T = {1/k, k = 1, . . . ,
√
n} or Hn,T = {1/2k, , k =

1, . . . , ⌊log(n)/ log(2)⌋}.
4.2. Projection estimator and model selection. Kernel estimators are classical, but have
the drawback to provide estimators on R, which may show a boundary effect at 0, as the function
to estimate is null on (−∞, 0]. This is why we study the same projection estimators as in Section
2, using the Laguerre basis. The difference lies in the estimation of the coefficients θk.

Let us set:

(25) f̃
(T )
ℓ =

ℓ∑

k=0

θ̃kϕk, θ̃k =
1

n

n∑

j=1

ϕk(Ĉj,T ).

We obtain the following risk bound.

Proposition 4.2. Recall that fℓ is the orthogonal projection of f on Sℓ = span(ϕ0, . . . , ϕℓ).
Then

E(‖f̃ (T )
ℓ − f‖2) ≤ ‖f − fℓ‖2 + 2

ℓ+ 1

n
+

8(ℓ+ 1)5s2
T 2

,

where we recall that the norm ‖.‖ is the L
2-norm on [0,+∞).

Now, we define the penalization procedure by setting

Mn,T =
{
ℓ ∈ {0, 1, . . . ,Mn}, Mn ≤ n, Mn ≤ T 5/2

}

and

(26) ℓ̃ = arg min
ℓ∈Mn,T

{
−‖f̃ (T )

ℓ ‖2 + p̃en(ℓ)
}
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with

p̃en(ℓ) = κ̃1
(ℓ+ 1)

n
+ κ̃2

(ℓ+ 1)5

T 2
ŝ2.

Theorem 4.2. Let f̃
(T )

ℓ̃
the estimator defined by (25) and (26). Then there exist numerical

constants κ̃1, κ̃2 such that

E(‖f̃ (T )

ℓ̃
− f‖2) ≤ C inf

ℓ∈Mn,T

(
‖f − fℓ‖2 + 2

ℓ+ 1

n
+

8(ℓ+ 1)5s2
T 2

)
+
C ′

n

where C is a numerical constant and C ′ a positive constant.

5. Numerical simulations

In this paragraph, we illustrate on simulated data the two adaptive projection methods using
the Laguerre basis: method 1 corresponds to Section 2 when T = 1, method 2 corresponds to
subsection 4.2 for large T .
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Figure 1. Estimation of the Gamma(3,1) density with method 1 (top left n =
10000 and top right n = 100000, for T = 1) and method 2 (bottom left, n =
1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line and 25

estimated (dashed (red) lines). Most of the time ℓ̂ = 2 for both methods.

We consider different distributions for the Cj ’s:

(1) a Gamma Γ(p, θ) for p = 3, θ = 1,
(2) a mixed Gamma density 0.3Γ(3, 0.25) + 0.7Γ(10, 0.6).
(3) an exponential E(θ), with θ = 1/2, fθ(x) = θe−θx1x>0,
(4) a Pareto density f(p,θ)(x) = p(1 + pθx)−1−1/p1x>0, with p = 5 and θ = 1/2,

(5) a Weibull density f(p,θ)(x) = θp−θxθ−1e−(x/p)θ1x>0 for p = 3 and θ = 2.
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Figure 2. Estimation of the mixed Gamma density with method 1 (top left
n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left,
n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line
and 25 estimated (dashed (red) lines). The selected ℓ is 3 except for the bottom
right plot where it is 4.

Note that, as θ = 1, the density (1) has only three nonzero coefficients θ0, θ1, θ2 in its exact
development in the Laguerre basis. We thus expect the reconstruction to be perfect. On the con-
trary, for density (3), we know that the rate of the L2 risk depends on the value of θ, see Section 2.

In Figures 1-5, we illustrate the first method for T = 1 and n = 10000, n = 100000 and the
second for sample sizes n = 1000 and T = 10, and n = 4000, T = 40, for the five densities
defined above. We plot 25 consecutive estimates on the same picture together with the unknown
density to recover, to show variability bands and illustrate the stability of the procedures.

• Comments on method 1. The method is easy to implement. We have selected the constant
κ = 0.001 in the penalty, after preliminary simulations. The adaptive estimator performs reason-
ably well for large values of n (n ≥ 10000) but is very sensitive to the parameter values for distri-
butions Gamma or exponential, as expected. The mixture density and the Pareto and Weibull
densities, which do not admit finite developments in the basis, are correctly estimated. Increas-
ing n improves significantly the estimation. We choose to select ℓ in {0, 1, . . . , 2⌊log(n)⌋ − 1}.
On the examples, the algorithm selects values of ℓ̂ belonging to {0, 1, . . . , 4}.

• Comments on method 2. The method is also easy to implement. We have selected the constants
κ̃1 = 1.5, κ̃2 = 10−5. The very small value of κ̃2 simply kills the effect of the second term in
the penalty in order to allow not too large values of T . This second method gives better results
than the first method, as soon as T ≥ 10 (even T ≥ 5 provides good estimators). The number of
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observations need not be very large. We kept the same set of possible values for ℓ in the selection
algorithm; here again, the selected values ℓ̃ are in {0, 1, . . . , 4}.
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Figure 3. Estimation of the Exponential density with projection method 1 (top
left n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left,
n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line

and 25 estimated (dashed (red) lines). Most of the time ℓ̂ = 2.

6. Concluding remarks

In this paper, we study the nonparametric density estimation of a positive random variable C
from the observation of (Nj(CjT ), j = 1, . . . , n), where (Nj) are i.i.d. Poisson processes with unit
intensity, (Cj) are i.i.d. random variables distributed as C, and (Nj) and (Cj) are independent.
Under the assumption that the unknown density f of the unobserved variables (Cj) is in L

2(R+)
and for a fixed value T , we express the nonparametric problem as an inverse problem, which can
be solved by using a Laguerre basis of L2(R+). Explicit estimators of the coefficients of f on the
basis are proposed and used to define a collection of projection estimators. The space dimension
is then selected by a data driven criterion.

For large T , estimators Ĉj,T of the Cj ’s are used to build adaptive kernel and adaptive projec-
tion estimators in the Laguerre basis. The interest of projection estimators on the Laguerre basis
is that the unknown density is directly estimated on R

+, contrary to standard kernel estimators.
Moreover, the order of the bias term can be simply evaluated for functions in Sobolev Laguerre
regularity spaces.

The numerical simulation results show that the Laguerre basis is indeed appropriate, to obtain
estimators with no boundary effects at 0.

Possible developments of this work are the following.

