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How big is the minimum of a branching random walk?

Yueyun Hu∗

Université Paris 13

Summary. Consider a real-valued branching random walk in the boundary
case and denote by Mn its minimum at generation n. As n → ∞, Mn −
3
2 log n is tight (see [1, 9, 2]). We establish here a law of iterated logarithm
for the upper limits of Mn − 3

2 log n and study the moderate deviation
problem which is closely related to the small deviations of Mandelbrot’s
cascades.

Keywords. Branching random walk, minimal position, law of iterated
logarithm, moderate deviation, Mandelbrot’s cascades.

1 Introduction

Let {V (u), u ∈ T} be a discrete-time branching random walk (BRW) on the real line R

driven by a point process Θ: At generation 0, there is a single particle at the origin from
which we generate a point process Θ on R. The particles in Θ together their positions in
R constitute the first generation of the BRW. From the position of each particle at the first
generation, we generate an independent copy of Θ. The collection of all particles together
with their positions gives the second generation of the BRW, and so on. The genealogy of
all particles forms a Galton-Watson tree T (whose root is denoted by ∅). For any particle
u ∈ T, we denote by V (u) its position in R and |u| its generation in T. The whole system
may die out or survive forever.

Plainly Θ =
∑
|u|=1 δ{V (u)}. Let ν = Θ(R). Throughout this paper and unless stated

otherwise, we shall assume that the BRW is in the boundary case, namely we assume that

E[ν] ∈ (1,∞], E

[ ∑

|u|=1

e−V (u)
]
= 1, E

[ ∑

|u|=1

V (u) e−V (u)
]
= 0. (1.1)

See Jaffuel [23] for detailed discussions on how to reduce a general branching random walk
to the boundary case. Denote by Mn := min|u|=n V (u) the minimum of the branching
random walk at generation n (with convention: inf ∅ ≡ ∞). Hammersly [19], Kingman
[24] and Biggins [7] established the law of large numbers for Mn (for any general branching
random walk), whereas the second order limits have attracted many recent attentions, see
[1, 22, 9, 2] and the references therein. In particular, Äıdékon [2] proved the convergence in
law of Mn −

3
2
logn under (1.1) and some mild conditions.
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Concerning the almost sure limits of Mn, there is a phenomena of fluctuation at the
logarithmic scale ([22]): Assuming (1.1) and the following integrability assumption: ∃ δ > 0
such that E[ν1+δ] <∞ and E

[ ∫
R
(eδx + e−(1+δ)x)Θ(dx)

]
<∞, then

lim sup
n→∞

Mn

log n
=

3

2
and lim inf

n→∞

Mn

logn
=

1

2
, P∗-a.s.,

where here and in the sequel,
P∗(·) := P (·|S) ,

and S := {T is not finite} denotes the event that the whole system survives.
It turns out that much more can be said on the lower limits 1

2
logn of Mn: Assuming

(1.1) and the following integrability condition

σ2 := E

[ ∑

|u|=1

(V (u))2 e−V (u)
]
<∞, E

[
ζ((log ζ)+)2 + ζ̃(log ζ̃)+

]
<∞, (1.2)

with ζ :=
∑
|u|=1 e

−V (u), ζ̃ :=
∑
|u|=1(V (u))+ e−V (u) and x+ := max(0, x), Äıdékon and Shi

[4] proved that

lim inf
n→∞

(
Mn −

1

2
log n

)
= −∞, P∗-a.s.

Furthermore, by following Äıdékon and Shi [4]’s methods, we have established ([21]) an
integral test to describe the lower limits of Mn −

1
2
logn. As a consequence, under (1.1) and

(1.2), the following law of iterated logarithm holds:

lim inf
n→∞

1

log log n

(
Mn −

1

2
log n

)
= −1, P∗-a.s. (1.3)

In this paper, we study how big can be Mn − 3
2
log n. The following law of iterated

logarithm (LIL) describes the upper limits of Mn −
3
2
log n:

Theorem 1.1 Assume (1.1), (1.2) and that E
[∑

|u|=1(V (u)
+)3e−V (u)

]
<∞. Then

lim sup
n→∞

1

log log logn
(Mn −

3

2
logn) = 1, P∗-a.s. (1.4)

The integrability of
∑
|u|=1(V (u)

+)3e−V (u) is used only in the proof of Lemma 4.2, see
Remark 4.3.

Usually, to establish such LIL, the first step would be the study of the moderate devia-
tions:

P∗
(
Mn −

3

2
logn > λ

)
, when λ = o(logn) and λ, n→ ∞.

The moderate deviations heavily depend on the offspring distribution of the underlying
Galton-Watson process in the branching random walk. Recall ν = Θ(R). Denote by pj =
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P(ν = j), j ≥ 0, the offspring distribution of the Galton-Watson process. In the literature on
the studies of the small deviations of Galton-Watson processes, there are two cases: either
p0 + p1 > 1 (called the Schröder case) or p0 = p1 = 0 (called the Böttcher case), see e.g.
Fleischmann and Wachtel [16, 17] and the references therein. In a similar way, we distinguish
these two cases for the branching random walk. Let q := P(T is finite) = P(Sc) ∈ [0, 1) be
the extinction probability. Let us call

(Schröder case) if the following hypothesis hold:

E

[
1(ν≥1) q

ν−1
∑

|u|=1

eγ V (u)
]
= 1, for some constant γ > 0, (1.5)

and

E

[ ∑

|u|=1

eaV (u)
]
<∞, for some a > γ or for all a > 0. (1.6)

(Böttcher case) if the following hypothesis hold:

p0 = p1 = 0, (1.7)

sup
|u|=1

V (u) ≤ K, for some constant K > 0. (1.8)

Remark 1.2 1. The condition (1.5) should be understood as [there is a single term in
the sum

∑
|u|=1 when ν = 1]:

E

[
1(ν=1)

∑

|u|=1

eγ V (u)
]
= 1, if q = 0. (1.9)

2. Under (1.1), (1.6) or (1.8) yields that E[ν] < ∞. The technical conditions (1.6) and
(1.8) are made to avoid too large jumps of Θ in the moderate deviations.

3. In the Böttcher case, we define a parameter β > 0 by

β := sup{a > 0 : P
( ∑

|u|=1

e−a V (u) ≥ 1
)
= 1}. (1.10)

Notice that β < 1 if we assume (1.1).

The parameters γ and β appear naturally in the small deviations of Mandelbrot’s cascade:
Under (1.1) and (1.2), the so-called derivative martingale (with convention:

∑
∅ := 0)

Dn :=
∑

|u|=n

V (u)e−V (u), n ≥ 0,
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converges almost surely to some limit D∞ which is P∗-a.s. positive (see e.g. Biggins and
Kyprianou [8]). The nonnegative random variable D∞ satisfies the following equation in law
(Mandelbrot’s cascade):

D∞
law
=

∑

|u|=1

e−V (u)D(u)
∞ , (1.11)

where conditioned on {V (u), |u| = 1}, (D
(u)
∞ )|u|=1 are independent copies of D∞. The mod-

erate deviations of Mn will be naturally related to the small deviations of D∞. Such small
deviation problem was already studied in the literature on Mandelbrot’s cascades, see e.g.
Liu [26, 27] and the references therein.

We shall work under a more general setting so that the forthcoming Theorem 1.3 could
also be applied to the limit of Mandelbrot’s cascades in the non-degenerated case: Instead
of (1.1), we assume that there exists some constant χ ∈ (0, 1] such that

E

[ ∑

|u|=1

e−χV (u)
]
≤ 1, E[ν] ∈ (1,∞). (1.12)

According to Liu [27], Proposition 1.1, the condition (1.12) ensures that there exists a
non-trivial nonnegative solution Z to the following equation:

Z
law
=

∑

|u|=1

e−V (u)Z(u), (1.13)

where conditioned on {V (u), |u| = 1}, (Z(u))|u|=1 are independent copies of Z.
Denote by f(x) ≍ g(x) [resp: f(x) ∼ g(x)] as x → x0 if 0 < lim infx→x0 f(x)/g(x) ≤

lim supx→x0 f(x)/g(x) <∞ [resp: limx→x0 f(x)/g(x) = 1]. The following result may have an
independent interest:

Theorem 1.3 Assume (1.12). Let Z ≥ 0 be a non-trivial solution of (1.13).

(Schröder case) Assume furthermore (1.5) and that (1.6) holds for some a > γ. Then

P

(
0 < Z < ε

)
≍ εγ, as ε→ 0, (1.14)

and E
[
e−tZ1(Z>0)

]
≍ t−γ as t→ ∞.

(Böttcher case) Assume furthermore (1.7), (1.8) and that
∑
|u|=1 e

−χV (u) 6≡ 1. Then

E

[
e−tZ

]
= e−e

(β+o(1))t

, t→ ∞, (1.15)

and P
(
Z < ε

)
= e−ε

−
β

1−β
+o(1)

, as ε→ 0, with β defined in (1.10).
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Obviously Theorem 1.3 holds for Z = D∞ with χ = 1 (E[ν] < ∞ by Remark 1.2). In
the Böttcher case, (1.12) and

∑
|u|=1 e

−χV (u) 6≡ 1 imply that β < χ, hence β < 1; moreover,

essinf
∑
|u|=1 e

−βV (u) = 1.

Let us mention that (1.14) confirms a prediction in Liu [27] who already proved that if
q = 0, then for any a > 0, E

[
Z−a

]
< ∞ if and only if a < γ. Liu [27] also obtained some

bounds for (1.15). When all V (u), |u| = 1, are equal to some random variable, (1.15) is in
agreement with Liu [26], Theorem 6.1. If furthermore, all V (u) are equal to some constant,
then (1.14) and (1.15) give some rough estimates on the limiting law of Galton-Watson
processes, see Fleischmann and Wachtel [16], [17] for the precise estimates. We also mention
[6] for further studies of the conditioned Galton-Watson tree itself. For instance, we could
seek the asymptotic behaviors of the BRW conditioned on {0 < D∞ < ε}, as ε → 0, but
such problem will be beyond the scope of the present paper.

Our moderate deviations on Mn read as follows:

Theorem 1.4 Assume (1.1), (1.2). Let λ, n→ ∞ and λ = o(logn).

(Schröder case) Assume furthermore (1.5) and that (1.6) hold for all a > 0. Then

P∗
(
Mn >

3

2
log n+ λ

)
= e−(γ+o(1))λ. (1.16)

(Böttcher case) Assume furthermore (1.7) and (1.8). Then

P

(
Mn >

3

2
log n+ λ

)
= exp(−e(β+o(1))λ). (1.17)

The same estimates hold if we replace Mn by maxn≤k≤2nMk.

