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ABSTRACT. The generalized Cartan-Hadamard conjecture says that if

Ω is a domain with fixed volume in a complete, simply connected Rie-

mannian n-manifold M with sectional curvature K 6 κ 6 0, then ∂Ω

has the least possible boundary volume when Ω is a round n-ball with

constant curvature K = κ . The case n = 2 and κ = 0 is an old result of

Weil. We give a unified proof of this conjecture in dimensions n = 2 and

n = 4 when κ = 0, and a special case of the conjecture for κ < 0 and

a version for κ > 0. Our argument uses a new interpretation, based on

optical transport, optimal transport, and linear programming, of Croke’s

proof for n = 4 and κ = 0. The generalization to n = 4 and κ 6= 0 is

a new result. As Croke implicitly did, we relax the curvature condition

K 6 κ to a weaker candle condition Candle(κ) or LCD(κ).
We also find a counterexample to a naı̈ve version of the Cartan-Had-

amard conjecture: We establish that for every A,V > 0, there is a 3-ball

with curvature K 6−1, volume V , and surface area A.

We begin with a pointwise isoperimetric problem called “the problem

of the Little Prince.” Its proof becomes part of the more general method.

1. INTRODUCTION

In this article, we will prove new, sharp isoperimetric inequalities for a

manifold with boundary Ω, or a domain in a manifold. Before turning to

motivation and context, we state a special case of one of our main results

(Theorem 1.4).

Theorem 1.1. Let Ω be a compact Riemannian manifold with boundary,

of dimension n = 2 or n = 4. Suppose that Ω has unique geodesics, has

sectional curvature bounded above by +1, and that the volume of Ω is at

most half the volume of the sphere Xn,1 of constant curvature 1. Then the

volume of ∂Ω is at least the volume of the boundary of a spherical cap in

Xn,1 with the same volume as Ω.
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1.1. The generalized Cartan-Hadamard conjecture. An isoperimetric

inequality has the form

|∂Ω|> I(|Ω|) (1)

where I is some function. (We use | · | to denote volume and |∂ · | to denote

boundary volume or perimeter; see Section 2.1.) The largest function I = IM

such that (1) holds for all domains of a Riemannian n-manifold M is called

the isoperimetric profile of M.

Besides the intrinsic appeal of the isoperimetric profile and isoperimetric

inequalities generally, they imply other important comparisons. For ex-

ample, they yield estimates on the first eigenvalue λ1(Ω) of the Laplace

operator by the Faber-Krahn argument [Cha84]. As a second example, the

first author has shown [Klo14] that they imply a lower bound on a cer-

tain isometric defect of a continuous map φ : M → N between Riemannian

manifolds. Both of these applications also yield sharp inequalities when the

isoperimetric optimum is a metric ball, which will be the case for the main

results in this article.

The isoperimetric profile is unknown for most manifolds. Even for sym-

metric spaces such as complex hyperbolic spaces, the isoperimetric profile

is only conjectured. The simply connected n-manifolds Xn,κ of constant

curvature κ (i.e. round spheres when κ > 0, Euclidean space when κ = 0,

real hyperbolic spaces when κ < 0) are the major exceptions: We know that

in such a space, a metric ball Bn,κ(r) minimizes perimeter among domains

of given volume. In each dimension n, let In,κ be the isoperimetric profile of

Xn,κ . In this case, the volume |Bn,κ(r)| and its boundary volume |∂Bn,κ(r)|
are easily computable. Thus the profile is explicit, given by

In,κ(|Bn,κ(r)|) = |∂Bn,κ(r)|.
Instead of calculating the isoperimetric profile of a given manifold, we

can look for a sharp isoperimetric inequality in a whole class of manifolds.

Since In,κ(V ) decreases as a function of κ for each fixed V , a natural class

to consider are manifolds with sectional curvature bounded above by some

κ . This motivates the following well-known conjecture.

Conjecture 1.2 (Generalized Cartan-Hadamard Conjecture). If M is a com-

plete, simply connected n-manifold with sectional curvature K bounded

above by some κ 6 0, then every domain Ω ⊆ M satisfies

|∂Ω|> In,κ(|Ω|). (2)

(If M is not simply connected, then there are elementary counterexam-

ples, such as a closed manifold, with or without a small ball removed.)

The history of Conjecture 1.2 is as follows [Oss78, Dru10, Ber03]. In

1926, Weil [Wei26] established Conjecture 1.2 when n = 2 and κ = 0 for
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Riemannian disks Ω, without assuming an ambient manifold M, thus an-

swering a question of Paul Lévy. Weil’s result was established indepen-

dently by Beckenbach and Radó [BR33], who are sometimes credited with

the result. When n = 2, the case of disks implies the result for other topolo-

gies of Ω in the presence of M. It was first established by Bol [Bol41] when

n = 2 and κ 6= 0. Rather later, Conjecture 1.2 was published independently

by Aubin [Aub76] and Burago-Zalgaller for κ 6 0 [BZ88], and by Gromov

[Gro81, Gro99]. The case κ = 0 is called the Cartan-Hadamard conjec-

ture, because a complete, simply connected manifold with K 6 0 is called a

Cartan-Hadamard manifold.

Soon afterward, Croke proved Conjecture 1.2 in dimension n = 4 with

κ = 0 [Cro84]. Kleiner [Kle92] proved Conjecture 1.2 in dimension n = 3,

for all κ 6 0, by a completely different method. (See also Ritoré [Rit05].)

Morgan and Johnson [MJ00] established Conjecture 1.2 for small domains

(see also Druet [Dru02] where the curvature hypothesis is on scalar curva-

ture); however their argument does not yield any explicit size condition.

Actually, Croke does not assume an ambient Cartan-Hadamard manifold

M, only the more general hypothesis that Ω has unique geodesics. We be-

lieve that the hypotheses of Conjecture 1.2 are negotiable, and it has some

generalization to κ > 0. But the conjecture is not as flexible as one might

think; in particular, Conjecture 1.2 is false for Riemannian 3-balls. (See

Theorem 1.9 below and Section 4.) With this in mind, we propose the fol-

lowing.

Conjecture 1.3. If Ω is a manifold with boundary with unique geodesics,

if its sectional curvature is bounded above by some κ > 0, and if |Ω| 6
|Xn,κ |/2, then |∂Ω|> In,κ(|Ω|).

The volume restriction in Conjecture 1.3 is justified for two reasons.

First, the comparison ball in Xn,κ only has unique geodesics when |Ω| <
|Xn,κ |/2. Second, Croke [Cro80] proved a curvature-free inequality, using

only the condition of unique geodesics, that implies a sharp extension of

Conjecture 1.3 when |Ω|> |Xn,κ |/2 (Theorem 1.14).

Of course, one can extend Conjecture 1.3 to negative curvature bounds.

The resulting statement is strictly stronger than Conjecture 1.2, since every

domain in a Cartan-Hadamard manifold has unique geodesics, but there

are unique-geodesic manifolds that cannot embed in a Cartan-Hadamard

manifold of the same dimension (Figure 3).