• We may use specific kernel estimators on R
+, as in Comte and Genon-Catalot (2012), to

compare them with projection Laguerre estimators.
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Figure 4. Estimation of the Pareto density with projection method 1 (top left
n = 10000 and top right n = 100000, for T = 1) and method 2 (bottom left,
n = 1000, T = 10 and bottom right n = 4000, T = 40): true -thick (blue) line

and 25 estimated (dashed (red) lines). Most of the time ℓ̂ = 2 for the top pictures
and 0 for the bottom ones.

• We may enrich the data by considering several observation times, see Fabio et al. (2012).
• We may extend the results to mixed compound Poisson processes by using the approach

of Comte et al. (2013) based on observation of Yj(t) =
∑Nj(Cj t)

i=1 ξi with ξi i.i.d. random
variables independent of (Nj , Cj)j .

• We may investigate the case of mixed Lévy processes.

7. Proofs

7.1. Proof of Proposition 2.1. Using (4), we have

Ω
(ℓ)
k =

1

ℓ!

k∑

j=0

(−1)j
(
k

j

)∫ +∞

0

√
2
(2c)j

j!
cℓe−2cdc =

1

ℓ!

1√
2 2ℓ

k∑

j=0

(−1)j
(
k

j

)
(ℓ+ j)!

j!
.

Finally,

(27) Ω
(ℓ)
k =

1√
22ℓ

k∑

j=0

(−1)j
(
k

j

)
(ℓ+ j)(ℓ+ j − 1) . . . (ℓ+ 1)

j!

where we know that Ω
(ℓ)
k = 0 for k > ℓ. Therefore ℓ → 2ℓΩ

(ℓ)
k is a polynomial of degree k which

is equal to 0 for ℓ = 0, 1, . . . , k − 1. Hence, we have:

2ℓΩ
(ℓ)
k ∝ ℓ(ℓ− 1)(ℓ− 2) . . . (ℓ− k + 1).
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Figure 5. Estimation of the Weibull density with method 1 (top left n = 10000
and top right n = 100000, for T = 1) and method 2 (bottom left, n = 1000, T = 10
and bottom right n = 4000, T = 40): true -thick (blue) line and 25 estimated
(dashed (red) lines). The selected ℓ’s are 2, 3 or 4.

The proportionality coefficient is equal to the coefficient of ℓk is (−1)k/(
√
2 k!). Hence the result.

�

7.2. Proof of proposition 2.2. Denote by Rℓ[X] the space of polynomials with real coefficients
and degree less than or equal to ℓ. The transpose of the matrix

√
2Ωℓ represents the linear

application {
Rℓ[X] → Rℓ[X]
P (X) 7→ P

(
1−X
2

)
.

in the canonical basis (1,X, . . . ,Xℓ).The inverse linear mapping is
{

Rℓ[X] → Rℓ[X]
Q(X) 7→ Q (1− 2X) .

hence the result. �

7.3. Proof of Proposition 2.3. We have

E(‖f̂ℓ − f‖2) = ‖f − fℓ‖2 + E(‖f̂ℓ − fℓ‖2)

= ‖f − fℓ‖2 + E

(
ℓ∑

k=0

(θ̂k − θk)
2

)

= ‖f − fℓ‖2 + E(|Ω−1
ℓ (~̂αℓ − ~αℓ)|2)
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Next, we write the variance term as follows:

(28) E(|Ω−1
ℓ (α̂ℓ − αℓ)|2) = E

(
t(~̂αℓ − ~αℓ)

tΩ−1
ℓ Ω−1

ℓ (~̂αℓ − ~αℓ)
)
.

Now, note that, if M = (mi,j)0≤i,j≤ℓ is a (ℓ+ 1)× (ℓ+ 1) matrix,

E( t(~̂αℓ − ~αℓ)M(~̂αℓ − ~αℓ)) =
∑

0≤i,j≤ℓ

cov(α̂i, α̂j)mi,j

where cov(α̂i, α̂j) = (αiδ
j
i − αiαj)/n and δji is the Kronecker symbol. Thus, for M symmetric

and nonnegative,

E( t(~̂αℓ − ~αℓ)M(~̂αℓ − ~αℓ)) ≤ Tr(MDα)/n

where Dα = diag(α0, . . . , αℓ). Here, we get

(29) E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
1

n
Tr( tΩ−1

ℓ Ω−1
ℓ Dα).

Since 0 ≤ αk ≤ 1 and [ tΩ−1
ℓ Ω−1

ℓ ]k,k ≥ 0 for all k, we have

E(‖f̂ℓ − f‖2) ≤ ‖f − fℓ‖2 +
1

n
Tr( tΩ−1

ℓ Ω−1
ℓ ).

Note that Tr( tΩ−1
ℓ Ω−1

ℓ ) is known as the squared Frobenius norm of the matrix Ω−1
ℓ . It follows

from Proposition 2.2

(30) Tr( tΩ−1
ℓ Ω−1

ℓ ) = 2

ℓ∑

k=0

k∑

j=0

((
k

j

))2

22j

First write that

Tr( tΩ−1
ℓ Ω−1

ℓ ) ≤ 2
ℓ∑

k=0

22k
k∑

j=0

((
k

j

))2

Now, notice that
k∑

j=0

((
k

j

))2

=

(
2k

k

)
≤ 22k−1.

We get

(31) Tr( tΩ−1
ℓ Ω−1

ℓ ) ≤
ℓ∑

k=0

24k =
24(ℓ+1) − 1

24 − 1
≤ 16

15
24ℓ.

As a consequence, we obtain the risk decomposition announced in Proposition 2.3.�

7.4. Proof of Proposition 2.1. For simplicity, we set Ln = L. We define Sℓ = {t =
t(t0, t1, . . . , tℓ, 0, . . . , 0) ∈ R

L+1}, which can also be associated with the function t =
∑ℓ

k=0 tkϕk

in Sℓ and |t| = ‖t‖.
Now define, for t in any of the Sℓ’s with ℓ ≤ L,

γn(t) = |t|2 − 2〈t,Ω−1
L
~̂αL〉.

For t ∈ Sℓ, note that γn(t) = |t(ℓ)|2 − 2〈t(ℓ),Ω−1
ℓ
~̂αℓ〉, where t(ℓ) = t(t0, t1, . . . , tℓ). Moreover, the

vector f̂ℓ =
t(θ̂0, . . . , θ̂ℓ, 0, . . . , 0) is such that f̂ℓ = argmint∈Sℓ

γn(t) and satisfies

γn(f̂ℓ) = −‖f̂ℓ‖2 = −|̂fℓ|2 = −|Ω−1
ℓ
~̂αℓ|2.
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For s ∈ Sℓ′ and t ∈ Sℓ, the following decomposition holds:

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2〈t − s,Ω−1
L (~̂αL − ~αL)〉

where ‖t − f‖2 =
∑L

k=0(tk − θk)
2 +

∑∞
k=L+1 θ

2
k, for all k, θk = 〈f, ϕk〉 and tℓ+1, . . . , tL are null

when t ∈ Sℓ.
The integer ℓ̂ is given by

ℓ̂ = arg min
ℓ∈Mn

(γn(f̂ℓ) + pen(ℓ)), where f̂ℓ =
t(θ̂0, . . . , θ̂ℓ, 0, . . . , 0) ∈ R

L+1.