See Äıdékon [2], Proposition 4.1 for the precise estimate on P(Mn < 3
2
logn − λ) as

λ ≤ 2 log logn and λ→ ∞.
Comparing Theorem 1.1 and Theorem 1.4, we remark that the almost sure behaviors of

Mn are not related to the moderate deviations of Mn. This can be explained as follows:
Define for all λ ≥ 0 and u ∈ T,

τλ(u) := inf{1 ≤ i ≤ |u| : V (ui) > λ}, (with convention inf ∅ = ∞), (1.18)

where here and in the sequel, {u0 = ∅, u1, ..., u|u| := u} denotes the shortest path from ∅ to
u such that |ui| = i for all 0 ≤ i ≤ |u|. We introduce the stopping lines :

£λ := {u ∈ T : τλ(u) = |u|}, λ ≥ 0. (1.19)

Roughly saying, the almost sure limits of Mn (lim sup of Mn) are determined by those
of #£λ, whereas the moderate deviations of Mn are by the small deviations of #£λ. By
Nerman [31], P∗-almost surely, #£λ is of order e(1+o(1))λ; however, to make #£λ to be as
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small as possible (and conditioned on {#£λ > 0}), in the Schröder case, £λ will be essentially
a singleton or a set of few points with exponential costs (see Lemma 5.3), which is no more
possible in the Böttcher case. To relate #£λ to D∞, we shall use the martingale D· at the
stopping line £λ:

D£λ
:=

∑

u∈£λ

V (u)e−V (u), (1.20)

which, as shown in Biggins and Kyprianou [8], converges almost surely to D∞ as λ → ∞.
For u ∈ £λ, V (u) ≈ λ, hence D£λ

≈ λ e−λ#£λ. Then the problem of small values of #£λ

will be reduced to that of D£λ
and D∞ as λ→ ∞. The hypothesis (1.6) and (1.8) are made

to control the possible overshoots.
The rest of the paper is organized as follows: In Section 2, we collect some facts on a

one-dimensional random walk and on the branching random walk. In Section 3, we study
the cascade equation (1.13) and prove Theorem 1.3. In Section 4, we prove at first some
uniform tightness of Mn−

3
2
logn (Lemma 4.5) and then Theorem 1.1. Finally, in Section 5,

we prove Theorem 1.4 by discussing separately the Schröder case and the Böttcher case.
Throughout the paper, we use the usual conventions:

∑
∅ := 0, sup∅ := 0,

∏
∅ := 1,

inf∅ := ∞; we also denote by (ci, 1 ≤ i ≤ 15) some positive constants, and by C,C ′ and C
′′

(eventually with a subscript) some unimportant positive constants whose values can vary
from one paragraph to another one.

2 Preliminaries

2.1 Estimates on a centered real-valued random walk

We collect here some estimates on a real-valued random walk {Sk, k ≥ 0}, under P, centered
and with finite variance σ2 > 0. Write Px and Ex when S0 = x. Let Sn := min0≤i≤n Si,
∀n ≥ 0. The renewal function R(x) related to the random walk S is defined as follows:

R(x) :=
∞∑

k=0

P

(
Sk ≥ −x, Sk < Sk−1

)
, x ≥ 0, (2.1)

and R(x) = 0 if x < 0. Moreover (see Feller [15], pp.612),

lim
x→∞

R(x)

x
= c1 > 0. (2.2)

Lemma 2.1 Let S be a centered random walk with finite and positive variance. There exists
some constant c2 > 0 such that for any b ≥ a ≥ 0, x ≥ 0, n ≥ 1,

Px

(
Sn ∈ [a, b], Sn ≥ 0

)
≤ c2 (1 + x)(1 + b− a)(1 + b)n−

3
2 . (2.3)
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For any fixed 0 < r < 1, there exists some c3 ≡ c3,r > 0 such that for all b ≥ a ≥ 0, x, y ≥ 0
and n ≥ 1,

Px

(
Sn ∈ [y + a, y + b], Sn ≥ 0, min

rn≤i<n
Si ≥ y

)
≤ c3 (1 + x)(1 + b− a)(1 + b)n−

3
2 , (2.4)

Px

(
Sn ≥ 0, min

rn≤i<n
Si > y, Sn ≤ y

)
≤ c3 (1 + x)n−

3
2 . (2.5)

For any a > 0, if E
[
S2
1e
aS1

]
<∞, then there exists some Ca > 0 such that for any b ≥ 0,

P

(
Sτb − b > x

)
≤ Ca e

−ax, ∀ x ≥ 0, (2.6)

where τb := inf{j ≥ 0 : Sj > b}.

Proof of Lemma 2.1. See Äıdékon and Shi [4] for (2.3) and (2.4). To see (2.6), noticing that

E
[
S2
1e
aS1

]
< ∞ if and only if E

[
(S+

1 )
2eaS

+
1

]
< ∞. By Doney ([12], pp.250), this condition

ensures that E
[
Sτ0e

aSτ0

]
< ∞. Then in view of Chang ([10], Proposition 4.2), we see that

uniformly on b > 0, E
[
ea(Sτb

−b)
]
≤ Ca for some constant Ca > 0, hence (2.6).

It remains to check (2.5). Let f(x) := P(S1 ≤ −x), x ≥ 0. It follows from the Markov
property at n− 1 that the probability in LHS of (2.5) equals

Ex

[
1(Sn−1≥0,minrn≤i<n Si>y) f(Sn−1 − y)

]

≤
∞∑

j=0

f(j)Px

(
Sn−1 ≥ 0, min

rn≤i≤n−1
Si > y, y + j < Sn−1 ≤ y + j + 1

)

≤ C (1 + x)n−3/2
∞∑

j=0

f(j) (2 + j) (by (2.4))

≤ C ′ (1 + x)n3/2,

yielding (2.5). �

2.2 Change of measures for the branching random walk

In this subsection, we recall some change of measure formulas in the branching random walk,
for the details we refer to [8, 11, 29, 4, 20, 32] and the references therein.

At first let us fix some notations: For |u| = n, we write as before {u0 := ∅, u1, ..., un−1, un =
u} the path from the root ∅ to u such that |ui| = i for any 0 ≤ i ≤ n. Define V (u) :=
max1≤i≤n V (ui) and V (u) := min1≤i≤n V (ui). For any u, v ∈ T, we use the partial order

u < v if u is an ancestor of v and u ≤ v if u < v or u = v. We also denote by
←
u the parent of

u and by ν(u) the number of children of u. Define ℧(u) := {v :
←
v =

←
u, v 6= u} the set (even-

tually empty) of brothers of u for any u 6= ∅. For any u ∈ T, we write Tu := {v ∈ T : u ≤ v}
the subtree of T rooted at u.
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Under (1.1), there exists a centered real-valued random walk {Sn, n ≥ 0} such that for
any n ≥ 1 and any measurable f : Rn → R+ ,

E

[ ∑

|u|=n

e−V (u)f(V (u1), ..., V (un))
]
= E (f(S1, ..., Sn)) , (2.7)

called many-to-one formula. Moreover under (1.2), σ2 = Var(S1) = E

[∑
|u|=1(V (u))2e−V (u)

]
∈

(0,∞). We shall use the notation τ0 := inf{j ≥ 1 : Sj > 0}.
Denote by (Fn, n ≥ 0) the natural filtration of the branching random walk. Under (1.1),

the process Wn :=
∑
|u|=n e

−V (u), n ≥ 1, is a (P, (Fn))-martingale. It is well-known (see

[8, 11, 29, 4, 20, 32]) that on some enlarged probability space (more precisely on the space
of marked trees enlarged by an infinite ray (wn, n ≥ 0), called spine), we may construct a
probability Q such that the following statements (i), (ii) and (iii) hold:

(i) For all n ≥ 1,

dQ

dP

∣∣
Fn

= Wn, and Q
(
wn = u

∣∣Fn

)
=

1

Wn
e−V (u), ∀|u| = n.

(ii) Under Q, the process {V (wn), n ≥ 0} along the spine (wn)n≥0, is distributed as the
random walk (Sn, n ≥ 0) under P. Moreover, (

∑
u∈℧(wk)

δ{∆V (u)},∆V (wk))k≥1 are i.i.d. under

Q, where ∆V (u) := V (
←
u)− V (u) for any u 6= ∅.

(iii) Let Gn := σ{u, V (u) :
←
u ∈ {wk, 0 ≤ k < n}}, n ≥ 0. Then G∞ is the σ-algebra

generated by the spine. Under Q and conditioned on G∞, for all u 6∈ {wk, k ≥ 0} but
←
u ∈ {wk, k ≥ 0} the induced branching random walk (V (uv), |v| ≥ 0) are independent and
are distributed as PV (u), where {uv, |v| ≥ 0) is the subtree of Tu.

We mention that the above change of measure still holds for the stopping line £λ (see
e.g. [3], Proposition 3, for the detailed statement): i.e. replace |u| = n by u ∈ £λ, Fn by
F£λ

the σ-filed generated by the BRW up to £λ, and Wn by

W£λ
:=

∑

u∈£λ

e−V (u). (2.8)

In the sequel, we write Q[X ] for the expectation of some random variable X under the
probability Q.

3 Proof of Theorem 1.3

The following result is due to Liu [27]:

Lemma 3.1 (Liu [27]) Assuming (1.5), (1.12) and that (1.6) holds for some a > γ. Let
Z ≥ 0 be a non-trivial solution of (1.13). For any 0 < ε < γ, there exists some positive
constant c4 = c4(ε) such that

E

[
e−tZ1(Z>0)

]
≤ c4 t

−γ+ε, ∀ t ≥ 1. (3.1)

8



Proof of Lemma 3.1. At first we remark that

P

(
Z = 0

)
= q. (3.2)

In fact, we easily deduce from (1.13) that the probability P(Z = 0) is a solution of
x = E[xν ] which only has two solutions q and 1 for x ∈ [0, 1]. This gives (3.2).