Another type of generalization of Conjecture 1.2 is one that assumes a

bound on some other type of curvature. For example, Gromov [Gro81]

suggests that Conjecture 1.2 still holds when K 6 κ is replaced by

K 6 0, Ric 6 (n−1)2κg. (3)
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Meanwhile Croke [Cro84] only uses a non-local condition that we call

Candle(0) rather than the curvature condition K 6 0; we state this as Theo-

rem 1.12.

Our previous work [KK12] subsumes both of these two generalizations.

More precisely, most of our results will be stated in terms of two volume

comparison conditions, Candle(κ) and LCD(κ) (defined in Section 2.2),

which follow from K 6 κ by Günther’s inequality [Gün60, BC64]. We

proved in [KK12] that they also are implied by a weaker curvature bound,

on what we call the root-Ricci curvature
√

Ric. In turn, the mixed bound

(3) implies our root-Ricci curvature condition.

1.2. Main results. For simplicity, we will consider isoperimetric inequali-

ties only for compact, smooth Riemannian manifolds Ω with smooth bound-

ary ∂Ω; or for compact, smooth domains Ω in Riemannian manifolds M.

Our constructions will directly establish inequalities for all such Ω. We

therefore don’t have to assume a minimizer or prove that one exists. Our

results automatically extend to any limit of smooth objects in a topology

in which volume and boundary volume vary continuously, e.g., to domains

with piecewise smooth boundary. Note that our uniqueness result, Theo-

rem 1.7, does not automatically generalize to a limit of smooth objects; but

its proof might well generalize to some limits of this type.

Our two strongest results are in the next two subsections. They both

include Croke’s theorem in dimension n= 4 as a special case. Each theorem

has a volume restriction that we can take to be vacuous when κ = 0.

1.2.1. The positive case.

Theorem 1.4. Let Ω be a compact Riemannian manifold with boundary, of

dimension n∈{2,4}. Suppose that Ω has unique geodesics and is Candle(κ)
with κ > 0 (e.g., K 6 κ), and that |Ω|6 |Xn,κ |/2. Then |∂Ω|> In,κ(|Ω|).

This is our fully general version of Theorem 1.1. As mentioned, Theo-

rem 1.14 provides an optimal extension of Theorem 1.4 to the case |Ω| >
|Xn,κ |/2.

1.2.2. The negative case. When κ is negative and n = 4, we only get a

partial result. (But see Section 9.) To state it, we let rn,κ(V ) be the radius

of a ball of volume V in Xn,κ . We define chord(Ω) to be the length of the

longest geodesic in Ω; we have the elementary inequality

chord(Ω)6 diam(Ω).

Theorem 1.5. Let M be a Cartan-Hadamard manifold of dimension n ∈
{2,4} which is LCD(κ) with κ 6 0 (e.g., K 6 κ). Let Ω be a domain in M,
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and if n = 4, suppose that

tanh(chord(Ω)
√
−κ) tanh(rn,κ(|Ω|)

√
−κ)6

1

2
. (4)

Then |∂Ω|> In,κ(|Ω|).

Actually, Theorem 1.5 only needs M to be convex with unique geodesics

rather than Cartan-Hadamard. However, we do not know whether that is a

more general hypothesis for Ω. (See Section 4.)

The smallness condition (4) means that Theorem 1.5 is only a partial

solution to Conjecture 1.2 when n = 4. Note that since tanh(x) < 1 for all

x, it suffices that either the chord length or the volume of Ω is small. I.e., it

suffices that

√
−κ min(chord(Ω),rn,κ(|Ω|))6 arctanh(

1

2
) =

log(3)

2
.

If we think of Conjecture 1.2 as parametrized by dimension, volume, and

the curvature bound κ , then Theorem 1.5 is a complete solution for a range

of values of the parameters.

1.2.3. Pointwise illumination. We prove a pointwise inequality which, in

dimension 2, generalizes Weil’s isoperimetric inequality [Wei26]. We state

it in terms of illumination of the boundary of a domain Ω by light sources

lying in Ω, defined rigorously in Section 3.

Theorem 1.6. Let Ω be a compact Riemannian n-manifold with boundary,

with unique geodesics, and which is Candle(0); and let p ∈ ∂Ω. If we fix

the volume |Ω|, then the illumination of p by a uniform light source in Ω is

maximized when Ω is flat and is the polar plot

r = k cos(θ)1/(n−1) (5)

for some constant k, with p at the origin. In particular, in dimension n = 2,

the optimum Ω is a round disk.

Theorem 1.6 generalizes the elementary Proposition 3.1, the problem of

the Little Prince, which was part of the inspiration for the present work.

When n = 2, Theorem 1.6 shows that a flat round disk maximizes illumi-

nation simultaneously at all points of its boundary, and therefore maximizes

the average illumination over the boundary. But, as a consequence of the

divergence theorem, the total illumination over the boundary is proportional

to |Ω|. A flat round disk must therefore minimize |∂Ω|, which is precisely

Weil’s theorem.
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1.2.4. Equality cases. We also characterize the equality cases in Theorems

1.4 and 1.5, with a moderate weakening when κ = 0.

Theorem 1.7. Suppose that Ω is optimal in Theorem 1.4 or 1.5. When

κ = 0, suppose further that Ω is
√

Ric class 0. Then Ω is isometric to a

metric ball in Xn,κ .

Again, see Section 2.2 for the definition of root-Ricci curvature
√

Ric. In

particular,
√

Ric class 0 implies Candle(0), but it does not implies K 6 0

when n > 2.

We will prove Theorem 1.7 in Section 8.1; see also Section 9.

1.2.5. Relative inequalities and multiple images. Choe [Cho03, Cho06]

generalizes Weil’s and Croke’s theorems in dimensions 2 and 4 to domains

Ω ⊆ M that share part of their boundary with a convex domain C, where

now the surface volume to minimize is |∂Ω \ ∂C|. The optimum in both

cases is half of a Euclidean ball.

Choe’s method in dimension 4 is to consider reflecting geodesics that

reflect from ∂C like light rays. (This dynamic is also called billiards, but

we use optics as our principal metaphor.) Such an Ω cannot have unique

reflecting geodesics; rather two points in Ω are connected by at most two

geodesics. We generalize Choe’s result by bounding the number of con-

necting geodesics by any positive integer.

Theorem 1.8. Let Ω be a compact n-manifold with boundary with n = 2

or 4, let κ > 0, and let W ⊂ ∂Ω be a (possibly empty) (n−1)-dimensional

submanifold. Suppose that Ω is Candle(κ) for geodesics that reflect from

W as a mirror, and suppose that every pair of points in Ω can be linked by

at most m (possibly reflecting) geodesics. Suppose also that

|Ω|6 |Xn,κ |
2m

.

Then

|∂Ω\∂W |> In,κ(m|Ω|)
m

. (6)

Note that Günther’s inequality generalizes to this case (Proposition 5.8):

If Ω satisfies K 6 κ , and if the mirror region W is locally concave, then Ω

is LCD(κ) and therefore Candle(κ) for reflecting geodesics.