By definition of ℓ̂,

γn(f̂ℓ̂) + pen(ℓ̂) ≤ γn(fℓ) + pen(ℓ)

which implies

‖f̂ℓ̂ − f‖2 ≤ ‖fℓ − f‖2 + pen(ℓ) + 2〈f̂ℓ̂ − fℓ,Ω
−1
L (~̂αL − ~αL)〉 − pen(ℓ̂).

Now we have

2〈f̂ℓ̂ − fℓ,Ω
−1
L (~̂αL − ~αL)〉 ≤

1

4
|̂fℓ̂ − fℓ|2 + 4 sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2

and |̂fℓ̂ − fℓ|2 ≤ 2‖f̂ℓ̂ − f‖2 + 2‖fℓ − f‖2. Thus we get

E(‖f̂ℓ̂ − f‖2) ≤ 3‖fℓ − f‖2 + 2pen(ℓ) + 8E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+E(8p(ℓ, ℓ̂)− 2pen(ℓ̂)).(32)

The following Proposition gives the appropriate choice for p(ℓ, ℓ′).

Proposition 7.1. Let p(ℓ, ℓ′) = 2ℓ∗24ℓ∗/n with ℓ∗ = ℓ ∨ ℓ′. Then, we have

E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+

≤ C ′

n

The result of Proposition 7.1 inserted in Inequality (32), shows that for κ ≥ 8, we obtain

4p(ℓ, ℓ̂) ≤ pen(ℓ̂) + pen(ℓ) and

E(‖f̂ℓ̂ − f‖2) ≤ 3‖fℓ − f‖2 + 4pen(ℓ) +
8C ′

n

which is the result of Proposition 2.1. �

Proof of Proposition 7.1. We apply the Talagrand Inequality recalled in Lemma 8.4 of Section
8.1. First note that

E

(
sup

t∈S
ℓ̂∨ℓ

,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ̂)

)

+

≤
∑

ℓ′∈Mn

E

(
sup

t∈Sℓ∨ℓ′ ,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − p(ℓ, ℓ′)

)

+

.

Let us define ‖M‖2 = Tr( tMM) and ρ2(M) the largest eigenvalue of tMM . We consider the
centered empirical process given by

νn(t) =
1

n

n∑

i=1

〈t,Ω−1
L (~βi,L − ~αL)〉 =

1

n

n∑

i=1

(ψt(~βi,L)− Eψt(~βi,L))
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where t~βi,L = (1Ni(Ci∆)=0, . . . , 1Ni(Ci∆)=L) are L + 1-dimensional i.i.d. vectors and ψt(~x) =

〈t,Ω−1
L ~x〉. If t is in Sℓ, νn(t) = 〈t,Ω−1

ℓ (~̂αℓ − ~αℓ)〉.
Recall that ℓ∗ = ℓ ∨ ℓ′ and define the unit ball for the maximization by Bℓ∗ = {t ∈ Sℓ∗ , |t| = 1}.

To apply Lemma 8.4, we specify ǫ, H2, M and v2.
Clearly

E

(
sup
t∈Bℓ∗

ν2n(t)

)
≤ E(|Ω−1

l∗ (~̂αℓ∗ − ~αℓ∗)|2) ≤
16

15

24ℓ
∗

n
:= H2.

This bound was obtained in the computation of (29) (see (28), (30), (31)).

Next since ~βi,L has only one nonzero coordinate, equal to 1, we have to bound ψt(~x) =

〈t,Ω−1
L ~x〉 for ~x = ej vector of the canonical basis of RL+1, with j ≤ ℓ∗ and t ∈ Bℓ∗ . For such

vectors ~x,

|ψt(~x)| ≤ ρ(Ω−1
ℓ∗ ) ≤ ‖Ω−1

ℓ∗ ‖ ≤
√

16/15 22ℓ
∗
:=M.

Lastly

sup
t∈Bℓ∗

Var(ψt(~βi,L)) ≤ ρ2(Ω−1
ℓ∗ )E(‖~βi,L‖2) ≤ ρ2(Ω−1

ℓ∗ ) ≤ ‖Ω−1
ℓ∗ ‖2 ≤ 15

16
24ℓ

∗
:= v2

as E(‖~βi,L‖2) = E(
∑L

k=0 1
2
Ni(Ci)=k) = P(Ni(Ci) ∈ {0, 1, . . . , L}) ≤ 1.

We have nH/M =
√
n and nH2/v2 = 1. We take ǫ2 = δℓ∗ and for δ to be chosen afterwards,

we get

E

(
sup

t∈Sℓ∨ℓ′ ,|t|=1
〈t,Ω−1

L (~̂αL − ~αL)〉2 − 2(1 + 2δℓ∗)H2

)

+

≤ C1

n

(
24ℓ

∗
e−C2δℓ∗ + e−C3

√
δℓ∗n

)

where we used that M2/n ≤ 2 by definition of the set Mn and where C1, C2, C3 are numerical
constants. Then choosing δ ≥ log(2)/C2 + 1 and ℓ∗ ≥ 1 gives the result. �

7.5. Proof of Proposition 4.1. Classically,

E(‖f − f̂h‖22) = ‖f − E(f̂h)‖22 + E(‖f̂h − E(f̂h)‖22)
≤ 2‖f − fh‖22 + 2‖fh − E(f̂h)‖22 + E(‖f̂h − E(f̂h)‖22).

The last term is the usual variance term and is bounded by

(33) E(‖f̂h − E(f̂h)‖22) =
1

n

∫

R

Var(Kh(x− Ĉ1,T ))dx ≤ 1

n
E

∫

R

(Kh(x− Ĉ1,T ))
2dx ≤

∫
R
K2

nh
.

The first term is a usual bias term. The specific term is the middle one. We note that fh(x) =
E(Kh(x− C1)) and we apply the Taylor Formula with integral remainder:

Kh(x− Ĉ1,T )−Kh(x−C1) =
(C1 − Ĉ1,T )

h2
K ′
(
x− C1

h

)

+
(C1 − Ĉ1,T )

2

h3

∫ 1

0
(1− u)K”

(
1

h
(x− C1 + u(C1 − Ĉ1,T ))

)
du.
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Noting that E(Ĉ1,T |C1) = C1, we get E((C1 − Ĉ1,T )K
′(x−C1

h )) = 0. Using the Cauchy Schwarz
inequality twice yields

‖fh − E(f̂h)‖22 =

∫ (
E(Kh(x− Ĉ1,T )−Kh(x− C1))

)2
dx

=

∫ {
E

[
(C1 − Ĉ1,T )

2

h3

∫ 1

0
(1− u)K”

(
1

h
(x− C1 + u(C1 − Ĉ1,T ))

)
du

]}2

dx

≤
∫

E

[
(C1 − Ĉ1,T )

4

h6

∫ 1

0
(1− u)2(K”)2

(
1

h
(x− C1 + u(C1 − Ĉ1,T ))

)
du

]
dx.