In the case q = 0, namely Z > 0 a.s., γ is defined through (1.9), it is easy to check
that P(

∑
|u|=1 e

−V (u) 6= 1) > 0, then (3.1) follows exactly from Liu [27], Theorem 2.4, after

a standard Tauberian argument (see Lemma 4.4 in [26]). We only need to check that the
case q > 0 can be reduced to the case q = 0. For notational simplification, let us denote by
{Ai, 1 ≤ i ≤ ν} the family {e−V (u), |u| = 1} [the order of Ai is arbitrary]. Then Z satisfies
the equation in law

Z
law
=

ν∑

i=1

AiZi, (3.3)

with (Zi, i ≥ 1) independent copies of Z, and independent of (Ai)1≤i≤ν . Let {ξ, ξi, i ≥ 1} be
a family of i.i.d. Bernoulli random variables, independent of everything else, with common
law P(ξ = 0) = q = 1− P(ξ = 1). Let Ẑ be a random variable distributed as Z conditioned

on {Z > 0}. Since P(Z > 0) = 1− q, we have that Z
law
= ξ Ẑ. Then we deduce from (3.3) that

Ẑ
law
=

∑ν
i=1AiξiZi conditioned on {

∑ν
i=1 ξi > 0} ,

where (Ẑi, i ≥ 1) i.i.d. copies of Ẑ, and (ν, Ai, 1 ≤ i ≤ ν) and (ξi, i ≥ 1) are three independent

families of random variables. Let {Âi, 1 ≤ i ≤ ν̂) be a family of random variables such that
for any nonnegative measurable function f ,

E

[
e−

∑ν̂
i=1 f(Âi)

]
= E

[
e−

∑ν
i=1 ξi f(Ai)

∣∣∣
ν∑

i=1

ξi > 0

]
. (3.4)

Elementary calculations show that P(
∑ν

i=1 ξi > 0) = 1 − E[qν ] = 1 − q and for any
nonnegative measurable function f ,

E

[ ν̂∑

i=1

f(Âi)
]
= E

[
ν∑

i=1

ξi f(Ai)
∣∣

ν∑

i=1

ξi > 0

]
=

1

1− q
E

[ ν∑

i=1

ξi f(Ai)
]
= E

[ ν∑

i=1

f(Ai)
]
.(3.5)

In particular, E
[∑ν̂

i=1 Âi

]
= 1 and E

[∑ν̂
i=1 Âi log Âi

]
= 0. Moreover, we deduce from (3.4)

that ν̂ is distributed as
∑ν

i=1 ξi conditioned on {
∑ν

i=1 ξi > 0}, hence ν̂ ≥ 1 a.s. It is easy
(e.g. by using the Laplace transform) to see that

Ẑ
law
=

ν̂∑

i=1

Âi Ẑi.
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By definition, Ẑ > 0 a.s., we can apply (3.1) to Ẑ once we have determined the corresponding

parameter γ (as in (1.9)) for Ẑ. To this end, let tξ = inf{1 ≤ i ≤ ν : ξi = 1}. Then Â1 = Atξ
if tξ <∞. We have

E

[
(Â1)

−γ1(ν̂=1)

]
= E

[
A−γtξ 1(

∑ν
i=1 ξi=1)

∣∣
ν∑

i=1

ξi > 0

]

=
1

1− q
E

[
1(ν≥1)

ν∑

k=1

A−γk 1(ξk=1, ξi=0, ∀i 6=k,1≤i≤ν)

]

= E

[
1(ν≥1)q

ν−1
ν∑

k=1

A−γk

]
= E


1(ν≥1)qν−1

∑

|u|=1

eγV (u)


 = 1,

by (1.5). Therefore E
[
e−tẐ

]
= O(t−γ+ε) as t → ∞. The Lemma follows from the fact that

P(0 < Z < x) = (1− q)P(Ẑ < x) for any x > 0. �

Proof of (1.14). As shown in the proof of Lemma 3.1, we can assume q = 0 (hence we
assume (1.9)) in this proof without any loss of generality. Let Φ(t) := E

[
e−tZ

]
for t ≥ 0.

Then by (3.3), we have

Φ(t) = E

[ ν∏

i=1

Φ(tAi)
]
, t ≥ 0. (3.6)

Note also that the condition (1.9) can be re-written as E
[
1(ν=1)A

−γ
1

]
= 1. Define g(t) :=

tγΦ(t) for all t ≥ 0. Then for any t > 0,

g(t) = tγ Φ(t) ≥ tγE
[
1(ν=1)Φ(tA1)

]
= E

[
1(ν=1)A

−γ
1 g(tA1)

]
= E

[
g(tÃ1)

]
, (3.7)

where Ã1 denotes a (positive) random variable whose law is determined by E
[
f(Ã1)

]
=

E
[
1(ν=1)A

−γ
1 f(A1)

]
for any measurable bounded function f . In particular, E

[
log Ã1

]
=

E
[
1(ν=1)A

−γ
1 logA1

]
.

Define f(t) := E
[
1(ν=1)

∑
|u|=1 e

t V (u)
]
≡ E

[
1(ν=1)A

−t
1

]
which is finite for t ∈ [−1, γ],

in particular f(−1) < 1 and f(0) < 1 = f(γ). By the assumption of integrability in
Theorem 1.3, E

[
1(ν=1)A

−t
1 (− logA1)

+
]
< ∞ which implies that f ′(γ−) exists and equals

−E
[
1(ν=1)A

−γ
1 logA1

]
. By convexity, f ′(γ−) ≥ f(γ)−f(0)

γ
> 0. Hence

E

[
log Ã1

]
= −f ′(γ−) < 0. (3.8)

Let (Ãi)i≥2 be a sequence of i.i.d. copies of Ã1 and define Xj :=
∑j

i=1 log Ãi for all j ≥ 1.
Let r > 1 and put

αr := inf{j ≥ 1 : Xj > log r}, (3.9)
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which is a.s. finite thanks to (3.8). Going back to (3.7), we get that

g(r) ≥ E

[
g(rÃ1)1(rÃ1<1)

]
+ E

[
g(rÃ1)1(rÃ1≥1)

]

≥ E

[
g(rÃ1)1(rÃ1<1)

]
+ E

[
g(rÃ1Ã2)1(rÃ1≥1)

]
,

by applying (3.7) to t = rÃ1 to get the last inequality. Then we obtain that

g(r) ≥ E

[
g(rÃ1)1(rÃ1<1)

]
+ E

[
g(rÃ1Ã2)1(rÃ1≥1,rÃ1Ã2<1)

]
+ E

[
g(rÃ1Ã2)1(rÃ1≥1,rÃ1Ã2≥1)

]

= E

[
g(r

αr∏

i=1

Ãi)1(αr≤2)

]
+ E

[
g(rÃ1Ã2)1(αr>2)

]
.

By induction, we get that for any n ≥ 1,

g(r) ≥ E

[
g(r

αr∏

i=1

Ãi)1(αr≤n)

]
+ E

[
g(r

n∏

i=1

Ãi)1(αr>n)

]
≥ E

[
g(r

αr∏

i=1

Ãi)1(αr≤n)

]
.

Since αr <∞ a.s., we let n→ ∞ and get that

g(r) ≥ E

[
g(r

αr∏

i=1

Ãi)
]
= E

[
g(e−Rr)

]
,

where Rr := Xαr − log r > 0 denotes the overshoot of the random walk (Xj) at the level
log r. Remark that for any 0 < t ≤ 1, g(t) = tγΦ(t) ≥ Φ(1)tγ, hence

g(r) ≥ Φ(1)E
[
e−γRr

]
, ∀ r > 1. (3.10)

By assumption, E
[
((− log Ã1)

+)2
]
= E

[
1(ν=1)

∑
|u|=1(V (u)+)2 eγ V (u)

]
<∞, then by Lor-

den [28], Theorem 1, supr≥1E
[
Rr

]
<∞ hence

g(r) ≥ Φ(1) e−γ E[Rr ] ≥ C > 0, ∀ r > 1.

Hence
Φ(r) ≥ C r−γ, ∀ r > 1. (3.11)

It remains to prove an upper bound for Φ(r). Let a > γ be as in (1.6) such that
E[
∑
|u|=1 e

aV (u)] < ∞. Choose (and then fix) 0 < ε < (a− γ)/2 small and let b := γ+ε
2
< γ.

By Lemma 3.1, Φ(t) ≤ c4 t
−b for all t ≥ 1 (with c4 ≥ 1). Since g(t) ≡ tγΦ(t) ≤ 1 for all

0 < t < 1, we obtain immediately that

g(t) ≤ c4 t
γ−b, ∀t > 0. (3.12)

11



By (3.6) and using again the notation Ãi, i ≥ 1, we get that for any t > 0,

g(t) ≤ tγE
[
Φ(tA1)1(ν=1)

]
+ tγ E

[
1(ν≥2)Φ(tA1)Φ(tA2)

]

= E

[
g(tÃ1)

]
+ t−γE

[
1(ν≥2)g(tA1)g(tA2)A

−γ
1 A−γ2

]

≤ E

[
g(tÃ1)

]
+ c24 t

γ−2b E

[
1(ν≥2)A

−b
1 A−b2

]

=: E

[
g(tÃ1)

]
+ Cε t

−ε, (3.13)

with Cε := c24 E
[
1(ν≥2)A

−b
1 A−b2

]
≤ c24E

[∑ν
i=1A

−2b
i

]
by Cauchy-Schwarz’ inequality. Then

Cε <∞ thank to the assumption (1.6) and to the choice that b < a/2.
Let r > 1. As before, we shall iterate (3.13) up to the stopping time αr (cf. (3.9)). We

have that

g(r) ≤ Cεr
−ε + E

[
g(rÃ1)1(αr=1)

]
+ E

[
1(αr>1)

(
Cε(rÃ1)

−ε + g(rÃ1Ã2)
)]

= Cεr
−ε + CεE

[
(rÃ1)

−ε1(αr>1)

]
+ E

[
g(r

2∧αr∏

i=1

Ãi)
]
.

By induction, we get that for any n ≥ 2,

g(r) ≤ Cεr
−ε + Cε

n−1∑

k=1

E

[
1(αr>k)(r

k∏

i=1

Ãi)
−ε
]
+ E

[
g(r

n∧αr∏

i=1

Ãi)
]

= Cεr
−ε + CεE

[ n∧αr−1∑

k=1

eε(Xk−log r)
]
+ E

[
g(re−Xn∧αr )

]
, (3.14)

by using the random walk Xj ≡ −
∑j

i=1 log Ãi, j ≥ 1. The random walk (Xj) has positive
drift, then by Lemma 5 in [3],

E

[ αr−1∑

k=1

eε(Xk−log r)
]
≤ C ′ε <∞,

for some constant C ′ε independent of r. On the other hand, g(re−Xαr ) ≤ 1 (since re−Xαr ≤ 1),
then we obtain that for all r > 1, n ≥ 2,

g(r) ≤ Cε + C ′ε + 1 + E

[
g(re−Xn)1(n<αr)

]
≤ C

′′

ε + c4 r
ε E

[
e−εXn1(n<αr)

]
, (3.15)

by applying Lemma 3.1 to get g(t) ≤ c4t
ε.

Remark that E
[
e−εX1

]
= E

[
(Ã1)

ε
]

= E

[
1(ν=1)(A1)

−γ+ε
]
< 1 by convexity. Then

E[e−εXn ] → 0 as n → ∞, which in view of (3.15) yield that for any r > 1 (ε being fixed),
g(r) ≤ C

′′

ε , i.e.
Φ(r) ≤ C

′′

ε r
−γ, ∀r > 1.

12



This and (3.11) show that Φ(r) ≍ r−γ for all r ≥ 1. The small deviation in (1.14) follows
from a standard Tauberian argument (see e.g. [26], Lemma 4.4). �

Proof of (1.15). The proof of (1.15) goes in the same spirit as that of (1.14). Let h(t) :=
− logE

[
e−tZ

]
, t ≥ 0. Then h is an increasing, concave function and vanishing at zero. Using

the notations introduced in (3.3), we get that

e−h(t) = E

[
e−

∑ν
i=1 h(tAi)

]
, ∀t ≥ 0.

