How big is the minimum of a branching random walk? - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

How big is the minimum of a branching random walk?

Yueyun Hu
  • Fonction : Auteur
  • PersonId : 832128

Résumé

Consider a real-valued branching random walk in the boundary case and denote by $\M_n$ its minimum at generation $n$. As $n \to \infty$, $\M_n- {3 \over 2} \log n$ is tight (see [1, 8, 2]). We establish here a law of iterated logarithm for the upper limits of $\M_n- {3\over 2} \log n$ and study the moderate deviation problem which is closely related to the small deviations of Mandelbrot's cascades.
Fichier principal
Vignette du fichier
LILBRW-sub-new.pdf (297.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00826652 , version 1 (28-05-2013)
hal-00826652 , version 2 (17-06-2013)
hal-00826652 , version 3 (30-09-2014)
hal-00826652 , version 4 (09-01-2017)
hal-00826652 , version 5 (02-07-2017)

Identifiants

Citer

Yueyun Hu. How big is the minimum of a branching random walk?. 2013. ⟨hal-00826652v2⟩
349 Consultations
230 Téléchargements

Altmetric

Partager

More