≤ 1

3h5
E

[
(C1 − Ĉ1,T )

4
] ∫

(K”)2(y)dy.

For N a Poisson variable with parameter λ, E((N − λ)4 = λ(1 + 3λ). This implies

(34) E

[
(C1 − Ĉ1,T )

4
]
=

1

T 4
E (C1T (1 + 3C1T )) =

1

T 2

(
3E(C2

1 ) +
E(C1)

T

)
.

Consequently,

(35) ‖fh − E(f̂h)‖22 ≤
1

3h5T 2

(
3E(C2

1 ) +
E(C1)

T

)∫
(K”)2(y)dy.

Then (33) and (35) imply the announced result. �

7.6. Proof of Theorem 4.1. For all h ∈ Hn,T ,

‖f̂ĥ − f‖22
≤ 3‖f̂ĥ − f̂h,ĥ‖22 + 3‖f̂h,ĥ − f̂h‖22 + 3‖f̂h − f‖22
≤ 3

(
A(h) + V (ĥ)

)
+ 3

(
A(ĥ) + V (h)

)
+ 3‖f̂h − f‖22

≤ 6A(h) + 6V (h) + 3‖f̂h − f‖22 .
Indeed, the second inequality holds by the definition of A(h), i.e. for all h, h′ ∈ Hn,T we

have A(h) + V (h′) ≥ ‖f̂h,h′ − f̂h′‖22. The last inequality holds by the definition of ĥ, that

is A(ĥ) + V (ĥ) ≤ A(h) + V (h) for all h ∈ Hn,T . The bound for E

[
‖f̂h − f‖22

]
is given by

Proposition 4.1.
Hence, it is sufficient to study the term E[A(h)].
We state that

(36) A(h) = sup
h′∈Hn,T

[
‖f̂h,h′ − f̂h′‖22 − V (h′)

]
+
≤ 5(D1 +D2 +D3 +D4 +D5) ,

where D1 = sup
h′∈Hn,T

‖fh,h′ − fh′‖22,

D2 = sup
h′∈Hn,T

(
‖f̂h′ − Ef̂h′‖22 −

V1(h
′)

10

)

+

, D3 = sup
h′∈Hn,T

(
‖f̂h,h′ − Ef̂h,h′‖22 −

V1(h
′)

10

)

+

,

D4 = sup
h′∈Hn,T

(
‖E(f̂h′)− fh′‖22 −

V2(h
′)

10

)

+

, D5 = sup
h′∈Hn,T

(
‖E(f̂h,h′)− fh,h′‖22 −

V2(h
′)

10

)

+

.
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Applying Young’s Inequality ‖f ∗ g‖p ≤ ‖f‖1‖g‖p for p = 2, we get

‖fh,h′ − fh′‖22 = ‖Kh′ ∗ (fh − f)‖22 ≤ ‖Kh′‖21‖fh − f‖22 = ‖K‖21‖fh − f‖22,
and D1 ≤ ‖K‖21‖fh − f‖22.
Next, to study D2, we write

‖f̂h′ − Ef̂h′‖22 = sup
t∈L2,‖t‖2=1

[νn,h′(t)]2,

where

νn,h(t) = 〈t, f̂h′ − Ef̂h′〉 = 1

n

n∑

j=1

[
t ∗K−

h (Ĉj,T )− E(t ∗K−
h (Ĉj,T ))

]

and K−
h (x) = Kh(−x).

We have

E(D2) ≤
∑

h′∈Hn,T

E

(
sup

t∈B(1)
[νn,h′(t)]2 − V1(h

′)
10

)

+

where B(1), is the set of functions t of L2 with ‖t‖2 = 1. We apply the Talagrand Inequality 8.4.
To that aim, we need to evaluate the quantities M , H and v2. First,

sup
t∈B(1)

sup
x

|〈t,Kh′(· − x)〉| ≤ sup
t∈B(1)

‖t‖2‖Kh′‖2 = ‖K‖2/
√
h′ :=M.

Next,

E

(
sup

t∈B(1)
[νn,h′(t)]2

)
= E(‖f̂h′ − E(f̂h′)‖2) ≤ ‖K‖22

nh′
:= H2.

The most difficult is to obtain v2. We split the term

sup
t∈B(1)

E(t∗K−
h′(Ĉ1,T ))

2 ≤ 2 sup
t∈B(1)

E(t∗K−
h′(C1))

2+2 sup
t∈B(1)

E[t∗(K−
h′(Ĉ1,T )−Kh′(C1))]

2 := T 2
1 +T

2
2 .

First

E(t ∗K−
h′(C1))

2 =

∫
[t ∗K−

h′(c)]
2f(c)dc ≤ ‖f‖2‖t ∗K−

h′‖24
By the Young Inequality (see Section 8.1) for p = 2 and r = 4 thus q = 4/3, we obtain

‖t ∗K−
h′‖24 ≤ ‖t‖22‖K−

h′‖24/3. Consequently T 2
1 ≤ ‖f‖2‖K‖24/3/

√
h′ := v21. For the other term, we

write with the mean value Theorem that

Kh′(x− Ĉ1,T )−Kh′(x− C1) = (C1 − Ĉ1,T )

∫ 1

0
(Kh′)′(x− C1 + u(C1 − Ĉ1,T ))du

so that
[
t ∗K−

h′(Ĉ1,T )− t ∗K−
h′(C1)

]2
= (C1 − Ĉ1,T )

2

(∫
t(x)

∫ 1

0
(Kh′)′(x− C1 + u(C1 − Ĉ1,T ))dudx

)2

≤ (C1 − Ĉ1,T )
2‖t‖22

∫ ∫ 1

0
[(Kh′)′(x− C1 + u(C1 − Ĉ1,T ))]

2dudx

≤ (C1 − Ĉ1,T )
2

∫
(K ′

h′(y))2dy.