On an enlarged probability space, we may find a random variable ξ such that

P

(
ξ = i

∣∣A
)
=

Aβi∑ν
j=1A

β
j

, 1 ≤ i ≤ ν,

where A := σ{Ai, 1 ≤ i ≤ ν, ν}. Then
∑ν

i=1 h(tAi) = (
∑ν

i=1A
β
i )E

[h(tAξ)

Aβ
ξ

∣∣A
]
, and by

Jensen’s inequality, we have that for any t ≥ 0,

e−
∑ν

i=1 h(tAi) ≤ E

[
exp

(
− (

ν∑

i=1

Aβi )
h(tAξ)

Aβξ

) ∣∣∣A
]
.

Write for simplification

B := Aξ, η :=
1

Aβξ
(

ν∑

i=1

Aβi ) > 1, a.s.

[η > 1 because ν ≥ 2 a.s.] Then for any t ≥ 0, we have

e−h(t) ≤ E

[
e−η h(tB)

]
. (3.16)

We shall iterate the inequality (3.16) up to some random times: Let (ηi, Bi)i≥1 be an
i.i.d. copies of (η, B). Let r > 1 and define

Υr := inf{i ≥ 1 :
i∏

j=1

Bj ≤
1

r
}.

Notice that

E
[
logB

]
= E

[∑ν
i=1A

β
i logAi∑ν

i=1A
β
i

]
= −E

[∑
|u|=1 e

−βV (u)V (u)
∑
|u|=1 e

−βV (u)

]
= ψ′(β),

where ψ(β) := E
[
log

∑
|u|=1 e

−βV (u)
]
for 0 ≤ β ≤ χ. Note that ψ is convex on [0, χ],

ψ(χ) < logE
[∑

|u|=1 e
−χV (u)

]
≤ 0, and ψ(β) ≥ 0 since

∑
|u|=1 e

−βV (u) ≥ 1 by the definition
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of β. By convexity, ψ′(β) ≤ ψ(χ)−ψ(β)
χ−β

< 0. Then E
[
logB

]
< 0 which implies that Υr < ∞,

a.s. By (3.16), we see that for

e−h(r) ≤ E

[
e−η1 h(rB1)1(rB1≤1)

]
+ E

[
e−η1 h(rB1)1(rB1>1)

]

= E

[
e−η1 h(rB1)1(Υr=1)

]
+ E

[
e−η1 h(rB1)1(rB1>1)

]
.

Applying (3.16) to t = rB1, we get that

e−η1 h(rB1) ≤
(
E
[
e−η2h(rB1B2)

∣∣σ{η1, B1}
])η1

≤ E
[
e−η1η2h(rB1B2)

∣∣σ{η1, B1}
]
,

by Jensen’s inequality, since η1 > 1. It follows that E
[
e−η1 h(rB1)1(rB1>1)

]
≤ E

[
1(rB1>1)e

−η1η2h(rB1B2)
]
,

hence

e−h(r) ≤ E

[
e−η1 h(rB1)1(Υr=1)

]
+ E

[
1(rB1>1)e

−η1η2h(rB1B2)
]

= E

[
e−η1 h(rB1)1(Υr=1)

]
+ E

[
e−η1η2 h(rB1B2)1(Υr=2)

]
+ E

[
1(rB1B2>1)e

−η1η2h(rB1B2)
]
.

Again applying (3.16) to t = rB1B2 and using Jensen’s inequality (since η1η2 > 1), we
get that E

[
1(rB1B2>1)e

−η1η2h(rB1B2)
]
≤ E

[
1(rB1B2>1)e

−η1η2η3h(rB1B2B3)
]
, and so on. We get that

for any n ≥ 1,

e−h(r) ≤ E

[
e−(

∏Υr
i=1 ηi) h(r

∏Υr
i=1Bi)1(Υr≤n)

]
+ E

[
e−(

∏n
i=1 ηi)h(r

∏n
i=1 Bi)1(Υr>n)

]

=: A(3.17) + C(3.17). (3.17)

By (1.8), B ≥ e−K a.s., then 1
r
≥

∏Υr

i=1Bi >
1
r
e−K . Notice that by (1.10) the definition

of β,
∑ν

i=1A
β
i ≥ 1 a.s.; Then η ≥ B−β and

∏Υr

i=1 ηi ≥ rβ. It follows that for any n,

A(3.17) ≤ e−r
β h(e−K).

To deal with C(3.17), we remark that on {Υr > n}, r
∏n

i=1Bi ≥ 1. It follows that

C(3.17) ≤ E

[
e−h(1)

∏n
i=1 ηi

]
.

Since ηi > 1 a.s.,
∏n

i=1 ηi ↑ ∞ as n → ∞, then by the monotone convergence theorem
lim supn→∞C(3.17) = 0. Letting n→ ∞ in (3.17), we obtain that

E

[
e−rD∞

]
≡ e−h(r) ≤ e−h(e

−K) rβ , ∀ r > 1, (3.18)

which is stronger than the upper bound in (1.15).
To prove the lower bound, we recall that essinf

∑ν
i=1A

β
i = 1 and Ai ≥ e−K . Then for any

small ε > 0, there are some integer 2 ≤ k ≤ essinf ν, and some real numbers a1, ..., ak ∈ (0, 1)
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such that
∑k

i=1 a
β
i ≥ 1 and

∑k
i=1 a

β+ε
i < 1 and p := P

(
Ai ≤ ai, ∀1 ≤ i ≤ k, ν = k

)
> 0.

Therefore
e−h(t) = E

[
e−

∑ν
i=1 h(tAi)

]
≥ p e−

∑k
i=1 h(tai), t ≥ 0.

Let b := log(1/p) > 0 and define a random variable Y ∈ {a1, ..., ak} such that for any
measurable and nonnegative function f , E

[
f(Y )

]
= 1

k

∑k
i=1 f(ai). Therefore,

h(t) ≤ b+ kE
[
h(tY )

]
, ∀ t ≥ 0. (3.19)

As in the proof of the upper bound, we shall iterate the above inequality up to some
random times: Let (Yj)j≥1 be an i.i.d. copies of Y . For r > 1, we define

θ := θr := inf{j ≥ 1 :

j∏

i=1

Yi ≤
1

r
}.

Since Y ≤ max1≤i≤k ai < 1, θ is a bounded random variable. Going back to (3.19), we
get that

h(r) ≤ b+ kE
[
h(rY1)1(rY1≤1)

]
+ k E

[
h(rY1)1(rY1>1)

]

≤ b+ kE
[
h(rY1)1(θ=1)

]
+ kE

[
1(rY1>1)(b+ k h(rY1Y2))

]

= b+ kE
[
h(rY1)1(θ=1)

]
+ bk P

(
θ > 1

)
+ k2E

[
1(rY1>1)h(rY1Y2))

]
.

By indeuction, we get that for any n ≥ 1,

h(r) ≤ b

n∑

j=0

kj P
(
θ > j

)
+ E

[
kθ∧n h(r

θ∧n∏

i=1

Yi)
]

=: A(3.20) + C(3.20). (3.20)

Elementary computations yield that

A(3.20) =
b

k − 1
E

[
kθ∧(n+1) − 1

]
≤

b

k − 1
E

[
kθ
]
.

Recalling θ is bounded hence E
[
kθ
]
<∞. For C(3.20), we use the fact that Yi ≤ max1≤j≤k aj =:

a < 1. Remark that r
∏n

i=1 Yi ≤ 1. Then

C(3.20) := E

[
kθ h(r

θ∏

i=1

Yi)1(θ≤n)

]
+ E

[
kn h(r

n∏

i=1

Yi)1(θ>n)

]

≤ h(1)E
[
kθ
]
+ h(ran)E

[
kn1(θ>n)

]

≤ h(1)E
[
kθ
]
+ h(ran)E

[
kθ
]
.
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Since ran → 0 as n→ ∞, we get that [recalling that θ depends on r]

h(r) ≤ (h(1) +
b

k − 1
)E

[
kθ
]
, ∀ r > 1. (3.21)

To estimate E
[
kθ
]
, let us find λ > 0 such that E

[
Y λ

]
= 1

k
. By the law of Y , this is

equivalent to
∑k

i=1 a
λ
i = 1.

By the choice of (ai), we have β ≤ λ < β + ε. Then the process n → kn
∏n

i=1 Yi is
a martingale (moreover uniformly integrable on [0, θ]). Hence the optional stopping time
theorem implies that

1 = E

[
kθ

θ∏

i=1

(Yi)
λ
]
≥ E

[
kθ
]
r−λ min

1≤i≤k
aλi ,

since
∏θ

i=1 Yi ≥
1
r
min1≤i≤k ai. This and (3.21) give that

h(r) ≤ (h(1) +
b

k − 1
) max
1≤i≤k

a−λi rλ, ∀r > 1,

yielding the lower bound in (1.15) since λ < β + ε. This completes the proof of (1.15). �.

4 Proof of Theorem 1.1

At first, we give some preliminary estimates on the branching random walk:

Lemma 4.1 Assume (1.1) and (1.2). There exists some constants c5, c6 > 0 such that for
n ≥ 1,

P

(
min
|u|=n

V (u) < c5 n
1/3

)
≤ c6 e

−c5n1/3

, (4.1)

where we recall that for any |u| = n, V (u) := max1≤i≤n V (ui). Consequently, for any
0 < λ ≤ c5n

1/3, we have

P

(
max
u∈£λ

|u| > n
)
≤ c6e

−c5 n1/3

. (4.2)

We mention that under some extra integrability [∃δ > 0 such that E[ν1+δ] < ∞],
n−1/3 min|u|=n V (u) → (3π

2σ2

2
)1/3 P∗-a.s. (see [14] and [13]) and the probability term in

(4.1) is equal to e(c5−(
3π2σ2

2
)1/3+o(1))n1/3

for any 0 < c5 < (3π
2σ2

2
)1/3 (see [14], Proposition 2.3).

Here, we only assume (1.1) and (1.2), and we do not seek the precise upper bound in (4.1).

