How big is the minimum of a branching random walk? - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

How big is the minimum of a branching random walk?

Yueyun Hu
  • Fonction : Auteur
  • PersonId : 832128

Résumé

Let $\M_n$ be the minimal position at generation $n$, of a real-valued branching random walk in the boundary case. As $n \to \infty$, $\M_n- {3 \over 2} \log n$ is tight (see \cite{1, 9, 2}). We establish here a law of iterated logarithm for the upper limits of $\M_n$: upon the system's non-extinction, $ \limsup_{n\to \infty} {1\over \log \log \log n} ( \M_n - {3\over2} \log n) = 1$ almost surely. We also study the problem of moderate deviations of $\M_n$: $\p(\M_n- {3 \over 2} \log n > \lambda)$ for $\lambda\to \infty$ and $\lambda=o(\log n)$. This problem is closely related to the small deviations of a class of Mandelbrot's cascades.
Fichier principal
Vignette du fichier
LILBRW-rev2-IHP.pdf (323.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00826652 , version 1 (28-05-2013)
hal-00826652 , version 2 (17-06-2013)
hal-00826652 , version 3 (30-09-2014)
hal-00826652 , version 4 (09-01-2017)
hal-00826652 , version 5 (02-07-2017)

Identifiants

Citer

Yueyun Hu. How big is the minimum of a branching random walk?. 2014. ⟨hal-00826652v3⟩
353 Consultations
231 Téléchargements

Altmetric

Partager

More