How big is the minimum of a branching random walk? - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

How big is the minimum of a branching random walk?

Yueyun Hu
  • Fonction : Auteur
  • PersonId : 832128

Résumé

Consider a real-valued branching random walk in the boundary case and denote by $\M_n$ its minimum at generation $n$. As $n \to \infty$, $\M_n- {3 \over 2} \log n$ is tight (see [1, 8, 2]). We establish here a law of iterated logarithm for the upper limits of $\M_n- {3\over 2} \log n$ and study the moderate deviation problem which is closely related to the small deviations of Mandelbrot's cascades.
Fichier principal
Vignette du fichier
LILBRW.pdf (305.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00826652 , version 1 (28-05-2013)
hal-00826652 , version 2 (17-06-2013)
hal-00826652 , version 3 (30-09-2014)
hal-00826652 , version 4 (09-01-2017)
hal-00826652 , version 5 (02-07-2017)

Identifiants

Citer

Yueyun Hu. How big is the minimum of a branching random walk?. 2013. ⟨hal-00826652v1⟩
353 Consultations
231 Téléchargements

Altmetric

Partager

More