Theorem 1.8 is sharp, as can be seen from various examples. Let G be

a finite group that acts on the ball Bn,κ(r) by isometries. Then the orbifold

quotient Ω = Bn,κ(r)/G matches the bound of Theorem 1.8, if we take the

reflection walls to be mirrors and if we take m= |G|. Although Ω has lower-

dimensional strata where it fails to be a smooth manifold, we can remove
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thin neighborhoods of them and smooth all ridges to make a manifold with

nearly the same volume and boundary volume.

We could state a version of Theorem 1.8 for κ < 0 using the LCD(κ)
condition, but it would be much more restricted because we would require

an ambient M in which every two points are connected by exactly m geo-

desics. We do not know any interesting example of such an M. (E.g., if

the boundary of M is totally geodesic, then this case is equivalent to simply

doubling M and Ω across ∂M.)

1.2.6. Counterexamples in dimension 3. We find counterexamples to jus-

tify the hypotheses of an ambient Cartan-Hadamard manifold and unique

geodesics in Conjectures 1.2 and 1.3. One might like to replace these geo-

metric hypotheses by purely topological ones, but we show that even the

strongest topological assumption does not imply any isoperimetric inequal-

ity.

Theorem 1.9. For every two numbers A,V > 0, there is a Riemannian 3-

ball Ω with sectional curvature K 6 −1 such that |Ω| = V and |∂Ω| = A.

1.3. The linear programming model. Our method to prove Theorems 1.4

and 1.5 (and indirectly Theorem 1.6) is a reinterpretation and generalization

of Croke’s argument, based on optical transport, optimal transport, and lin-

ear programming.

We simplify our manifold Ω to a measure µΩ on the set of triples (ℓ,α,β ),
where ℓ is length of a complete geodesic γ ⊆Ω and α and β are its boundary

angles. Thus µΩ is always a measure on the set R>0 × [0,π/2)2, regardless

of the geometry or even the dimension of Ω. We then establish a set of

linear constraints on µΩ, by combining Theorem 5.3 (more precisely equa-

tions (21) and (22)) with Lemmas 5.4, 5.5, and 5.6. The result is the basic

LP Problem 6.1 and an extension 7.2. The constraints of the model depend

on the volume V = |Ω| and the boundary volume A = |∂Ω|, among other

parameters.

Given such a linear programming model, we can ask for which pairs

(V,A) the model is feasible; i.e., does there exist a measure µ that satisfies

the constraints? On the one hand, this is a vastly simpler problem than the

original Conjecture 1.2, an optimization over all possible domains Ω. On

the other hand, the isoperimetric problem, minimizing A for any fixed V ,

becomes an interesting question in its own right in the linear model.

Regarding the first point, finite linear programming is entirely algorith-

mic: It can be solved in practice, and provably in polynomial time in gen-

eral. Our linear programming models are infinite, which is more compli-

cated and should technically be called convex programming. Nonetheless,
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each model has the special structure of optimal transport problems, with

finitely many extra parameters. Optimal transport is even nicer than gen-

eral linear programming. All of our models are algorithmic in principle. In

fact, our proofs of optimality in the two most difficult cases are computer-

assisted using Sage [Sage].

Regarding the second point, our model is successful in two different

ways: First, even though it is a relaxation, it sometimes yields a sharp

isoperimetric inequality, i.e., Theorems 1.4, 1.5, and 1.8. Second, our mod-

els subsume several previously published isoperimetric inequalities. We

mention six significant ones. Note that the first four, Theorems 1.10-1.13,

are special cases of Theorems 1.4, 1.5, and 1.8 as mentioned in Section 1.2.

The other two results are separate, but they also hold in our linear program-

ming models.

Theorem 1.10 (Variation of Weil [Wei26] and Bol [Bol41]). Let Ω be a

compact Riemannian surface with curvature K 6 κ > 0 with unique geode-

sics, and suppose that
√

κ|Ω|6 2π . Then for fixed area |Ω|, the perimeter

|∂Ω| is minimized when |Ω| has constant curvature K = κ and is round.

Theorem 1.11 (Variation of Bol [Bol41]). Suppose that Ω ⊆ M is a domain

in a Cartan-Hadamard surface M that satisfies K 6 κ 6 0. Then for fixed

area |Ω|, the perimeter |∂Ω| is minimized when |Ω| has constant curvature

K = κ and is round.

Theorem 1.12 (Croke [Cro84]). If Ω is a compact 4-manifold with bound-

ary, with unique geodesics, and which is Candle(0), then for each fixed

volume |Ω|, the boundary volume |∂Ω| is minimized when Ω is flat and

round.

Theorem 1.13 (Choe [Cho03, Cho06]). Let M be a Cartan-Hadamard man-

ifold of dimension n ∈ {2,4}, and let Ω ⊆ M be a domain whose interior is

disjoint from a convex domain C ⊆ M. Then

|∂Ω\∂C|> I0(2|Ω|)
2

.

Theorem 1.14 (Croke [Cro80]). If Ω is an n-manifold with boundary with

unique geodesics, then |∂Ω|> |∂Yn,ρ | where Yn,ρ is a hemisphere with con-

stant curvature ρ and ρ is chosen so that |Ω|= |Yn,ρ |.
Note that when |Ω|> |Xn,κ |/2, we obtain ρ 6 κ , so that Croke’s inequal-

ity extends Theorem 1.4, as promised. See the end of Section 8.5.2 for

further remarks about this result.

Theorem 1.15 (Yau [Yau75]). Let M be a Cartan-Hadamard n-manifold

which is LCD(κ) with κ < 0. Then every domain Ω ⊆ M satisfies

|∂Ω|> (n−1)
√
−κ|Ω|.
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Finally, we state the result that our models subsume all of these bounds.

Theorem 1.16. Let µ be a measure that satisfies the LP Problem 6.1, with

formal dimension n, formal curvature bound κ , formal volume V (µ), and

formal boundary volume A(µ). Then µ satisfies Theorem 1.4 and therefore

1.10. If µ satisfies LP Problem 7.2, then it satisfies Theorems 1.15 and 1.5,

and therefore 1.11. If µ satisfies LP Problem 8.3, then it satisfies 1.14. If µ
satisfies the LP model 8.1, then it satisfies Theorem 1.8 and therefore 1.13.

We will prove some cases of Theorem 1.16 in the course of proving our

other results; the remaining cases will be done in Section 8.5.

Our linear programming models are similar to the important Delsarte lin-

ear programming method in the theory of error-correcting codes and sphere

packings [Del72, CS93, CE03]. Delsarte’s original result was that many

previously known bounds for error-correcting codes are subsumed by a lin-

ear programming model. But his model also implies new bounds, including

sharp bounds. For example, consider the kissing number problem for a

sphere in n Euclidean dimensions. The geometric maximum is of course

an integer, but in a linear programming model this may no longer be true.