Thus, using E[(Ĉ1,T − C1)
2] = E(C1)/T and T ≤ (h′)5/2 by definition of Hn,T , we obtain

E

([
t ∗K−

h′(Ĉ1,T )− t ∗K−
h′(C1)

]2)
≤ ‖K ′‖22E(C1)

T (h′)3
≤ ‖K ′‖22E(C1)√

h′
.
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We obtain T 2
2 ≤ ‖K ′‖22E(C1)/

√
h′ := v22 . Thus v2 = v21 + v22. The Talagrand Inequality yields,

with v2 = A0/
√
h′ and A0 = ‖f‖2‖K‖24/3 + ‖K ′‖22E(C1),

E

(
sup

t∈B(1)
[νn,h′(t)]2 − V1(h

′)
10

)

+

≤ A1

n

(
1√
h′
e−A2/

√
h′
+

1

nh′
e−A3

√
n

)
,

for constants Ai, i = 1, 2, 3 depending on K and f . Using that 1/(nh) ≤ 1 for h ∈ Hn,T , we get,
for κ1/10 ≥ 4 (we take ǫ2 = 1/2),

E(D2) ≤
A4

n

∑

h∈Hn,T

1√
h
e−C′/

√
h ≤ C

n

under
∑

h∈Hn,T
h−1/2e−C′/

√
h ≤ Σ(C) < +∞, ∀C > 0.

Next, D3 is analogous to D2 except that Kh′ is replaced by Kh∗Kh′ , so that, by using Young’s
Inequality, all the bounds are simply multiplied by ‖K‖1 for M , ‖K‖21 for H2 and v2. For v2,
we can also remark that (Kh ∗Kh′)′ = Kh ∗ (Kh′)′.

Now, we turn to D4. We have, by definition of Hn,T ,

D4 = sup
h′∈Hn,T

(
‖E(f̂h′)− fh′‖22 −

V2(h
′)

10

)

+

≤ sup
h′∈H

(
‖E(f̂h′)− fh′‖22 −

κ2
10

1

2
‖K‖21

‖K”‖22
h5T 2

s2

)

+

+
κ2
10

‖K‖21)‖K”‖22(
1

2
s2 − ŝ2)+

The bound proved in (35) implies that, for κ2/20 ≥ 1/3 i.e. κ2 ≥ 20/3, then
(
‖E(f̂h′)− fh′‖22 −

κ2
10

1

2
‖K‖21

‖K”‖22
h5T 2

s2

)

+

= 0.

Let

Ω =
{
|ŝ2 − s2| ≤

s2
2

}
.

We get

E(D4) ≤
κ2
10

‖K‖21‖K”‖22E((
1

2
s2 − ŝ2)+1Ωc)

since (12s2 − ŝ2)+1Ω = 0. Therefore,

E(D4) ≤
κ2
10

‖K‖21‖K”‖22E1/2[(
1

2
s2 − ŝ2)

2
+]P

1/2(Ωc).

By the Markov inequality, we have P(Ωc) ≤ 24

s42
E(|ŝ2 − s2|4) and we use the Rosenthal Inequality

to get

E(|ŝ2 − s2|4) ≤ Cp(n
−3m4

4 + n−2m4
2)

where m4 is the fourth centered moment of Xj = 3Ĉ2
j,T − 2Ĉj,T/T and m2

2 the variance of Xj .
We write

Xj−E(Xj) = 3(Ĉj,T −Cj)
2+3(C2

j −E(C2
j ))+6(Cj −

2

T
)(Ĉj,T −Cj)−

2

T
(Cj−E(Cj))+

3

T
E(Cj).

After some elementary computations using the centered moments of a Poisson distribution, we
obtain that, if E(C8

j ) < +∞, then there exist constants c1, c2 such that m4
4 ≤ c1 and m2

2 ≤ c2.
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Thus we get that E(D4) ≤ C/n. Lastly, D5 is similar to D4 with additional factor ‖K‖21 which
explains the ‖K‖1 added. �

7.7. Proof of Proposition 4.2.

Lemma 7.1. ∀x ≥ 0, |ϕk(x)| ≤
√
2, |ϕ′

k(x)| ≤
√
2(2k + 1) ≤ 2

√
2(k + 1) and |ϕ′′

k(x)| ≤
2
√
2(k + 1)2.

As a consequence,
∑ℓ

k=0 ϕ
2
k(x) ≤ 2(ℓ+1),

∑ℓ
k=0[ϕ

′
k(x)]

2 ≤ 8(ℓ+1)3,
∑ℓ

k=0[ϕ
′′
k(x)]

2 ≤ 8(ℓ+1)5.

Proof of Lemma 7.1. The proof uses the Laguerre polynomials Lα
k , see the Appendix, Section

8, and relies on the relations [Lα
k (x)]

′ = −Lα+1
k−1(x) and the bound (47). Recall that ϕk(x) =√

2Lk(2x)e
−x =

√
2L0

k(2x)e
−x. Bound (47) implies straightforwardly that |ϕk(x)| ≤

√
2, ∀x ≥ 0.

The second bound is obtained by writing that ϕ′
k(x) =

√
2(2L′

k(2x)− Lk(2x))e
−xand |L′

k(x)| =
|−L1

k−1(x)| ≤ kex/2 and the third one by computing ϕ′′
k(x) =

√
2(4L′′

k(2x)−4L′
k(x)+Lk(2x))e

x/2

and |L′′
k(x)| = | − [L1

k−1(x)]
′| = |L2

k−2(x)| ≤ k(k − 1)ex/2/2. �

First, by Pythagoras, ‖f̃ (T )
ℓ − f‖2 = ‖f̃ (T )

ℓ − E(f̃
(T )
ℓ ) + E(f̃

(T )
ℓ )− fℓ‖2 + ‖fℓ − f‖2 and next,

(37) E(‖f̃ (T )
ℓ − f‖2) = E(‖f̃ (T )

ℓ − E(f̃
(T )
ℓ )‖2) + ‖E(f̃ (T )

ℓ )− fℓ‖2 + ‖fℓ − f‖2.
We have

E(‖f̃ (T )
ℓ − E(f̃

(T )
ℓ )‖2) = E




ℓ∑

j=0

(θ̃j − E(θ̃j))
2


 =

1

n

ℓ∑

j=0

Var
(
ϕj(Ĉ1,T )

)

which yields with Lemma 7.1,

(38) E(‖f̃ (T )
ℓ − E(f̃

(T )
ℓ )‖2) ≤ 1

n
E(

ℓ∑

j=0

ϕ2
j (Ĉ1,T )) ≤

2(ℓ+ 1)

n
.