Proof of Lemma 4.1. We shall use the following fact (see Shi [32]):

P(inf
u∈T

V (u) < −λ
)
≤ e−λ, ∀λ ≥ 0. (4.3)
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Consider 0 < c < (π
2σ2

8
)1/3. Then

P

(
min
|u|=n

V (u) < cn1/3, inf
u∈T

V (u) ≥ −cn1/3
)

≤ E

[ ∑

|u|=n

1(max1≤i≤n |V (ui)|≤cn1/3)

]

= E

[
eSn1(max1≤i≤n |Si|≤cn1/3)

]
(by (2.7))

≤ ecn
1/3

P

(
max
1≤i≤n

|Si| ≤ cn1/3
)

= ecn
1/3

e−(
π2σ2

8c2
+o(1))n1/3

,

where we used Mogulskii [30] to get the last equality and o(1) → 0 as n → ∞. Then by
(4.3),

P

(
min
|u|=n

V (u) < cn1/3
)
≤ e−cn

1/3

+ e(c−
π2σ2

8c2
+o(1))n1/3

,

which easily yields the Lemma by choosing a sufficiently small constant c. �

Recall (1.19). Define for a ∈ (0,∞] and λ > 0,

£
(a)
λ :=

{
u ∈ £λ : V (u) ≤ λ+ a

}
. (4.4)

In particular, £
(∞)
λ = £λ. Recall (1.20). Since the function x→ xe−x is decreasing for x ≥ 1,

then for any λ > 1, D£λ
≤ λe−λ#£λ, which implies that

lim inf
λ→∞

λe−λ#£λ ≥ D∞ > 0. a.s. on S. (4.5)

If ν = ∞ [which is allowed under (1.1) and (1.2)], then #£λ = ∞ hence (4.5) can not be

strengthened into a true limit. We present a similar result for £
(a)
λ :

Lemma 4.2 Assume (1.1), (1.2) and that E
[∑

|u|=1(V (u)
+)3e−V (u)

]
< ∞. There exists

some a0 > 0 such that for all large a ≥ a0, almost surely on the set of non-extinction S,

lim
λ→∞

λe−λ#£
(a)
λ > 0. (4.6)

Proof of Lemma 4.2. We only deal with the case when the distribution of Θ is non-lattice.
The lattice case can be treated in a similar way, by applying Gatzouras ([18], Theorem 5.2),
a lattice version of Nerman [31]’s result. We are going to prove that for any a > 0, almost
surely on the set of non-extinction S,

lim
λ→∞

λe−λ#£
(a)
λ = c7(a)D∞, (4.7)

where c7(a) := 1

E

[
Sτ0

]E
[
emin(a,Sτ0 ) − 1

]
, and τ0 and S· are defined from (2.7). Obviously,

c7(a) > 0 for all large a, then (4.7) implies the Lemma in the non-lattice case.
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To prove (4.7), we consider a new point process Θ̂ :=
∑

u∈£0
δ{V (u)} on (0,∞). Generate

a branching random walk (V̂ (u), u ∈ T̂) from the point process Θ̂, in the same way as

(V (u), u ∈ T) do from Θ. Remark that S = {supu∈T V (u) = ∞} = {T̂ is infinite}, and

#£
(a)
λ =

∑

u∈T̂

φu(λ− V̂ (u)),
∑

u∈£λ

e−V (u)+λ =
∑

u∈T̂

ψu(λ− V̂ (u)),

where

φu(y) := 1(y≥0)
∑

v:
←
v=u

1(y<V̂ (v)−V̂ (u)≤y+a), ψu(y) := 1(y≥0)
∑

v:
←
v=u

ey−(V̂ (v)−V̂ (u))1(V̂ (v)−V̂ (u)>y).

Applying Theorem 6.3 in Nerman [31] (with α = 1 there) gives that almost surely on S,

∑
u∈T̂ φu(λ− V̂ (u))

∑
u∈T̂ ψu(λ− V̂ (u))

→
E
[∑

|u|=1,u∈T̂(e
−(V̂ (u)−a)+ − e−V̂ (u))

]

E
[∑

|u|=1,u∈T̂ V̂ (u)e−V̂ (u)
] .

Remark that E
[∑

|u|=1,u∈T̂(e
−(V̂ (u)−a)+ − e−V̂ (u))

]
= E

[∑
u∈£0

(e−(V (u)−a)+ − e−V (u))
]
=

E
[
emin(a,Sτ0 ) − 1

]
and E

[∑
|u|=1,u∈T̂ V̂ (u)e−V̂ (u)

]
= E

[∑
u∈£0

V (u)e−V (u)
]
= E

[
Sτ0

]
. Hence

on S, a.s.,

#£
(a)
λ∑

u∈£λ
e−V (u)+λ

→ c7(a). (4.8)

On the other hand, almost surely,

D£λ
= λe−λ

( ∑

u∈£λ

e−V (u)+λ +
1

λ
ηλ

)
→ D∞, λ→ ∞, (4.9)

where ηλ :=
∑

u∈£λ
(V (u) − λ)e−V (u)+λ. By the many-to-one formula and the assump-

tion, E
[
(S+

1 )
3
]
= E

[∑
|u|=1(V (u)+)3e−V (u)

]
< ∞. Then by Doney [12], E

[
S2
τ0

]
< ∞.

In the same way as above [by remarking that ηλ =
∑

u∈T̂ ψ̃u(λ − V̂ (u)) with ψ̃u(y) :=

1(y≥0)
∑

v:
←
v=u

ey−(V̂ (v)−V̂ (u))(V̂ (v)− V̂ (u)− y)1(V̂ (v)−V̂ (u)>y)], we get that almost surely on S,

ηλ∑
u∈£λ

e−V (u)+λ
→

1

2

E
[
S2
τ0

]

E
[
Sτ0

] . (4.10)

It follows that a.s. on S,
∑

u∈£λ
e−V (u)+λ ∼ 1

λ
eλD£λ

∼ 1
λ
eλD∞ as λ → ∞. This combined

with (4.8) and (4.9) yield (4.7), as desired. �

Remark 4.3 The condition E
[∑

|u|=1(V (u)
+)3e−V (u)

]
< ∞ was used in the above proof of

Lemma 4.2 only to obtain (4.10) which controls the contribution of ηλ in D£λ
. We do not

know how to relax this condition.
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We consider now some deviations on the minimum Mn. By Addario-Berry and Reed [1],
E∗(Mn) =

3
2
logn +O(1) and there exists some constants C > 0 and c8 > 0 such that

P∗
(∣∣Mn −

3

2
log n

∣∣ ≥ λ
)
≤ Ce−c8λ, ∀λ > 0, n ≥ 1. (4.11)

Proposition 4.1 in [2] says that for all large n and all λ0 ≤ λ ≤ 2 log log n,

P

(
Mn <

3

2
log n− λ

)
= (c9 + o(1)) λ e−λ,

with c9 some positive constant and o(1) only depending on λ such that o(1) → 0 as λ→ ∞.
We present an uniform estimate on λ.

Lemma 4.4 Assume (1.1) and (1.2). There is some constant c10 > 0 such that

P

(
Mn <

3

2
logn− λ

)
≤ c10 (1 + λ)e−λ, ∀n ≥ 1, λ ≥ 0.

Proof of Lemma 4.4. We shall prove that there exists some constant C > 0 such that for
any n ≥ 1, λ ≥ 0, α > 0,

P

(
Mn ≤

3

2
logn− λ, min

|u|≤n
V (u) ≥ −α

)
≤ C (1 + α)e−λ

(
1 +

(1 + (α + 3
2
log n− λ)+)5

n1/2

)
.

(4.12)
Then by taking α = λ in (4.12) and (4.3), we get the Lemma.

To prove (4.12), we write for simplification b := 3
2
log n − λ − 1. Notice that we can

assume b + 1 > −α. otherwise there is nothing to prove in (4.12). For those |u| = n such
that V (u) < b + 1, either minn

2
≤j≤n V (uj) > b, or minn

2
≤j≤n V (uj) ≤ b; For the latter case,

we shall consider the first j ≥ n
2
such that V (uj) ≤ b. Then

P

(
Mn ≤

3

2
log n− λ, min

|u|≤n
V (u) ≥ −α

)
≤ P

(
E(4.13)

)
+ P

(
F(4.13)

)
, (4.13)

with

E(4.13) :=
{
∃|u| = n : V (u) ≤ b+ 1, V (u) ≥ −α, min

n
2
≤j≤n

V (uj) > b
}
, (4.14)

F(4.13) :=
⋃

n
2
≤j≤n

{
∃|u| = n : V (u) ≤ b+ 1, min

n
2
≤i<j

V (ui) > b, V (uj) ≤ b, V (u) ≥ −α
}
,(4.15)

where as before, V (u) := min1≤i≤n V (ui) for any |u| = n. We bound P(E(4.13)) as follows:

P

(
E(4.13)

)
≤ E

[ ∑

|u|=n

1(V (u)≤b+1,V (u)≥−α,minn
2≤j≤n V (uj)>b)

]

= E

[
eSn1(Sn≤b+1,Sn≥−α,minn

2≤j≤n Sj>b)

]
(by (2.7))

≤ ebc3 (1 + α)n−3/2 (by (2.4))

≤ c3 (1 + α)e−λ.
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To deal with P(F(4.13)), we consider v = uj and use the notation |u|v = n − j and
Vv(u) := V (u)− V (v) for |u| = n and v < u. Then

P

(
F(4.13)

)

≤
∑

n
2
≤j≤n

E

[ ∑

|v|=j

1(V (v)≥−α,minn
2≤i<j V (vi)>b,V (v)≤b)

∑

|u|v=n−j

1(Vv(u)≤b+1−V (v),minj≤i≤n Vv(ui)≥−α−V (v))

]

=
∑

n
2
≤j≤n

E

[ ∑

|v|=j

1(V (v)≥−α,minn
2≤i<j V (vi)>b,V (v)≤b) φ(V (v), n− j)

]
(4.16)

=: A(4.17) +B(4.17), (4.17)

where A(4.17) denotes the sum
∑

n
2
≤j≤ 3n

4
and B(4.17) the sum

∑
3n
4
<j≤n in (4.16), and

φ(x, n− j) := E

[ ∑

|u|v=n−j

1(Vv(u)≤b+1−V (v),minj≤i≤n Vv(ui)≥−α−V (v))

∣∣V (v) = x
]

= E
[
eSn−j1(Sn−j≤b+1−x, Sn−j≥−α−x)

]
.

Obviously, φ(x, n− j) ≤ eb+1−x. It also follows from (2.3) that

φ(x, n− j) ≤ c2 (1 + α + x)(1 + α + b)2(n− j + 1)−3/2eb−x. (4.18)

By the estimate that φ(x, n− j) ≤ eb+1−x, we get that

B(4.17) ≤
∑

3n
4
≤j≤n

E

[ ∑

|v|=j

1(V (v)≥−α,minn
2≤i<j V (vi)>b,V (v)≤b)e

b+1−V (v)
]

= eb+1
∑

3n
4
≤j≤n

P

(
Sj ≥ −α, min

n
2
≤i<j

Si > b, Sj ≤ b
)

≤ c3 e
b(1 + α)n−3/2 (by (2.5))

≤ c3 (1 + α)e−λ,

since b = 3
2
log n−λ− 1. By using (4.18) and the many-to-one formula (2.7), we obtain that

A(4.17) ≤ C ′
∑

n
2
≤j≤ 3n

4

(1 + b+ α)2 n−3/2 eb E
[
(1 + α + Sj)1(Sj≥−α,minn

2≤i<j Si>b,Sj≤b)

]

≤ C ′(1 + b+ α)3e−λ
∑

n
2
≤j≤ 3n

4

P

(
Sj ≥ −α, Sj ≤ b

)

≤ C
′′

(1 + α)(1 + b+ α)5e−λ
∑

n
2
≤j≤ 3n

4

j−3/2 (by (2.3))

≤ C(1 + α)
(1 + α + 3

2
log n− λ)5

n1/2
e−λ,
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yielding (4.12) and completing the proof of the Lemma. �

As shown in [1, 9], Mk −
3
2
log k is tight (and converges in law under some non-lattice

assumption, see [2]). We need some uniform tightness:

Lemma 4.5 Assume (1.1) and (1.2). For any fixed a > 1, we have

lim sup
n→∞

P∗
(

max
n≤k≤an

Mk ≥
3

2
log n+ x

)
→ 0, as x→ ∞,

where as before, P∗(·) := P(·|S).