Nonetheless, Odlyzko and Sloane established a sharp geometric bound in

the Delsarte model, which happens to be an integer and the correct one, in

dimensions 2, 8, and 24. (The bounds are, respectively, 6, 240, and 196,560

kissing spheres.) The basic Delsarte bound for the sphere kissing problem

is quite strong in other dimensions, but it is not usually an integer and not

usually sharp even if rounded down to an integer.

Another interesting common feature of the Delsarte method and ours is

that they are both sets of linear constraints satisfied by a “two-point corre-

lation function”, i.e., a measure derived from taking pairs of points in the

geometry.

1.4. Other results.

1.4.1. Croke in all dimensions. There is a natural version of Croke’s theo-

rem in all dimensions. This is a generalized, sharp isoperimetric inequality

in which the volume of Ω is replaced by some other functional when the

dimension n 6= 4. This result might not really be new; we state it here to

further illustrate of our linear programming model.

If Ω is a manifold with boundary and unique geodesics, then the space

G of geodesic chords in Ω carries a natural measure µG, called Liouville

measure or étendue (Section 5).

Theorem 1.17. Let Ω be a compact manifold with boundary of dimension

n > 4, with unique geodesics, and with non-positive sectional curvature.



10 BENOÎT R. KLOECKNER AND GREG KUPERBERG

Let

L(Ω) =
∫

G
ℓ(γ)n−3 dµG(γ)

If Bn,0(r) is the round, Euclidean ball such that

L(Ω) = L(Bn,0(r)),

then

|∂Ω|> |∂Bn,0(r)|.

By Theorem 5.3 (Santaló’s equality),

ωn−1|Ω|=
∫

G
ℓ(γ)dµG(γ).

(Here ωn = |Xn,1| is the n-sphere volume; see Section 2.1.) Thus Theo-

rem 1.17 is Croke’s Theorem if n = 4. The theorem is plainly a sharp

isoperimetric bound for the boundary volume |∂Ω| in all cases given the

value of L(Ω), which happens to be proportional to the volume |Ω| only

when n = 4.

Similar results are possible with a curvature bound K < κ , only with

more complicated integrands F(ℓ) over the space G.

1.4.2. Non-sharp bounds and future work. We mention three cases in which

the methods of this paper yield improved non-sharp results.

First, when n = 3 and κ = 0, Problem 6.1 yields a non-sharp version of

Kleiner’s theorem under the weaker hypotheses of Candle(0) and unique

geodesics. Croke [Cro84] established the isoperimetric inequality in this

case up to a factor of 3
√

36/32 = 1.040 . . .. Meanwhile Theorem 1.6 implies

the same isoperimetric inequality up to a factor of 3
√

27/25= 1.026 . . .. The

wrinkle is that Croke’s proof uses only (34), while Theorem 1.6 uses only

(35). These two inequalities compensate for each other’s inefficiency, and

the combined linear programming problem should produce a superior if still

non-sharp bound.

Second, it is a well-known conjecture that a metric ball is the unique op-

timum to the isoperimetric problem for domains in the complex hyperbolic

plane CH2. (The same conjecture is proposed for any non-positively curved

symmetric space of rank 1.) Suppose that we normalize the metric on CH2

so that the curvature is pinched between −4 and −1. Then it is easy to check

that CH2 is LCD(−16/9), and then the Theorem 1.5 is, to our knowledge,

better than what was previously established for moderately small volumes.

Even so, this is a crude bound because what we would really want to do is

make a version of Problem 7.2 using the specific candle function of CH2.

Third, even for domains in Cartan-Hadamard manifolds with K 6 −1

(or more generally LCD(−1)), we can relax the smallness condition (4) in
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Theorem 1.5 simply by increasing the curvature bound κ from κ =−1. This

is still a good bound for a range of volumes until it is eventually surpassed

by Theorem 1.15. This too is a crude bound that can surely be improved,

given that both Theorem 1.5 and Theorem 1.15 hold in the same linear

programming model, Problem 7.2.
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2. CONVENTIONS

2.1. Basic conventions. If f : R>0 → R is an integrable function, we let

f (−1)(x)
def
=

∫ x

0
f (t)dt

be its antiderivative that vanishes at 0, and then by induction its nth anti-

derivative f (−n). This is in keeping with the standard notation that f (n) is

the nth derivative of f for n > 0.

If M is a Riemannian manifold, we let νM denote the Riemannian mea-

sure on M. As usual, T M is the tangent bundle of M, while we use UM to

denote the unit tangent bundle. Also, if Ω is a manifold with boundary ∂Ω,

then we let

U+∂Ω
def
=

{

u = (p,v) | p ∈ ∂Ω,v ∈UpΩ inward pointing
}

.

We let |M| be the volume of M:

|M| def
=

∫

M
dνM.

We let

ωn = |Xn,1|=
2π(n+1)/2

Γ(n+1
2
)

be the volume of the unit n-dimensional sphere Xn,1 = Sn ⊆ Rn+1.

2.2. Candles. Our main results are stated in terms of conditions Candle(κ)
and LCD(κ) that follow from the sectional curvature condition K 6 κ by

Günther’s comparison theorem [Gün60, BC64]. These conditions are non-

local, but in previous work [KK12], we showed that they follow from an-

other local condition, more general than K 6 κ that we called
√

Ric class

(ρ,κ). The original motivation is that Croke’s theorem only needs that the

manifold D is Candle(0), and even then only for pairs of boundary points.

Informally, a Riemannian manifold M is Candle(κ) if a candle at any given
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distance r from an observer is dimmer than it would be at distance r in a

geometry of constant curvature κ .

More rigorously, let M be a Riemannian manifold and let γ = γu be a

geodesic in M that begins at p = γ(0) with initial velocity u ∈ UpM. Then

the candle function jM(γ,r) of M is by definition the normalized Jacobian

of the exponential map

u 7→ γu(r) = expp(ru),

given by the equation

dνM(γu(r)) = jM(γu,r)dνUpM(u)dr

for r > 0, where νM is the Riemannian volume on M and νUpM is the Rie-

mannian measure on the round unit sphere UpM. More generally, if a < b,

we define

jM(γ,a,b) = jM(γa,b−a),

where γa is the same geodesic as γ but with parameter shifted by a. We also

define

jM(γ,b,a) = jM(γb,b−a),

where γb is the same geodesic as γ , but reversed and based at γ(b). (But see

Corollary 5.2.)

The candle function of the constant-curvature geometry Xn,κ is indepen-

dent of the geodesic. We denote it by sn,κ(r); it is given by the following

explicit formulas:

sn,κ(r) =























(sin(r
√

κ)√
κ

)n−1

if κ > 0, r 6
π√
κ

rn−1 if κ = 0
(sinh(r

√
−κ)√

−κ

)n−1

if κ < 0.

(7)

We will also need the extension sn,κ(r) = 0 when κ > 0 and r > π/
√

κ .

