The Cartan-Hadamard conjecture and The Little Prince - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

The Cartan-Hadamard conjecture and The Little Prince

Résumé

The generalized Cartan-Hadamard conjecture says that if $\Omega$ is a domain with fixed volume in a complete, simply connected Riemannian $n$-manifold $M$ with sectional curvature $K \le \kappa \le 0$, then $\partial\Omega$ has the least possible boundary volume when $\Omega$ is a round $n$-ball with constant curvature $K=\kappa$. The case $n=2$ and $\kappa=0$ is an old result of Weil. We give a unified proof of this conjecture in dimensions $n=2$ and $n=4$ when $\kappa=0$, and a special case of the conjecture for $\kappa < 0$ and a version for $\kappa > 0$. Our argument uses a new interpretation, based on optical transport, optimal transport, and linear programming, of Croke's proof for $n=4$ and $\kappa=0$. The generalization to $n=4$ and $\kappa \ne 0$ is a new result. As Croke implicitly did, we relax the curvature condition $K \le \kappa$ to a weaker candle condition $\Candle(\kappa)$ or $\LCD(\kappa)$. We also find a counterexample to a na\"{\i}ve version of theCartan-Hadamard conjecture: We establish that for every $A, V >0$, there is a 3-ball with curvature $K \le -1$, volume $V$, and surfacearea $A$. We begin with a pointwise isoperimetric problem called "the problem of the Little Prince." Its proof becomes part of the more general method.
Fichier principal
Vignette du fichier
prince.pdf (522.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00800027 , version 1 (13-03-2013)
hal-00800027 , version 2 (24-11-2014)
hal-00800027 , version 3 (13-02-2017)

Identifiants

Citer

Benoît Kloeckner, Greg Kuperberg. The Cartan-Hadamard conjecture and The Little Prince. 2014. ⟨hal-00800027v2⟩
278 Consultations
682 Téléchargements

Altmetric

Partager

More