Proof of Lemma 4.5. Obviously, it is enough to prove the Lemma for a = 2. By Lemma
4.4, there exists some λ0 > 0 such that for all λ ≥ λ0 and for all n ≤ k ≤ 3n,

P

(
M4n−k ≥

3

2
log n− λ

)
≥ exp

(
− 2c10 λe

−λ
)
. (4.19)

Let x ≥ 2λ0 and n≫ x. Define

κx ≡ κx(n) := inf{k ≥ n : Mk ≥
3

2
log n+ x}, (inf

∅
= ∞).

Let n ≤ k ≤ 3n. Denote by Sk the event that the branching system survives at least at the
generation k. Then Sk is non-increasing on k. On the set {κx = k} ∩ Sk, V (u) > 3

2
log n+ x

for any |u| = k. Let 0 < y < x − λ0. It follows from the branching property that on
{κx = k} ∩ Sk,

P

(
M4n >

3

2
log n+ y

∣∣Fk

)
=

∏

|u|=k

P

(
M4n−k ≥

3

2
log n− λ

)∣∣
λ=V (u)−y

≥ exp
(
− 2c10

∑

|u|=k

(V (u)− y)e−(V (u)−y)
)

≥ exp
(
− 2c10 e

yDk

)
,

by using (4.19) to get the above first inequality.
Therefore for any ε > 0 and n ≤ k ≤ 3n,

P

(
M4n >

3

2
log n+ y, Sk, κx = k

)
≥ E

[
e−2c10 e

y Dk1(Sk∩{κx=k})

]

≥ e−ε P
(
A(4.21), κx = k

)
, (4.20)

where
A(4.21) := S ∩

{
sup
j≥0

Dj ≤
ε

2c10
e−y

}
. (4.21)
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Since Sk ⊂ Sn for k ≥ n, (4.20) holds if we replace Sk by Sn in the LHS. Taking the sum over
n ≤ k ≤ 3n for (4.20) (with Sk replaced by Sn), we get that for any ε > 0, 0 < y < x − λ0
and all n ≥ n0,

P

(
A(4.21) ∩

{
max
n≤k≤3n

Mk ≥
3

2
log n+ x

})
≤ eε P

(
M4n >

3

2
logn+ y, Sn

)

≤ eε P
(
M4n >

3

2
logn+ y,S

)
+ eεP(Sc ∩ Sn)

≤ C eε−c8y + eεP(Sc ∩ Sn), (4.22)

by using (4.11). Let y ≡ y(ε) > 0 be such that Ceε−c8y = ε. Since limn→∞ P(Sc ∩ Sn) = 0,
then for y(ε) < x− λ0, for all large n ≥ n1(ε),

P

(
A(4.21) ∩

{
max
n≤k≤3n

Mk ≥
3

2
log n+ x

})
≤ 2ε. (4.23)

[noticing the factor 3n in the above estimate].
Now, we are ready to give the proof of the Lemma: Let y ≡ y(ε) < z < x−λ0. Recalling

the definition of £z in (1.19). Define

A(4.24) :=
{
∃u ∈ £z : |u| ≤ x, V (u) ≤ x, sup

j≥0
D

(u)
j ≤

ε

2c10
e−y,S(u)

}
, (4.24)

where (D
(u)
j , j ≥ 0),M

(u)
· ,S(u) are defined from the subtree Tu in the same way as (Dj, j ≥

0),M·,S do from T. Remark that if A(4.24) 6= ∅, then we take an arbitrary u ∈ A(4.24). Let
n > x. Observe that the event {maxn≤k≤2nMk ≥

3
2
logn+ 2x,S} implies that for some n ≤

k ≤ 2n, for any |v| = k, V (v) ≥ 3
2
logn+2x, hence M

(u)
k−|u| ≥

3
2
logn+2x−V (u) ≥ 3

2
logn+x.

According to (4.23), we get that for y < z < x − λ0 and for all n ≥ n2(x, ε) with n2(x, ε)
large enough,

P

(
max
n≤k≤2n

Mk ≥
3

2
log n+ 2x,S, A(4.24) 6= ∅

)

≤ P

(
A(4.21) ∩

{
max

n−j≤k≤2n−j
Mk ≥

3

2
logn + x

})
|j=|u|

≤ 2ε, (4.25)

since for j := |u| ≤ x, 2n− j ≤ 3(n− j). On the other hand,

P

(
A(4.24) = ∅,S

)

≤ P

(
∀u ∈ £z, sup

j≥0
D

(u)
j ≥

ε

2c10
e−y or (S(u))c, £z 6= ∅

)
+ P

(
max
u∈£z

max(V (u), |u|) ≥ x
)

= E

[
e−p(ε,y)#£z1(#£z>0)

]
+ P

(
max
u∈£z

max(V (u), |u|) ≥ x
)
, (4.26)
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where the last equality is due to the branching property, and p(ε, y) > 0 is defined by
e−p(ε,y) := P

(
supj≥0Dj ≥

ε
2c10

e−y or Sc
)
< 1.

Assembling (4.25) and (4.26) give that

C(4.27) := lim sup
x→∞

lim sup
n→∞

P

(
max
n≤k≤2n

Mk ≥
3

2
log n+ 2x,S

)

≤ E

[
e−p(ε,y)#£z1(#£z>0)

]
+ 2ε, (4.27)

Notice that {#£z > 0} is nonincreasing on z and its limit as z → ∞ equals S. Then
P
(
{#£z > 0} ∩ Sc

)
→ 0 as z → ∞; but on S, we have from (4.5) that £z → ∞ a.s.

as z → ∞, hence E
[
e−p(ε,y)#£z1(#£z>0)

]
≤ E

[
e−p(ε,y)#£z1S

]
+ P

(
{#£z > 0} ∩ Sc

)
→ 0 as

z → ∞. Then letting z → ∞, we see that C(4.27) ≤ 2ε, proving the Lemma since ε can be
arbitrarily small. �

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1.
Proof of the lower bound in Theorem 1.1. Consider large integer j. Let nj := 2j and
λj := a log log lognj with some constant 0 < a < 1. Fix α > 0 and put

Aj :=
{
Mnj

>
3

2
log nj + λj

}
.

Recall that if the system dies out at generation nj , then by definition Mnj
= ∞. Define

M
(u)
· from the subtree Tu in the same way as M· does from T. Then Aj = {∀ |u| = nj−1,

M
(u)
nj−nj−1

≥ 3
2
lognj + λj − V (u)}, which by the branching property at nj−1 implies that

P

(
Aj | Fnj−1

)
=

∏

|u|=nj−1

P

(
Mnj−nj−1

≥
3

2
log nj + λj − x

)∣∣
x=V (u)

,

where as before,
∏
∅ := 1. By the lower limits of Mnj−1

(cf. (1.3)), a.s. for all large j,

Mnj−1
≥ 1

3
lognj−1 ∼ log 2

3
j, hence x ≡ V (u) ≫ λj since λj ∼ a log log j. Applying Lemma

4.4 gives that on {Mnj−1
≥ 1

3
log nj−1}, for some constant C > 0, for all |u| = nj−1,

P

(
Mnj−nj−1

<
3

2
log nj + λj − x

)∣∣
x=V (u)

≤ C V (u) e−(V (u)−λj).

It follows that

P

(
Aj | Fnj−1

)
≥ 1(Mnj−1≥

1
3
lognj−1)

∏

|u|=nj−1

(
1− CV (u) e−(V (u)−λj)

)

≥ 1(Mnj−1
≥ 1

3
lognj−1)

exp
(
− 2C

∑

|u|=nj−1

V (u) e−(V (u)−λj )
)

= 1(Mnj−1≥
1
3
lognj−1)

exp
(
− 2C eλjDnj−1

)
.

23



Since Dnj−1
→ D∞, a.s., and e

λj ∼ (log j)a with a < 1 , we see that almost surely,

∑

j

P

(
Aj | Fnj−1

)
= ∞,

which according to Lévy’s conditional form of Borel-Cantelli’s lemma ([25], Corollary 68),
implies that P(Ai, i.o.) = 1. Then

lim sup
n→∞

1

log log log n
(Mn −

3

2
log n) ≥ a, a.s.

The lower bound follows by letting a→ 1. �

Proof of the upper bound in Theorem 1.1. Let δ > 0 be small. Recall (4.4). Let a ≥ a0 be

as in Lemma 4.2 such that a.s. on S, #£
(a)
λ ≥ e(1−δ)λ for all large λ. Let b > 0 such that

e−b > q ≡ P(Sc). By Lemma 4.5, there exists some constant x0 > 0 such that

P

(
max
n≤k≤4n

Mk >
3

2
logn + x0

)
≤ e−b, ∀n ≥ n0.

Let x1 := x0 + a. Consider large integer j and define nj := 2j , λj := (1 + 2δ) log log lognj .
Define

Bj :=
{

max
nj<k≤nj+1

Mk >
3

2
log nj + λj + x1

}
∩ S.

Then,

P

(
Bj,#£

(a)
λj

≥ e(1−δ)λj , max
u∈£

(a)
λj

|u| ≤ nj−1

)

≤ P

(
∀u ∈ £

(a)
λj

: max
nj−1≤k≤nj+1

M
(u)
k >

3

2
log nj + x0, #£

(a)
λj

≥ e(1−δ)λj
)

≤ exp
(
− b e(1−δ)λj

)
,

whose sum on j converges [δ being small]. On the other hand, by (4.2), P
(
max

u∈£
(a)
λj

|u| >

nj−1
)
≤ c6e

−c5n
1/3
j−1 whose sum again converges. Therefore,

∑
j P

(
Bj ,#£

(a)
λj

≥ e(1−δ)λj
)
<∞.

By Borel-Cantelli’s lemma, almost surely, for all large j, the event {Bj,#£
(a)
λj

≥ e(1−δ)λj}

does not hold; but we have chosen a such that on S, #£
(a)
λj

≥ e(1−δ)λj for all large j. Hence

a.s. on S, for all large j, maxnj<k≤nj+1
Mk ≤

3
2
log nj + λj + x1, from which we get that a.s.

on S,

lim sup
n→∞

1

log log log n
(Mn −

3

2
logn) ≤ 1 + 2δ,

yielding the upper bound as δ > 0 can be arbitrarily small. �
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5 Proof of Theorem 1.4

5.1 Böttcher case: Proof of (1.17)

Recall (1.19) for the stopping line £λ.