Definition. An n-manifold M is Candle(κ) if

jM(γ,r)> sn,κ(r)

for all γ and r. It is LCD(κ), for logarithmic candle derivative, if

log( jM(γ,r))′ > log(sn,κ(r))
′

for all γ and r. (Here the derivative is with respect to r.) The LCD(κ)
condition implies the Candle(κ) condition by integration. If κ > 0, then

these conditions are only required up to the focal distance π/
√

κ in the

comparison geometry.
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To illustrate how Candle(κ) is more general than K 6 κ , we mention

root-Ricci curvature [KK12]. Suppose that M is a manifold such that K 6 0

and let κ < 0. For any unit tangent vector u ∈UpM with p ∈ M, we define
√

Ric(u)
def
= Tr(

√

−R(·,u, ·,u)).
Here R(u,v,w,x) is the Riemann curvature tensor expressed as a tetralinear

form, and the square root is the positive square root of a positive semidefi-

nite matrix or operator. We say that M is of
√

Ric class κ if K 6 0 and
√

Ric(u)> (n−1)
√
−κ.

Then

K 6 κ =⇒
√

Ric class κ =⇒ LCD(κ)

=⇒ Candle(κ) =⇒ Ric 6 (n−1)κg.

The second implication, from
√

Ric to LCD, is the main result of [KK12].

(We also established a version of the result that applies for any κ ∈ R. This

version uses a generalized
√

Ric class (ρ,κ) condition that also requires

K 6 ρ for a constant ρ >max(κ,0).) All implications are strict when n> 2.

By contrast in dimension 2, the last condition trivially equals the first one,

so all of the conditions are equivalent.

We conclude with two examples of 4-manifolds of
√

Ric class −1, and

which are therefore LCD(−1), but that do not satisfy K 6−1:

• The complex hyperbolic plane, normalized to have sectional curva-

ture between −9
4

and − 9
16

.

• The product of two simply connected surfaces that each satisfy K <
−9.

Actually, the most important regime where Candle(κ) is weaker than K 6 κ
is at short distances. Since j′(γ,0), the derivative at 0 of the candle function,

is only sensitive to the Ricci curvature of M, we can write informally that

Candle(κ)
≈⇐⇒ Ric 6 (n−1)κg

as diam(M)→ 0.

3. THE LITTLE PRINCE AND OTHER STORIES

3.1. The problem of the Little Prince. As Saint-Exupéry related to inhab-

itants of our planet, the Little Prince lives on his own planet, also known as

asteroid B-612 (Figure 1). Since this planet is not very big, its gravitational

pull is small and its habitation is precarious. The question arises as to what

shape it should be to maximize the normal component of gravity for the Lit-

tle Prince, assuming that the planet has a fixed mass, and a uniform, fixed

mass density. Let Ω be the shape of the planet. The divergence theorem
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FIGURE 1. The Little Prince on his not-very-big planet, ac-

tually an asteroid.

tells us that the average normal gravity is proportional to |Ω|/|∂Ω|, so max-

imizing the average would be exactly the isoperimetric problem. Suppose

instead that the Little Prince has a favorite location, and does not mind less

gravity elsewhere. (After all, in the illustrations he usually stands on top of

the planet.)

We cannot be sure of the dimension of the Little Prince or his planet.

The illustrations are 2-dimensional, but the Prince visits the Sahara Desert

which suggests that he is 3-dimensional. In any case higher-dimensional

universes, which are a fashionable topic in physics these days, would each

presumably have their own Little Prince. So we assume that the Little

Prince is n-dimensional for some n > 2. We first assume Newtonian gravity

and therefore a Euclidean planet; recall that in n dimensions, a divergence-

less central gravitational force is proportional to r1−n.

Proposition 3.1 (Little Prince Problem). Let Ω be the shape of a planet in

n Euclidean dimensions with a pointwise gravitational force proportional

to r1−n. Suppose that the planet has a fixed volume |Ω| and a uniform,

fixed mass density, and let p ∈ ∂Ω. Then the total normal gravitational

force F(Ω, p) at p is maximized when Ω is bounded by the surface r =

k cos(θ)1/(n−1) for some constant k, in spherical coordinates centered at p.
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The problem of the Little Prince in 3 dimensions is sometimes used as an

undergraduate physics exercise [McD03]. It has also been previously used

to prove the isoperimetric inequality in 2 dimensions [HHM99]. However,

our further goal is inequalities for curved spaces such as Theorem 1.6.

Proof. For convenience, we assume that the gravitational constant and the

mass density of the planet are both 1. Given x∈Ω, let r = r(x) and θ = θ(x)
be the radius and first angle in spherical coordinates with the point p at the

origin, and such that the normal component of gravity is in the direction

θ = 0. Then the total gravitational effect of a volume element dx at x is

cos(θ)r1−n dx, so the total gravitational force is

F(Ω, p) =
∫

x∈Ω
cos(θ)r1−n dx.

In general, if f (x) is a continuous function and we want to choose a region

Ω with fixed volume to maximize
∫

Ω
f (x)dx,

then by the “bathtub principle”, Ω should be bounded by a level curve of f ,

i.e.,

Ω = f−1([k,∞))

for some constant k. Our f is not continuous at the origin, but the principle

still applies. Thus Ω is bounded by a surface of the form

r = k cos(θ)1/(n−1). �

As explained above in words, the integral over ∂Ω of the normal com-

ponent of gravity is proportional to |Ω| by the divergence theorem. More

rigorously: We switch to a vector expression for gravitational force and we

do not assume that p = 0. Then

F(Ω, p) =
∫

Ω
−(x− p)|x− p|−n dx.

Since −(x− p)|x− p|−n is divergenceless except at its singularity, for each

fixed x ∈ Int(Ω),
∫

∂Ω
〈−w(p),x− p〉|x− p|−n dp = ωn−1,

where w(p) is the outward unit normal vector at p. Thus
∫

∂Ω
〈−w(p),F(Ω, p)〉dp = ωn−1|Ω|

by switching integrals. Then

ωn−1|Ω|6 |∂Ω|Fmax, (8)
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where Fmax is the upper bound established by Proposition 3.1.

In particular, when n= 2, the optimum Ω is the polar plot of r = k cos(θ),
which is a round circle. In this case

〈−z(p),F(Ω, p)〉= Fmax

at all points simultaneously. Thus when n = 2, equation (8) is exactly the

sharp isoperimetric inequality (2).

3.2. Illumination and Theorem 1.6. Proposition 3.1 is close to a special

case of Theorem 1.6. To make it an actual special case, we slightly change

its mathematics and its interpretation, but we will retain the sharp isoperi-

metric corollary using the divergence theorem. Instead of the shape of a

planet, we suppose that Ω is the shape of a uniformly lit room, and we let

I(Ω, p) be the total intensity of light at a point on the wall p ∈ ∂Ω. More

rigorously, if Vis(Ω, p) is the subset of Ω which is visible from p (assuming

that the walls are opaque), then

I(Ω, p) =
∫

Vis(Ω,p)
〈z(p),x− p〉|x− p|−ndx.