On the other hand, for some ξT ∈ (C1, Ĉ1,T ),

‖E(f̃ (T )
ℓ )− fℓ‖2 =

ℓ∑

j=0

[
E(ϕj(Ĉ1,T )− ϕj(C1))

]2
=

ℓ∑

j=0

[E((Ĉ1,T − C1)
2ϕ′′

j (ξT ))]
2

≤ E



(Ĉ1,T − C1)

4
ℓ∑

j=0

[ϕ′′
j (ξT )]

2





≤ 8E[(Ĉ1,T − C1)
4](ℓ+ 1)5 = 8

(ℓ+ 1)5

T 2
s2 (see (34)).(39)

Gathering (37), (38) and (39) yields the result. �

7.8. Proof of Theorem 4.2. Let

τn(t) =
1

n

n∑

j=1

[t(Ĉj,T )− 〈t, f〉] := νn(t) +R(t),

νn(t) =
1

n

n∑

j=1

[t(Ĉj,T )− E(t(Ĉj,T ))], R(t) = E[t(Ĉ1,T )]− 〈t, f〉.
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Let γ̃n(t) = ‖t‖2 − 2n−1
∑n

j=1 t(Ĉj,T ), and remark that f̃
(T )
ℓ = argmint∈Sℓ

γ̃n(t) and γ̃n(f̃
(T )
ℓ ) =

−‖f̃ (T )
ℓ ‖2. Moreover we have

γ̃n(t)− γ̃n(s) = ‖t− f‖2 − ‖s− f‖2 − 2τn(t− s)

and by definition of the penalty, ∀ℓ ∈ Mn,T ,

γ̃n(f̃
(T )

ℓ̃
) + p̃en(ℓ̃) ≤ γ̃n(fℓ) + p̃en(ℓ).

Therefore

(40) ‖f̃ (T )

ℓ̃
− f‖2 ≤ ‖fℓ − f‖2 + p̃en(ℓ) + 2τn(f̃

(T )

ℓ̃
− fℓ)− p̃en(ℓ̃).

Using that t 7→ τn(t) is linear and 2xy ≤ x2/4 + 4y2, we get

2τn(f̃
(T )

ℓ̃
− fℓ) ≤ 2‖f̃ (T )

ℓ̃
− fℓ‖ sup

t∈S
ℓ̃∨ℓ

|τn(t)| ≤
1

4
‖f̃ (T )

ℓ̃
− fℓ‖2 + 4 sup

t∈S
ℓ̃∨ℓ

|τn(t)|2.

Plugging this in (40) and using that ‖f̃ (T )

ℓ̃
− fℓ‖2 ≤ 2‖f̃ (T )

ℓ̃
− f‖2 + 2‖f − fℓ‖2 , we get

‖f̃ (T )

ℓ̃
− f‖2 ≤ 3‖fℓ − f‖2 + 2p̃en(ℓ) + 8 sup

t∈S
ℓ̃∨ℓ

|τn(t)|2 − 2p̃en(ℓ̃)

≤ 3‖fℓ − f‖2 + 2p̃en(ℓ) + 16

(
sup

t∈S
ℓ̃∨ℓ

|νn(t)|2 − p1(ℓ, ℓ̃)

)

+

+16

(
sup

t∈S
ℓ̃∨ℓ

|R(t)|2 − p2(ℓ, ℓ̃)

)

+

+ 16p1(ℓ, ℓ̃) + 16p2(ℓ, ℓ̃)− 2p̃en(ℓ̃)

We define pi(ℓ, ℓ
′) in the following results:

Proposition 7.2. Define p1(ℓ, ℓ
′) = 4(ℓ ∨ ℓ′ + 1)/n, then

(41) E

(
sup

t∈S
ℓ̃∨ℓ

|νn(t)|2 − p1(ℓ, ℓ̃)

)

+

≤ c

n
,

where c is a positive constant.
Define p2(ℓ, ℓ

′) = 8ŝ2(ℓ ∨ ℓ′ + 1)5/T 2, then

(42) E

(
sup

t∈S
ℓ̃∨ℓ

|R(t)|2 − p2(ℓ, ℓ̃)

)

+

≤ c′

n

where c′ is a positive constant.

The proof of Proposition 7.2 follows the same line as the bounds for D2 and D4 in the proof
of Theorem 4.1 and is therefore omitted. Now, the definitions of p1, p2 and p̃en(.) imply that

8p1(ℓ, ℓ
′) + 8p2(ℓ, ℓ

′) ≤ p̃en(ℓ) + p̃en(ℓ′)

for κ̃1 ≥ 32 and κ̃2 ≥ 64, ∀ℓ, ℓ′ ∈ Mn,T . Therefore, we obtain

‖f̃ (T )

ℓ̃
− f‖2 ≤ 3‖fℓ − f‖2 + 4p̃en(ℓ) +

c”

n

which ends the proof of Theorem 4.2. �
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8. Appendix.

Laguerre polynomials and associated regularity spaces.

For ρ : R+ → R
+ a Borel function, let

L
2(R+, ρ) = {g : R+ → R,

∫ +∞

0
g2(x)ρ(x)dx := ‖g‖2ρ < +∞}.

When ρ ≡ 1, we denote this space as usual by L
2(R+) with ‖g‖2 =

∫ +∞
0 g2(x)dx. Obviously,

g ∈ L
2(R+, ρ) is equivalent to g

√
ρ ∈ L

2(R+) and ‖g‖ρ = ‖g√ρ‖. For any orthonormal basis

(φρk) of L2(R+, ρ), (
√
ρφρk) is an orthonormal basis of L

2(R+). We are especially interested in
the weight functions

(43) ρ(x) = xαe−x = wα(x), α ≥ 0

and the associated orthonormal bases of L2(R+, wα), namely the Laguerre polynomials.
Consider the second order differential equation:

(44) σ(x)y′′ + τ(x)y′ + λy = 0 with λ = λk = −kτ ′ − k
k − 1

2
σ′′,

and the weight function ρ given by [σ(x)ρ(x)]′ = τ(x)ρ(x). For σ(x) = x, τ(x) = α+1−x, ρ(x) =
wα(x), the solution of (44) is yk(x) = Lα

k (x) the Laguerre polynomial with index α and order k.
The function Lα

k is a polynomial of degree k, and the sequence (Lα
k ) is orthogonal with respect

to the weight function wα. The orthogonality relations are equivalent to:

(45)

∫ +∞

0
xℓLα

k (x)wα(x)dx = 0 for k > ℓ.

We have

Lα
k (x) =

1

k!
exx−α dk

dxk

(
xk+αe−x

)
.

The following holds:

(46) (Lα
k (x))

′ = −Lα+1
k−1(x),

∫ +∞

0
(Lα

k (x))
2 wα(x)dx =

Γ(k + α+ 1)

k!
.

Moreover, we have the bound (see Abramowitz and Stegun 22.14.13)

(47) ∀α ≥ 0, ∀k ≥ 0, |Lα
k (x)| ≤

Γ(k + α+ 1)

k!Γ(α+ 1)
ex/2.

Setting φαk (x) = Lα
k (x)

(
k!