Lemma 5.1 (Böttcher case) Under the same assumptions as in Theorem 1.4. For any
constant a > 0, we have

E

[
e−a#£λ

]
= e−e

(β+o(1))λ

, λ→ ∞. (5.1)

Proof of Lemma 5.1. Let us check at first the lower bound in (5.1). Observe that P-almost
surely,

D∞ =
∑

u∈£λ

e−V (u)D∞(u), (5.2)

where conditioned on {V (u), u ∈ £λ}, D∞(u) are independent copies of D∞. Take K0 large
enough such that E[e−K0D∞ ] ≤ e−a, that is possible because D∞ > 0, P-a.s. Let x = K0 e

λ+K ,
where K = esssupmax|u|=1 V (u) <∞ is as in (1.8). Therefore

E

[
e−xD∞

]
= E

[ ∏

u∈£λ

E
[
e−xe

−yD∞
]∣∣
y=V (u)≤λ+K

]

≤ E

[ ∏

u∈£λ

e−a
]
= E

[
e−a#£λ

]
.

Hence E

[
e−a#£λ

]
≥ E

[
e−xD∞

]
= e−x

β+o(1)
= e−e

(β+o(1))λ
gives the lower bound of (5.1).

For the upper bound of (5.1), we use again (5.2) to see that D∞ ≤ e−λ
∑

u∈£λ
D∞(u).

Take a constant b > 0 such that E
[
e−bD∞

]
≥ e−a. It follows that

E

[
e−b e

λD∞
]
≥ E

[
e−b

∑
u∈£λ

D∞(u)
]
≥ E

[
e−a#£λ

]
,

since conditioned on £λ, (D∞(u))u∈£λ
are i.i.d. copies of D∞. Then (1.15) implies the upper

bound of (5.1). �

Proof of (1.17). By the tightness (4.11) and Lemma 4.5, we can choose two positive constant
c11 and c12 such that for any n ≥ 1,

min
n
2
≤j≤n

P

(
Mj ≥

3

2
logn− c11

)
≥ e−c12 , (5.3)

P

(
max

n
2
≤j≤3n

Mj ≥
3

2
log n+ c11

)
≤ e−c12 , (5.4)
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For any u ∈ T, define as before M
(u)
j := minv∈Tu,|v|=|u|+j(V (v)− V (u)) for any j ≥ 0. It

follows that

P

(
Mn >

3

2
log n+ λ− c11

)
≥ P

(
∀u ∈ £λ, |u| ≤

n

2
,M

(u)
n−|u| ≥

3

2
log n− c11

)

≥ E

[
e−c12 #£λ1(maxu∈£λ

|u|≤n
2
)

]

≥ E

[
e−c12 #£λ

]
− P

(
max
u∈£λ

|u| >
n

2

)

≥ e−e
(β+o(1))λ

− c6e
−c5 n1/3

,

by Lemma 5.1 and (4.2). The lower bound in (1.17) follows from the assumption that
λ = o(log n).

To get the upper bound in (1.17), we use the hypothesis (1.8) and obtain that

P

(
max
n≤k≤2n

Mk >
3

2
log n+ λ+ c11 +K

)

≤ P

(
∀u ∈ £λ,max

u∈£λ

|u| ≤
n

2
, max
n≤k≤2n

M
(u)
k−|u| ≥

3

2
log n+ c11

)
+ P

(
max
u∈£λ

|u| >
n

2

)

≤ E

[
e−c12 #£λ

]
+ c6e

−c5 n1/3

,

by (5.4) and (4.2). The upper bound follows from Lemma 5.1. �

5.2 Schröder case: Proof of (1.16)

In the case q := P(Sc) > 0, we need to estimate the probability that the extinction happens
after £λ:

Lemma 5.2 Assuming (1.1), (1.2) and (1.5). Then for any λ > 0,

P

(
{£λ 6= ∅} ∩ Sc

)
= E

[
q#£λ 1(#£λ>0)

]
≤ q e−γλ.

Proof of Lemma 5.2. The above equality is an immediate consequence of the branching
property at the optional line £λ (cf. [8]).

To show the above inequality, we recall that ν(u), for any u ∈ T, denotes the number of
children of u. Write u < £λ if there exists some particle v ∈ £λ such that u < v [i.e. u is an
ancestor of v]. Then for the tree up to £λ, the following equality holds: Almost surely,

#£λ = 1 +
∑

∅≤u<£λ

(
ν(u)− 1

)
. (5.5)

Recall (1.5). Define a process

Xn :=
∑

|u|=n

n−1∏

i=0

(
qν(ui)−1 1(ν(ui)≥1)

)
eγV (u), n ≥ 1,
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where as before, ui denotes the ancestor of u at ith generation. It is straightforward to check,
by using the branching property, that (Xn)n≥1 is a (nonnegative) martingale with mean 1.
Define

X£λ
:=

∑

u∈£λ

|u|−1∏

i=0

(
qν(ui)−1 1(ν(ui)≥1)

)
eγV (u), λ > 0.

According to Biggins and Kyprianou ([8], Lemma 14.1), E
[
X£λ

]
equals E[X1] times some

probability term, hence E
[
X£λ

]
≤ E[X1] = 1.

Notice that for any u ∈ £λ, ν(ui) ≥ 1 for all i < |u| and
∏|u|−1

i=0

(
qν(ui)−1 1(ν(ui)≥1)

)
=

q
∑

0≤i<|u|(ν(ui)−1) ≥ q#£λ−1 by (5.5) [recalling q < 1]. Then X£λ
≥ q#Lλ−1eγλ on {#£λ > 0}.

The Lemma follows from E[X£λ
] ≤ 1. �

Lemma 5.3 Assume (1.1), (1.2), (1.5). We furthermore assume that (1.6) holds for some
a > γ. For any δ > 0, there exist an integer mδ ≥ 1 and a constant λ0(δ) > 0 such that for
all λ ≥ λ0(δ),

P

(
0 < #£λ ≤ mδ

)
≥ e−(γ+δ)λ.

Proof of Lemma 5.3: We discuss separately the case q = 0 and the case q > 0.
(i) Case q = 0. We shall prove that

P

(
#£λ = 1

)
≥ e−(γ+o(1))λ, (5.6)

where as usual o(1) denotes a quantity which goes to 0 as λ→ ∞. To this end, we have by
the change of measure (see Section 2.2 and (2.8)) that

P

(
#£λ = 1

)
= Q

[ 1

W£λ

1(#£λ=1)

]
= Q

[
eV (wτλ(w))1(#£λ=1)

]
≥ eλQ

(
#£λ = 1

)
. (5.7)

Notice that under Q, {#£λ = 1} means that £λ = {wτλ(w)}. Recall that ν(u) denotes the

number of children of u ∈ T. Then Q

(
#£λ = 1

∣∣G∞
)
= 1(0≤k<τλ(w),ν(wk)=1) and thus

P

(
#£λ = 1

)
≥ eλQ

(
0 ≤ k < τλ(w), ν(wk) = 1

)
. (5.8)

Recall (1.9) for γ. We claim that

Q

(
0 ≤ k < τλ(w), ν(wk) = 1

)
= e−(1+γ+o(1))λ. (5.9)

To get (5.9), we use the fact (cf. Section 2.2) that (
∑

u∈℧(wk)
δ{∆V (u)},∆V (wk))k≥1 are i.i.d.

under Q, where ∆V (u) := V (
←
u) − V (u) for any u 6= ∅ ≡ w0. Notice that ν(wk−1) =∑

u∈℧(wk)
1.
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Let us check that the process

Un := e(1+γ)V (wn)1(∀1≤k≤n,ν(wk−1)=1), n ≥ 1,

is a Q-martingale of mean 1. In fact, Un is a product of n i.i.d. variables, then it is
enough to check that 1 = Q

[
U1

]
= Q

[
e(1+γ)V (w1)1(ν(w0)=1)

]
. But Q

[
e(1+γ)V (w1)1(ν(w0)=1)

]
=

E
[∑

|u|=1 e
γV (u)1(ν=1)

]
= 1, as claimed. By the optional stopping time theorem and the

Fatou lemma, we get that Q
[
Uτλ(w)

]
≤ 1, which implies the upper bound in (5.9) since

V (τλ(w)) > λ by definition [under Q, τλ(w) is a.s. finite]. To get the lower bound, let ε > 0
be small. Fix some large constant C whose value will be determined later. Let us find some
γC such that the process

U (C)
n := e(1+γC )V (wn)1(∀1≤k≤n,ν(wk−1)=1,∆V (wk)≤C), n ≥ 1,

is a Q-martingale with mean 1. As for Un, the constant γC
† is determined by

1 = E

[ ∑

|u|=1

eγCV (u)1(ν=1,V (u)≤C)

]
.

Plainly γC → γ as C → ∞. Choose C sufficiently large such that γC ≤ γ + ε. Since
(U

(K)
k , k ≤ τλ(w)) is uniformly bounded by e(1+γC )(λ+C). By the optional stopping time

theorem, we obtain that

1 = Q

[
U

(C)
τλ(w)

]
≤ e(1+γC )(λ+C)Q

(
∀1 ≤ k ≤ n, ν(wk−1) = 1

)
,

finishing the proof of (5.9) as ε can be arbitrarily small. The Lemma (in the case q = 0)
follow from (5.9) and (5.8).

(ii) Case q > 0. We can not repeat the same proof as before, for instance p1 ≡ P(ν = 1)
may vanish.

Again by the change of measure we have that for any integer m ≥ 1,

P

(
0 < #£λ ≤ m

)
= Q

[ 1

W£λ

1(#£λ≤m)

]
≥

1

m
eλQ

(
#£λ ≤ m

)
, (5.10)

where we used the facts that W£λ
=

∑
u∈£λ

e−V (u) ≤ me−λ on {#£λ ≤ m} and under Q,
£λ contains at least the singleton {wτλ(w)}. Define for any x > 0,

q(x) := P
(
sup
v∈T

V (v) ≤ x
)
= P

(
£x = ∅

)
,

†For the existence of such constant, we used the integrability assumption (1.6) for some a > γ: the convex

function f : b → E
[∑

|u|=1 e
bV (u)1(ν=1)

]
has a derivative f ′(γ) ≥ f(γ)−f(0)

γ
> 0 hence f is increasing at γ.

Then f(a) > f(γ) = 1. Take C0 large enough such that E
[∑

|u|=1 e
aV (u)1(ν=1,V (u)≤C0)

]
> 1, then such γC

exists for all C ≥ C0. We shall use the existences of similar constants later without further explanations.
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with the usual convention that sup∅ = 0. Plainly, limx→∞ q(x) = P
(
supv∈T V (v) < ∞

)
=

P
(
Sc

)
= q. For any small ε > 0, there exists some x0 = x0(ε) > 0 such that q(x) ≥ q − ε for

all x ≥ x0.
Let δ > 0 be small. Before bounding below Q

(
#£λ ≤ m

)
with some m = mδ, we fix

at first some constants (depending on α). Let α be large and ε be small whose values will
be determined later. Recall that ℧(wk) denotes the set of brothers of wk. Let us choose a
constant γα,ε such that

U (α,ε)
n := e(1+γα,ε)V (wn) (q − ε)

∑
0≤k<n(ν(wk)−1)1(∀k<n,∀u∈℧(wk),∆V (u)≤α), n ≥ 1, (5.11)

is a Q-martingale with mean 1. As before, such γα,ε is determined by the following equalities

1 = Q

[
e(1+γα,ε)V (w1)(q − ε)ν(w0)−1 1(max|u|=1,u 6=w1

V (u)≤α)

]

= E

[ ∑

|u|=1

eγα,εV (u)(q − ε)ν−1 1(max|v|=1,v 6=u V (v)≤α)

]
.

