The Little Prince and Weil's isoperimetric problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

The Little Prince and Weil's isoperimetric problem

Benoît Kloeckner

Résumé

Using linear programming methods, we derive various isoperimetric inequalities in 2 and 4-dimensional Riemannian manifolds whose curvature is bounded from above. First, we consider the problem of shaping a small planet inside a non-positivily curved surface so as to maximize the gravity feeled by a fixed observer (the Little Prince). This provides a pointwise inequality which, integrated on the boundary of a domain, yields Weil's theorem asserting that the planar Euclidean isoperimetric inequality is satisfied inside all simply connected, non-positively curved surfaces. Then, generalizing Croke's proof of the dimension 4 version of this result, we obtain similar statements in manifolds satisfying an arbitrary sectional curvature upper bound. Moreover, the method enables us to state all our results under a relaxed curvature condition.
Fichier principal
Vignette du fichier
petitprince.pdf (222.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00800027 , version 1 (13-03-2013)
hal-00800027 , version 2 (24-11-2014)
hal-00800027 , version 3 (13-02-2017)

Identifiants

Citer

Benoît Kloeckner, Greg Kuperberg. The Little Prince and Weil's isoperimetric problem. 2013. ⟨hal-00800027v1⟩
278 Consultations
682 Téléchargements

Altmetric

Partager

More