Γ(k+α+1

)1/2
, the sequence (φαk ), k ≥ 0) constitutes an orthonormal

basis of the space L2((0,+∞), wα). In particular,

φ0k(x) = L0
k(x) = Lk(x), k ≥ 0

constitute an orthonormal basis of L2((0,+∞), w), with w = w0. Noting that
(
xα+1e−x

)′
= xαe−x(α+ 1− x),

we obtain, using (44) and (46),

(48)
d

dx

(
xα+1e−xLα+1

k−1(x)
)
= xαe−xkLα

k (x).

We can now prove the following result.

Proposition 8.1. For s integer, w(x) = e−x and g : (0,+∞) → R, the following two statements
are equivalent:
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(1) g admits derivatives up to order s−1, g(s−1) is absolutely continuous and for 0 ≤ m ≤ s,

xm/2g(m) belongs to L2((0,+∞), w) (g(s) is the Radon-Nikodym derivative of g(s−1)).
(2) g belongs to L2((0,+∞), w) and

(49)
∑

k≥0

ksτ2k (g) < +∞,

where τk(f) =
∫ +∞
0 f(x)Lk(x)w(x)dx is the k-th component of g on the basis (Lk′ , k

′ ≥ 0)

of L2((0,+∞), w).

Proof. Recall that, for a function g : (0,+∞) → R,

xm/2g ∈ L2((0,+∞), w) ⇐⇒ g ∈ L2((0,+∞), wm)

and ‖xm/2g‖2w =
∫ +∞
0 xmg2(x)w(x)dx = ‖g‖2wm

.

We start by proving that (1) ⇒ (2). For h ∈ L
2((0,+∞), wα), let

ταk (h) =

∫ +∞

0
h(x)φαk (x)dx

denote the k-th component of h on the basis (φαk′ , k
′ ≥ 0), and for α = 0, τ0k (h) = τk(h). The

proof relies on the following Lemma:

Lemma 8.1. Let α ≥ 0. If g : (0,+∞) → R is absolutely continuous with xα/2g ∈ L2((0,+∞), w)

and x(α+1)/2g′ ∈ L2((0,+∞), w), then for all k ≥ 1,
√
kταk (g) = −τα+1

k−1 (g
′).

Proof. By the assumption, g is continuous on (0,+∞). For k ≥ 1, using (48) yields

k

∫ +∞

0
g(x)Lα

k (x)x
αe−xdx =

∫ +∞

0
g(x)

d

dx

(
xα+1e−xLα+1

k−1(x)
)
dx

=
[
g(x)xα+1e−xLα+1

k−1(x)
]+∞
0

−
∫ +∞

0
g′(x)xα+1e−xLα+1

k−1 (x)dx

where the integrals are well-defined by assumption. We multiply both sides by ((k − 1)!/Γ(k +

α + 1))1/2. On the left-hand side, appears
√
kφαk , on the right-hand side, φα+1

k−1 . Hence, to get

the result, it is enough to prove that [. . .]+∞
0 = 0. Using that xa ≤ xa+1 for x ≥ 1, we get∫ +∞

1 e−xg2(x)xα−1dx < +∞, and

(

∫ +∞

1
|g(x)g′(x)|xαe−xdx)2 ≤

∫ +∞

1
g2(x)xαe−xdx

∫ +∞

1
(g′(x))2xαe−xdx < +∞.

Thus,
∫ +∞

1
g2(x)xαe−xdx = −[g2(x)xαe−x]+∞

1 +

∫ +∞

1
e−x(2g(x)g′(x)xα + αg2(x)xα−1)dx.

The integrals in the left-hand side and right-hand side above are finite. Therefore, the limit of
g2(x)xαe−x as x tends to infinity exists. As

∫ +∞
1 g2(x)xαe−xdx < +∞, this limit is necessarily

equal to 0. This implies limx→+∞ g(x)xα/2e−x/2 = 0. Therefore,

lim
x→+∞

g(x)xα+1e−xLα+1
k−1 (x) = 0.
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The assumption on g implies
∫ +∞
0 |g(x)|xαe−xdx < +∞ and

∫ +∞
0 |g′(x)|xα+1e−xdx < +∞.

Thus,
∫ 1
0 |g(x)|xαdx < +∞ and

∫ 1
0 |g′(x)|xα+1dx < +∞. We have:

∫ 1

0
g(x)xαdx =

1

α+ 1
[g(x)xα+1]10 −

1

α+ 1

∫ 1

0
g′(x)xα+1dx.

Therefore, the limit of g(x)xα+1 as x tends to 0+, exists and is finite. As
∫ 1
0 x

α|g(x)|dx < +∞,
this limit is necessarily equal to 0. This implies

lim
x→0

g(x)xα+1e−xLα+1
k−1 (x) = 0.

�

Now, let g satisfy (1). By the Lemma,
√
kτk(g) = −τ1k−1(g

′),
√
k − 1τ1k−1(g

′) = −τ2k−2(g
′′)

and so on. By elementary induction, we get for m = 0, 1, . . . , s and k ≥ m,

(k(k − 1) . . . , (k −m+ 1))1/2τk(g) = (−1)mτmk−m(g(m)).

Therefore,
∑

k≥0

k(k − 1) . . . (k − s+ 1)τ2k (g) =
∑

k≥0

(
τ sk(g

(s))
)2

= ‖g(s)‖2ws
= ‖x(s/2)g(s)‖w < +∞.

So we have (2). Moreover

‖g − πℓg‖2w ≤ 1

ℓ(ℓ− 1) . . . (ℓ− s+ 1)
‖x(s/2)g(s)‖w.

Let us prove that (2) ⇒ (1). We have an analogous lemma.

Lemma 8.2. Let α ≥ 0. Assume that g : (0,+∞) → R belongs to L2((0,+∞), wα) and that∑
k≥0 k (ταk (g))

2 < +∞. Then, g is absolutely continuous, g′ belongs to L2((0,+∞), wα+1) and

for all k ≥ 1, τα+1
k−1 (g

′) = −
√
kταk (g).

Proof. We have g =
∑

k≥0 τ
α
k (g)φ

α
k with φα0 a constant. Thus,

g(y)− g(x) =
∑

k≥1

ταk (g)

∫ y

x
(φαk (t))

′dt = −
∑

k≥1

√
kταk (g)

∫ y

x
φα+1
k−1 (t)dt.

The function h(t) =
∑

k≥1

√
kταk (g)φ

α+1
k−1 (t) is well-defined and hN (t) =

∑N
k=1

√
kταk (g)φ

α+1
k−1 (t)

converges to h in L
2((0,+∞), wα+1), thus in L1((0,+∞), wα+1) also. Consequently, for 0 < x ≤

y,

inf
u∈[x,y]

(uα+1e−u)

∫ y

x
|hN (t)− h(t)|dt ≤

∫ y

x
|hN (t)− h(t)|tα+1e−tdt →N→+∞ 0.