The existence of γa,ε follows from (1.5) and the integrability (1.6) for some a > γ. Clearly
γα,ε → γ as α→ ∞ and ε → 0. Fix now α ≡ α(δ) > 0 (large enough) and ε ≡ ε(δ) > 0 (small
enough) such that γα,ε < γ + δ. Choose a constant x0 ≡ x0(δ) > 0 such that q(x) ≥ q − ε
for all x ≥ x0.

On the other hand, we remark that (1.1) and (1.5) imply that

P

(
1 ≤ ν <∞, max

|u|=1
V (u) > 0

)
> 0. (5.12)

In fact, E
[
1(1≤ν<∞)q

ν−1
∑
|u|=1 e

γV (u)1(V (u)>0)

]
= 1−E

[
1(1≤ν<∞)q

ν−1
∑
|u|=1 e

γV (u)1(V (u)≤0)

]
>

1− E
[
1(1≤ν<∞)q

ν−1ν
]
> 0, hence (5.12) holds. It follows that there are some integer n∗ ≥ 1

and some positive constants c∗ and b∗ such that

b∗ ≤ E

[
1(ν≤n∗)

∑

|u|=1

e−V (u)1(V (u)≥c∗)

]
= Q

(
ν(w0) ≤ n∗, V (w1) ≥ c∗

)
, (5.13)

where the last equality follows from the change of measure formula (Section 2.2 (i), w0 = ∅).
Choose and then fix L ≥ α+ x0 such that L

c∗
is an integer. Define mδ := (n∗)

L/c∗ . Recall
(1.18) for the definition of τλ(u). For any λ > 2L, we consider the following events

A1 :=
{
∀k < τλ−L(w), ∀u ∈ ℧(wk),∆V (u) ≤ α,£

(u)
λ = ∅

}
,

A2 :=
{
∀τλ−L(w) ≤ k < τλ−L(w) +

L

c∗
, ∀u ∈ ℧(wk), ν(u) = 0, ν(wk−1) ≤ n∗,∆V (wk) ≥ c∗

}
,

where £
(u)
λ := Tu ∩£λ and ν(u) denotes the number of children of u.
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Observe that on A1 ∩ A2, τλ(w) ≤ τλ−L(w) +
L
c∗
, and #£λ ≤ (n∗)

L/c∗ ≡ mδ. Since q > 0,
p0 ≡ P(ν = 0) > 0, it follows from the spinal decomposition (Section 2.2 (iii)) that

Q

(
#£λ ≤ mδ

)
≥ Q

(
A1 ∩ A2

)

= Q

[
B1

τλ−L(w)+
L
c∗
−1∏

k=τλ−L(w)

∏

u∈℧(wk)

p0 × 1(ν(wk−1)≤n∗,∆V (wk)≥c∗)

]

≥ pmδ
0 Q

[
B1

τλ−L(w)+
L
c∗
−1∏

k=τλ−L(w)

1(ν(wk−1)≤n∗,∆V (wk)≥c∗)

]
, (5.14)

where

B1 :=
∏

k<τλ−L(w)

∏

u∈℧(wk)

q(λ−V (u))1(∆V (u)≤α) ≥
∏

k<τλ−L(w)

(q−ε)ν(wk−1)−11(maxu∈℧(wk) ∆V (u)≤α) =: B2,

since for any u ∈ ℧(wk) with k < τλ−L(w), V (u) ≤ λ−L+α ≤ λ−x0, and then q(λ−V (u)) ≥
q(x0) ≥ q − ε.

Recall that under Q, (
∑

u∈℧(wk)
δ{∆V (u)},∆V (wk))k≥1 are i.i.d.; then the strong Markov

property implies that under Q and conditioned on Gτλ−L(w), (ν(wk−1),∆V (wk))k≥τλ−L(w) are
i.i.d., of common law that of (ν(w0), V (w1)). Therefore,

Q

(
#£λ ≤ mδ

)
≥ pmδ

0 Q

[
B2

]
Q

(
ν(w0) ≤ n∗, V (w1) ≥ c∗

)L/c∗
≥ pmδ

0 bL/c∗∗ Q

[
B2

]
. (5.15)

It remains to estimate Q[B2]. Going back to (5.11) and applying the optional stopping
time theorem at τλ−L for U (α,ε) (which is bounded up to τλ−L), we get that

Q[B2] = Q

[
(q − ε)

∑
0≤k<τλ−L(w)(ν(wk)−1)1(∀k<n,∀u∈℧(wk),∆V (u)≤α,∆(wk)≤α)

]
≥ e−(1+γα,ε)(λ−L+α),

which in view of (5.10) and (5.15) imply that

P

(
0 < #£λ ≤ mδ

)
≥

1

mδ
pmδ
0 bL/c∗∗ eL−α e−γα,ε(λ−L+α).

Then we have proved the Lemma in the case q > 0 [by choosing a sufficiently large λ0(δ)].
�

Lemma 5.4 (Schröder case) Under the same assumptions as in Theorem 1.4. For any
constant a > 0, we have

E

[
e−a#£λ1(#£λ>0)

]
= e−(γ+o(1))λ, λ→ ∞. (5.16)
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Proof of Lemma 5.4. From Lemma 5.3, the lower bound of (5.16) follows immediately.
We also mention that in the cases when q = 0 or q > 0 but 0 < a < log(1/q), we can give a
proof of the lower bound of (5.16) in the same way as that of (5.1).

For the upper bound, we proceed in the same way as in the proof of Lemma 5.1, but
by paying attention to the possibility of extinction of the system. Take b > 0 such that
E
[
e−bD∞

]
≥ e−a. By (5.2), eλD∞ ≤

∑
u∈£λ

D∞(u), then

E

[
e−be

λD∞1(D∞>0)

]
≥ E

[
e−b

∑
u∈£λ

D∞(u)1(D∞>0)

]

≥ E

[
e−b

∑
u∈£λ

D∞(u)1(#£λ>0)

]
− P

(
{#£λ > 0} ∩ Sc

)

≥ E

[
e−a#£λ1(#£λ>0)

]
− P

(
{#£λ > 0} ∩ Sc

)
.

By (1.14), E
[
e−be

λD∞1(D∞>0)

]
≤ Ce−γλ, which together with Lemma 5.2 yield the upper

bound in (5.16). �

We now are ready to give the proof of (1.16):

Proof of (1.16). Let us prove at first the the lower bound in (1.16). By (4.11), there are
c13 > 0 (large enough) and c14 > 0 (small enough) such that minn

2
≤k≤n P(Mk ≥ 3

2
log n −

c13,S) ≥ c14 for all n ≥ 1.
Let δ > 0 be small and let mδ ≥ 1 and λ0(δ) > 0 be as in Lemma 5.3. Let λ ≥ λ0(δ).

Remark that

P

(
Mn >

3

2
log n+λ−c13,S

)
≥ P

(
0 < #£λ ≤ mδ, ∀u ∈ £λ,M

(u)
n−|u| >

3

2
log n−c13, |u| ≤

n

2
, S(u)

)
,

where as before, S(u) = {Tu suvives} and M
(u)
j := minv∈Tu,|v|=|u|+j(V (v) − V (u)) for any

j ≥ 0. It follows that

P

(
Mn >

3

2
log n+ λ− c13,S

)
≥ (c14)

mδ P

(
0 < #£λ ≤ mδ,max

u∈£λ

|u| ≤
n

2

)

≥ (c14)
mδ

(
P

(
0 < #£λ ≤ mδ

)
− P

(
|u(λ)| ≤

n

2

))

≥ (c14)
mδ

(
e−(γ+δ)λ − c6e

−c5n1/3
)
,

by Lemma 5.3 and (4.2). The lower bound of (1.16) follows.
For the upper bound in (1.16), by (2.6) and (1.6), for any a > 0, there exists some Ca > 0

such that
P

(
Sτλ − λ ≥ x

)
≤ Cae

−ax, ∀ x ≥ 0. (5.17)

Let δ > 0 be small and a > (1 + γ)/δ + 1. Then

P

(
max
u∈£λ

V (u) > (1 + δ)λ
)
≤ E

[ ∑

u∈£λ

1(V (u)>(1+δ)λ)

]
= E

[
eSτλ1(Sτλ≥(1+δ)λ)

]
= o(e−γλ), (5.18)
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where the last equality follows easily from (5.17). Define

A(5.19) :=
{
max
u∈£λ

V (u) ≤ (1 + δ)λ, max
u∈£λ

|u| ≤
n

2

}
. (5.19)

Then by (4.2), for all large n ≥ n0 and 0 < λ = o(logn),

P

(
Ac(5.19)

)
≤ P

(
max
u∈£λ

V (u) > (1 + δ)λ
)
+ P

(
max
u∈£λ

|u| >
n

2

)

≤ o(e−γλ) + c6e
−c5 n1/3

= o(e−γλ).

On S ∩{Mn >
3
2
log n+ (1+ 2δ)λ}, £λ 6= ∅. Consider λ such that δλ < log n. Therefore,

P

(
max
n≤k≤2n

Mk >
3

2
log n+ (1 + 2δ)λ, S

)

≤ P

(
max
n≤k≤2n

Mk >
3

2
log n+ (1 + 2δ)λ,A(5.19),£λ 6= ∅

)
+ o(e−γλ)

≤ P

(
∀u ∈ £λ, max

n
2
≤j≤2n

M
(u)
j >

3

2
logn + δλ,£λ 6= ∅

)
+ o(e−γλ)

=: B(5.20) + o(e−γλ), (5.20)

where M
(u)
k := maxv∈Tu,|v|=|u|+k

(
V (v)− V (u)

)
. Conditioning on F£λ

, M
(u)
· are i.i.d. copies

of M·. By Lemma 4.5 (with a = 4), there exist some c15 > 0 and λ0 such that (δ being fixed)
for all large n ≥ n0(λ0),

P

(
max

n
2
≤k≤2n

Mk ≥
3

2
log n+ δλ0

)
≤ P(Sc) + P∗

(
max

n
2
≤k≤2n

Mk ≥
3

2
log n+ δλ0

)
≤ e−c15 .

Then by conditioning on F£λ
, we get that

B(5.20) ≤ E

[
e−c15 #£λ1(£λ 6=∅)

]
= e−(γ+o(1))λ,

by Lemma 5.4. This and (5.20) prove the upper bound in (1.16) since δ can be arbitrarily
small. �
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[3] Äıdékon, E., Y. Hu and O. Zindy. (2013+). The precise tail behavior of the total
progeny of a killed branching random walk. Ann. Probab., to appear. Available at
http://arxiv.org/abs/1102.5536.
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[17] Fleischmann, K. and Wachtel, V. (2009). On the left tail asymptotics for the limit law
of supercritical Galton-Watson processes in the Böttcher case. Ann. I. H. Poincaré 45
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