The Cartan-Hadamard conjecture and The Little Prince - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2019

The Cartan-Hadamard conjecture and The Little Prince

Résumé

The generalized Cartan-Hadamard conjecture says that if $\Omega$ is a domain with fixed volume in a complete, simply connected Riemannian $n$-manifold $M$ with sectional curvature $K \le \kappa \le 0$, then the boundary of $\Omega$ has the least possible boundary volume when $\Omega$ is a round $n$-ball with constant curvature $K=\kappa$. The case $n=2$ and $\kappa=0$ is an old result of Weil. We give a unified proof of this conjecture in dimensions $n=2$ and $n=4$ when $\kappa=0$, and a special case of the conjecture for $\kappa < 0$ and a version for $\kappa > 0$. Our argument uses a new interpretation, based on optical transport, optimal transport, and linear programming, of Croke's proof for $n=4$ and $\kappa=0$. The generalization to $n=4$ and $\kappa \ne 0$ is a new result. As Croke implicitly did, we relax the curvature condition $K \le \kappa$ to a weaker candle condition $Candle(\kappa)$ or $LCD(\kappa)$. We also find counterexamples to a naïve version of the Cartan-Hadamard conjecture: For every $\varepsilon > 0$, there is a Riemannian 3-ball $\Omega$ with $(1-\varepsilon)$-pinched negative curvature, and with boundary volume bounded by a function of $\varepsilon$ and with arbitrarily large volume. We begin with a pointwise isoperimetric problem called "the problem of the Little Prince.'' Its proof becomes part of the more general method.
Fichier principal
Vignette du fichier
prince.pdf (527.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00800027 , version 1 (13-03-2013)
hal-00800027 , version 2 (24-11-2014)
hal-00800027 , version 3 (13-02-2017)

Identifiants

Citer

Benoît Kloeckner, Greg Kuperberg. The Cartan-Hadamard conjecture and The Little Prince. Revista Matemática Iberoamericana, 2019, 35 (4), pp.1195-1258. ⟨10.4171/RMI/1082⟩. ⟨hal-00800027v3⟩
278 Consultations
682 Téléchargements

Altmetric

Partager

More