This implies g(y) − g(x) = −
∫ y
x h(t)dt. Thus, g is absolutely continuous with g′ = h and

−τα+1
k−1 (g

′) =
√
kτkα(g). As

∑
k≥0 k(τ

α
k (g))

2 < +∞, g′ ∈ L
2((0,+∞), wα+1) which is equivalent

to t(α+1)/2g′ ∈ L
2((0,+∞), w). �

Now, let g satisfy (2). Applying the lemma, we get that g is abolutely continuous and that

g′ = −∑k≥1

√
kτk(g)φ

1
k−1(t) belongs to L

2((0,+∞), w1). Then, we have that g′ is absolutely

continuous with g′′ = (−1)2
∑

k≥2

√
k(k − 1)τk(g)φ

2
k−2(t) belonging to L

2((0,+∞), w2).

By induction, for m = 0, . . . , s, g(m) belongs to L
2((0,+∞), wm) with

g(m) = (−1)m
∑

k≥m

(k(k − 1) . . . (k −m+ 1))1/2τk(g)φ
m
k−m.
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Thus, tm/2g(m) belongs to L
2((0,+∞), w) for m = 0, . . . , s. So the proof of the proposition is

complete. �

Let us turn now to bases of L2((0,+∞)) and to the definition of Laguerre-Sobolev spaces. For
more details, we refer to in Bongioanni and Torrea (2009). The Laguerre functions are defined
using the normalized Laguerre polynomials by:

Lα
k (x) = e−x/2xα/2φαk (x).

The sequence (Lα
k , k ≥ 0) constitue an orthonormal basis of L2((0,+∞)). They are connected

with the operator

Lαf = −xf ′′ − f ′ + (
x

4
+
α2

4x
)f

The following relations hold

Lα(Lα
k ) = (k +

α+ 1

2
)Lα

k , k ≥ 0.

Now, let us introduce the operators

δαf =
√
xf ′ +

1

2
(
√
x− α√

x
)f, (δα)∗f = −√

xf ′ +
1

2
(
√
x− α+ 1√

x
)f,

where (δα)∗ denotes the (formal) adjoint of δα in L
2((0,+∞)). The following relations hold for

f twice derivable :

Lαf = (δα)∗δαf +
α+ 1

2
f.

The operator Lα is linked with the operator Lα given by Lαg = xg′′+(α+1−x)g′ corresponding
to the Laguerre polynomials by the relation:

xα/2e−x/2Lα(e
x/2x−α/2f) = −Lαf +

α+ 1

2
f.

We can now interpret the two Lemmas 8.1 and 8.2 in terms of Laguerre functions instead of
Laguerre polynomials.

Lemma 8.3. • If f belongs to L
2((0,+∞)), is absolutely continuous and δαf belongs to

L
2((0,+∞)), then,

(50)
√
kθαk (f) = −θα+1

k−1 (δ
αf)

where θαk (f) =
∫ +∞
0 f(x)Lα

k (x)dx is the k-th component of f on the basis (Lα
k ) of

L
2((0,+∞)).

• If f belongs to L
2((0,+∞)) and

∑
k≥0 k(θ

α
k (f))

2 < +∞, then, f is absolutely continuous,

δαf belongs to L
2((0,+∞)) and the relation (50) holds.

Proof. Note that g ∈ L
2((0,+∞), wα) is equivalent to f = g xα/2e−x/2 ∈ L

2((0,+∞)) and f is
abolutely continuous if and only if g is. A simple computation yields:

δαf = g′e−x/2x(α+1)/2.

We can apply Lemma 8.1 to g. Observing that
√
kταk (g) =

√
kθαk (f), τα+1

k−1 (g
′) = θα+1

k−1 (δ
αf)

yields (50).
The second item is obtained analogously using that g′ ∈ L

2((0,+∞), wα+1) is equivalent to
δαf ∈ L

2((0,+∞)). �
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Let us now introduce the Laguerre-Sobolev space W s for s integer as the set of functions
f ∈ L

2((0,+∞)) admitting derivatives up to order s− 1, with f (s−1) absolutely continuous and
δm ◦ . . . ◦ δ1 ◦ δ0f ∈ L

2((0,+∞)),m = 0, 1, . . . , s − 1. Then,

f ∈W s ⇔
∑

k≥0

ks(θ0k(f))
2 < +∞.

For all 0 ≤ m ≤ s and k ≥ m,

(k(k − 1) . . . (k −m+ 1))1/2θ0k(f) = (−1)mθmk−m(δm−1 ◦ . . . ◦ δ0f)
so that ∑

k≥m

k(k − 1) . . . (k −m+ 1)(θ0k(f))
2 = ‖δm−1 ◦ . . . ◦ δ0f‖2.

These properties can be deduced from Lemma 8.3 by iterating relation (50). The space W s is a

special case of the Laguerre-Sobolev spaces W k,p
α in Bongioanni and Torrea (2009) (see Definition

4 and Theorem 3, p.150).

8.1. Useful inequalities.

• First we recall the Talagrand inequality. The result below follows from the Talagrand con-
centration inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998)
(see the proof of their Corollary 2 page 354).

Lemma 8.4. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables, let νn,Y (f) =
(1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable class of uniformly bounded measurable

functions. Then for ǫ2 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ǫ2)H2
]
+

≤ 4

K1

(
v2

n
e−K1ǫ2

nH2

v2 +
98M2

K1n2C2(ǫ2)
e
− 2K1C(ǫ2)ǫ

7
√

2
nH
M

)
,

with C(ǫ2) =
√
1 + ǫ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E

[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1

n

n∑

k=1

Var(f(Yk)) ≤ v2.

By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.

• Next, we give the Young Inequality (see Hirsch and Lacombe (1999)). Let f be a function
belonging to L

p(R) and g belonging to L
q(R), let p, q, r be real numbers in [1,+∞] and such

that
1

p
+

1

q
=

1

r
+ 1.

Then

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q .
where f ∗g is the convolution product and ‖f‖pp =

∫
|f(x)|pdx. In particular, for p = 1, r = q = 2,

we have ‖f ∗ g‖2 ≤ ‖f‖1 ‖g‖2.
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• The Rosenthal inequality is given in e.g. Hall and Heyde (1980, p.23). Let (Xi)1≤i≤n be n
independent centered random variables, such that E(|Xi|p) < +∞ for an integer p ≥ 1. Then
there exists a constant C(p) such that

(51) E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p)
≤ C(p)




n∑

i=1

E(|Xi|p) +
(

n∑

i=1

E(X2
i )

)p/2

 .
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