We still have
∫

Vis(∂Ω,x)
〈z(p),x− p〉|x− p|−n dp = ωn−1

and we can still exchange integrals. Moreover,

I(Ω, p) = F(Ω, p)

when Ω is convex. Thus, this variation of Proposition 3.1 is also true and

also implies (2).

We now consider the case when Ω is a curved Riemannian manifold, that

is, Theorem 1.6. The proof is a simplified version of the proof of Theo-

rems 1.4 and 1.5. Before giving the proof, we give a rigorous definition of

illumination in the curved setting. (The definition agrees with the natural

geometric assumption that light rays travel along geodesics.)

Let Ω be a compact Riemannian n-manifold with boundary and unique

geodesics. For any x ∈ Ω, we define a tangent vector field vx on Ω which is

uniquely determined by the following conditions:

1. vx is radial; i.e., if y is visible from x, then vx(y) is tangent to the

geodesic from x to y.

2. divvx = ωn−1δx, where δx is a Dirac delta measure at x.

3. vx(y) = 0 if y is not visible from x.

Concerning property 2, note that vx has a well-defined divergence and can

be used for the divergence theorem, even though it is discontinuous when

Ω is non-convex.



LE PETIT PRINCE 17

We fix a point p ∈ ∂Ω and again let w(p) be the outward unit normal

vector to ∂Ω at p. Then the illumination at p is defined by

I(Ω, p) =
∫

Vis(Ω,p)
〈w(p),vx(p)〉dνΩ(x).

Proof of Theorem 1.6. First, we express I(Ω, p) as an integral over U =
U+

p ∂Ω, the unit inward tangent vectors at p. Given u ∈ U , let ℓ(u) be the

length of the maximal geodesic segment defined by u and let α(u) be the

angle of u with the inward normal −w(p). Then, in polar coordinates we

get

I(Ω, p) =
∫

U

∫ ℓ(u)

0
cos(α(u))dt dνU(u)

=
∫

U
ℓ(u)cos(α(u))dνU(u).

The first equality expresses the fact that the norm ||vx(p)|| is exactly re-

ciprocal to the Jacobian of the exponential map from p. In other words, it

is based on an optical symmetry principle (Corollary 5.2): If two identi-

cal candles are at x and p, then each one looks exactly as bright from the

position of the other one.

Second, the Candle(0) hypothesis tells us that

|Ω|> |Vis(Ω, p)|=
∫

Vis(Ω,p)
dνΩ(x)

>

∫

U

∫ ℓ(u)

0
tn−1 dt dνU(u),

so that

|Ω|>
∫

U

ℓ(u)n

n
dνU(u). (9)

Third, we apply the linear programming philosophy that will be impor-

tant in the rest of the paper.

All of our integrands depend only on ℓ and α . Thus we can summarize

all available information by projecting the measure νU to a measure

σΩ = (ℓ,α)∗(dνU)

on the space of pairs

(ℓ,α) ∈ R>0 × [0,
π

2
).

Then we want to maximize

I =
∫

ℓ,α
ℓcos(α)dσΩ (10)
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subject to the constraint
∫

ℓ,α

ℓn

n
dσΩ 6V. (11)

We have one other linear piece of information: If we project volume on the

hemisphere U into the angle coordinate α ∈ [0, π
2
), then the result is

α∗(dσΩ) = α∗(dνU) = ωn−2 sin(α)n−2 dα, (12)

since the latitude on U at angle α is an (n−2)-sphere with radius sin(α).
We temporarily ignore geometry and maximize (10) for an abstract posi-

tive measure σ = σΩ that satisfies (11) and (12). To do this, choose a > 0,

and let

f (α) = sup
ℓ>0

(

ℓcos(α)− aℓn

n

)

. (13)

We obtain

0 6

∫

ℓ,α

(

f (α)+
aℓn

n
− ℓcos(α)

)

dσ(ℓ,α) (14)

6

∫ π/2

0
f (α)ωn−2 sin(α)n−2 dα +aV − I. (15)

The integral on the right side of (15) is function of a only. Finally (15) is

an upper bound on I, one that achieves equality if (11) is an equality and

σ = σΩ is supported on the locus

cos(α) = aℓn−1,

because that is the maximand of (13). The first condition tells us that Ω is

flat and visible from p. The second gives us the polar plot (5) if we take

k = a−1/(n−1). �

Remark. It is illuminating to give an alternate Croke-style end to the proof

of Theorem 1.6. Namely, Hölder’s inequality says that

I =
∫

ℓ,α
ℓcos(α)dσΩ

6

(

∫

ℓ,α
ℓn dσΩ

) 1
n
(

∫

ℓ,α
cos(α)

n
n−1 dσΩ

) n−1
n

6 (nV )
1
n

(

∫

ℓ,α
cos(α)

n
n−1 ωn−2 sin(α)n−2 dα

) n−1
n
.

The last expression depends only on V and n, while the inequality is an

equality if (11) is an equality, and if

ℓn ∝ cos(α)
n

n−1 .
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The first condition again tells us that Ω is flat and visible from p; the second

one gives us the same promised shape (5).

The Croke-style argument looks simpler than our proof of Theorem 1.6,

but what was elegance becomes misleading for our purposes. For one rea-

son, our use of the auxiliary f (α) amounts to a proof of this special case

of Hölder’s inequality. Thus our argument is not really different; it is just

another way to describe the linear optimization. For another, we will see

more complicated linear programming problems in the full generality of

Theorems 1.4 and 1.5 that do not reduce to Hölder’s inequality.

4. TOPOLOGY AND GEODESICS

In this section we will analyze the effect of topology and geodesics on

isoperimetric inequalities. The end of the section is a proof of Theorem 1.9.

Weil and Bol established the sharp isoperimetric inequality (2) for Rie-

mannian disks Ω with curvature K 6 κ , without any ambient manifold M

and for any κ ∈ R. The cases κ 6 0 of the Weil and Bol theorems is equiv-

alent to the n = 2 case of Conjecture 1.2 [Dru10].

Ω

B

M

FIGURE 2. A counterexample Ω ⊆ B ⊆ M to Aubin’s con-

jecture with κ > 0, in which both |Ω| and |∂Ω| are unre-

stricted.

The case κ > 0 is more delicate, even in 2 dimensions. Aubin [Aub76]

assumed that B is a Riemannian ball with K 6 κ and then that Ω ⊆ B; but

this formulation does not work. Even if B is a metric ball with an injective

exponential map, and even if in addition B ⊂ M and M is complete and

simply connected with the same K 6 κ , there may be no control over the

size of ∂Ω. We can let M be a “barbell” consisting of two large, nearly

round 2-spheres connected by a rod (Figure 2). Then Ω can be just the

rod, while B is Ω union one end of the barbell. B is also a metric ball with
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an injective exponential map. Then Ω is an annulus S1 × I in which both

the meridian S1 and the longitude I can have any length. Thus both |Ω|
and |∂Ω| can have any value. This was observed by Morgan and Johnson

[MJ00] to justify their hypothesis small-volume hypothesis; of course, their

upper bound on the volume depends on the ambient manifold.

Theorem 1.9 says that Weil’s theorem fails completely for negatively

curved Riemannian 3-balls. Our proof is similar to Hass’s construction

[Has94] of a negatively curved 3-ball with concave boundary.

If Ω is a smooth domain in a Cartan-Hadamard manifold as in Conjec-

ture 1.2, then it has unique geodesics, but unique geodesics is a strictly

weaker hypothesis even in 2 dimensions. For example, if Ω is a thin, flat

annulus with an angle deficit (Figure 3), then it has unique geodesics, but its

inner circle cannot be filled without positive curvature. Theorem 1.9 tells

us that we need some geometric condition on a manifold Ω to obtain an

isoperimetric inequality, because even the strictest topological condition —

that Ω be diffeomorphic to a ball — is not enough. One natural condition

is that Ω has unique geodesics. (But see Section 5.5 for a generalization.)

Actually, Joel Hass has pointed out to us that if negatively curved balls do

not satisfy any isoperimetric inequality, it is also not at all clear that an

isoperimetric minimizer in a Cartan-Hadamard manifold must be a ball.

Question 4.1. If M is a Cartan-Hadamard manifold and Ω minimizes |∂Ω|
for some fixed value of |Ω|, then is it convex? Is it a topological ball?

FIGURE 3. A conical, Euclidean annulus that has unique

geodesics but does not embed in a Cartan-Hadamard surface.

In two dimensions, if Ω is a non-positively curved disk, then it has unique

geodesics. (Proof: If a disk does not have unique geodesics, then it contains

a geodesic “digon”. By the Gauss-Bonnet theorem, a geodesic digon cannot

have non-positive curvature.) Thus the κ = 0, n = 2 case of Theorem 1.4
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implies Weil’s theorem; but, as explained in the previous paragraph, it is

more general.

In higher dimensions, there are non-positively curved smooth balls with

closed geodesics. Hass’s construction has closed geodesics, and so does the

construction in Theorem 1.9.

Proof of Theorem 1.9. We will construct a metric on a 3-ball Ω with K 6

−1/2 such that

|Ω|>V |∂Ω|< A. (16)

Then, on the one hand, we can homothetically shrink Ω by any factor

r < 2−1/2, which then induces the condition K 6 −1. It also reduces both

|Ω| and |∂Ω| while keeping constant the ratio |∂Ω|/|Ω|2/3. On the other

hand, we can add a thin finger to Ω that increases |∂Ω| by any amount

while changing |Ω| arbitrarily little. Given that A and V are arbitrary, these

modifications allow us to convert the inequalities in (16) to the equalities in

Theorem 1.9.

Let L ⊆ S3 be a hyperbolic knot, and give S3 \L its complete hyperbolic

structure with curvature K = −1. We can choose L so that |S3 \L| is arbi-

trarily high by a theorem of Adams [Ada05]. A collar around L becomes

a parabolic cusp, which can be truncated to obtain a manifold M with a

horospheric torus boundary ∂M. All choices for the horospheric truncation

yield homothetic, Euclidean metrics on ∂M. As the truncation moves to the

end of the cusp, the metric on ∂M converges to zero and |M| → |S3 \ L|.
Let γ ⊂ ∂M be a geodesic meridian circle. If we attach a 2-handle D2 × I

to M along γ , then the result is diffeomorphic to a ball. To finish the proof,

it suffices to construct a metric on D2 × [−1,1] that has bounded surface

area, curvature K 6 −1/2, and such that a neighborhood of ∂D2 ×{0} is

isometric to a neighborhood of γ in the cusp (in S3 \L\M). More precisely,

we want a metric on D2 × [−1,1] that shrinks with ∂M and γ , so that the

addition of this handle only changes the surface area by a bounded factor.

We construct the handle as the union of a warped, cusp-like neck N and a

hyperbolic cork C. N is a union of a family of horospheric annuli, while C

is a solid pseudo-cylinder, i.e., a 3-ball which is a coordinate cylinder in the

upper half-space model of hyperbolic space. We use the coordinates (x,y,z)
in the upper half-space model

H3 = {(x,y,z) | z > 0}

of hyperbolic 3-space H3 = X3,−1, with the Riemannian metric

ds2 =
dx2 +dy2 +dz2

z2
.
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N

∂M

M ⊆ S3 \L

C

FIGURE 4. A schematic diagram of M∪N ∪C, which con-

sists of a hyperbolic knot complement M with horospheric

torus boundary ∂M, and a 2-handle N ∪C that makes M ∪
N ∪C into a 3-ball. M is complicated and has many closed

geodesics. The horospheric annuli in the neck N transition

from cylindrical to planar. The cork C fills in the planar an-

nuli.

A collar A around γ in the torus ∂M is a cylindrical, Euclidean annulus with

a horospheric realization in hyperbolic geometry. To model it, we consider

the coordinates

(r,θ ,z) ∈ [1− ε,1+ ε]×R/(2πZ)×R>0

for some small ε > 0, with the metric

ds2 =
dr2 +dθ 2 +dz2

z2
. (17)

This is of course the same as H3, except with x = r and periodic y = θ . If γ
has length ℓ, then we can place A at height

z = h =

√

2π

ℓ
,
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To match the cork, we want planar, horospheric annuli instead. We model

this with the same coordinates, but with the metric

ds2 =
dr2 + r2 dθ 2 +dz2

z2
. (18)

This is also the same as H3, but in cylindrical coordinates

(x,y,z) = (r cos(θ),r sin(θ),z).

We will need an interpolation between the metrics (17) and (18) given by

ds2 =
dr2 +

(

1+ f (z)(r−1)
)2

dθ 2 +dz2

z2
(19)

with 0 6 f (z) 6 1. If f (z) is a constant function, this is still a family of

horospheric annuli with a locally hyperbolic total space. Each annulus is

conical, or planar with an angle deficit as in Figure 3. To see this more

explicitly when 0 < f (z)< 1, we make the change of variables

(r,θ) =
(

ρ − 1− f (z)

f (z)
,

ψ

f (z)

)

.

Then

ds2 =
dρ2 +ρ2 dψ2 +dz2

z2
,

which is the polar metric with

(ρ,ψ) ∈
[ 1

f (z)
− ε,

1

f (z)
+ ε

]

×R/(2π f (z)Z).

Since the total angle is 2π f (z)< 2π , the metric is conical.

To make the neck N, we let f (z) be a smooth, monotonic transition func-

tion from f (z) = 0 when z 6 h to f (z) = 1 when z > k ≫ h. In other words,

N has coordinates

(r,θ ,z) ∈ [1− ε,1+ ε]×R/(2πZ)× [h− ε,k+ ε]

and metric (19). We assume that f (z) changes very slowly relative to geo-

metric length log(z), more precisely that

f ′(z)≪ 1

z
, f ′′(z)≪ 1

z2
.

Then a derivative estimate shows that the Riemannian curvature of N is

close to that of hyperbolic geometry; in particular, we can ensure that K 6

−1/2. Finally, the cork C has coordinates

(r,θ ,z) ∈ [0,1− ε]×R/(2πZ)× [k,k+ ε]

and standard hyperbolic metric (18).
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The union M∪N∪C is shown schematically in Figure 4. It is a topologi-

cal 3-ball with all of the desired properties, except that it is a manifold with

corners. We can smooth the boundary to make a 3-ball Ω with K 6 −1/2

and that satisfies (16). �

5. GEODESIC INTEGRALS

In this section we will study Santaló’s integral formula [San04, §19.4] in

the formalism of geodesic flow and symplectic geometry. See McDuff and

Salamon [MS98, §5.4] for properties of symplectic quotients. The formulas

we derive are those of Croke [Cro84]; see also Teufel [Teu93].

5.1. Symplectic geometry. Let W be an open symplectic 2n-manifold with

a symplectic form ωW . Then W also has a canonical volume form µW =ω∧n
W

which is called the Liouville measure on W . Let h : W → R be a Hamil-

tonian, by definition any smooth function on W , suppose that 0 is a regular

value of h, and let H = h−1(0) then be the corresponding smooth level sur-

face. Then ωW converts the 1-form dh to a vector field ξ which is tangent

to H. Suppose that every orbit γ of ξ only exists for a finite time interval.

Let G be the set of orbits of ξ on H; it is a type of symplectic quotient of

W . G is a smooth open manifold except that it might not be Hausdorff.

The manifold G is also symplectic with a canonical 2-form ωG and its

own Liouville measure µG. H cannot be symplectic since it is odd-dimen-

sional, but it does have a Liouville measure µH . (In fact G and ωG only

depend on H, and not otherwise on h, while µH depends on the specific

choice of h.) Let (a(γ),b(γ)) be the time interval of existence of γ ∈ G;

here only the difference

ℓ(γ) = b(γ)−a(γ)

is well-defined by the geometry. In this general setting, if f : H → R is a

suitably integrable function, then

∫

H
f (x)dµH(x) =

∫

γ∈G

∫ b(γ)

a(γ)
f (γ(t))dt dµG(γ). (20)

Or, if σ is a measure on H, we can consider the push-forward (πG)∗(σ)
of σ under the projection πG : H → G. Taking the special case that f is

constant on orbits of ξ , the relation (20) says that

(πG)∗(µH) = ℓµG.

5.2. The space of geodesics and étendue. If M is a smooth n-manifold,

then W = T ∗M is canonically a symplectic manifold. If M has a Riemannian
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FIGURE 5. A manifold M in which the space of geodesics

is not Hausdorff. The horizontal chords make a “zipper” 1-

manifold.

metric g, then g gives us a canonical identification T M ∼= T ∗M. It also gives

us a Hamiltonian h : T M → R defined as

h(v) = (g(v,v)−1)/2.

The level surface h−1(0) is evidently the unit tangent bundle UM. It is less

evident, but still routine, that the Hamiltonian flow ξ of h is the geodesic

flow on UM. Suppose further that M only has bounded-time geodesics.

Then the corresponding symplectic quotient G is the space of oriented geo-

desics on M. The structure on G that particularly interests us is its Liouville

measure µG. The Liouville measure on H =UM is also important, and hap-

pens to equal the Riemannian measure νUM. Even in this special case, G

might not be Hausdorff if the geodesics of M merge or split, as in Figure 5.

The Liouville measure µG is important in geometric optics [Smi07], where

among other names it is called étendue1. Lagrange established that étendue

is conserved. Mathematically, this says exactly that the (2n− 2)-form µG,

which is definable on H, descends to G. More explicitly, suppose (in the

full generality of Section 5.1) that K1,K2 ⊆ H are two transverse open disks

that are identified by the holonomy map

φ : K1

∼=−→ K2

induced by the set of orbits. Then the Liouville measures K1 and K2 match,

i.e., φ∗(µG) = µG. (As in the proof of Liouville’s theorem, φ is even a

symplectomorphism.)

Now suppose that Ω is a compact Riemannian manifold with boundary

and with finite geodesics, and let M be the interior of Ω. Then G, the space

of oriented geodesics of Ω or M, is canonically identified in two ways to

U+∂Ω. We can let γ = γu be the geodesic parallel to u, or we can let γ = γu

be the geodesic anti-parallel to u. These are both examples of identifying

1In English, not just in French.
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part of G, in this case all of G, with transverse submanifolds as in the pre-

vious paragraph. Let

σ+ : U+∂Ω
∼=−→ G, σ− : U+∂Ω

∼=−→ G

be the two corresponding identifications.

The maps σ± are smooth bijections; when ∂Ω is convex, they are diffeo-

morphisms. In general, the inverses σ−1
± are smooth away from the non-

Hausdorff points of G. These correspond to geodesics tangent to ∂Ω, and

they are a set of measure 0 in G. Thus, the composition

φ = σ−1
− ◦σ+ : U+∂Ω

∼=−→U+∂Ω

is an involution of U+∂Ω that preserves the measure µG. (It is even almost

everywhere a local symplectomorphism with respect to ωG.) We call the

map φ the optical transport of Ω.

We define several types of coordinates on G, UΩ and U+∂Ω. Let u =
(x,v) be the position and vector components of a tangent vector u ∈ UΩ,

and let u = (p,v) be the same for u ∈U+∂Ω. On G itself, we already have

the length function ℓ(γ). In addition, if γ = γu for

u = (p,v) ∈U+∂Ω,

let α(γ) be the angle between v and the inward normal vector w(p). If

γ = γu, then let β (γ) be that angle instead.

The map σ+ relates the Liouville measure µG with Riemannian measure

νU+∂Ω. More loosely, the projection π from Section 5.1 relates µG with

νUΩ. Then by slight abuse of notation,

dµG = cos(α)dνU+∂Ω =
dνUΩ

ℓ
. (21)

In words, µG is close to νU+∂Ω but not the same: If a beam of light is

incident to a surface at an angle of α , then its illumination has a factor of

cos(α). The measure (πG)∗(νUΩ) is also close but not the same, because

the étendue of a family of geodesics does not grow with the length of the

geodesics.

Another important comparison of measures relates geodesics to pairs of

points.

Lemma 5.1. Suppose that p,q ∈ Ω lie on a geodesic γ and that p 6= q. Let

p = γ(a) and q = γ(b). Then

dνΩ×Ω(p,q) = jΩ(γ,a,b)dµG(γ)da db.

Proof. On the one hand, a localized version of formula (21) is

dµG(γ)da = dνUΩ(u) = dνUpΩ(v)dνΩ(p)
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when u = (p,v) and γ is the geodesic such that γ(a) = p and γ ′(a) = v. On

the other hand, by the definition of the candle function, we have for all fixed

p:

dνΩ(q) = jΩ(γ,a,b)dνUpΩ(v)db

when γ(a) = p, γ(b) = q and v = γ ′(a). Thus, we obtain a pair of equalities

of measures:

dµG(γ)da db = dνΩ(p)dνUpΩ(v)db =
dνΩ(p)dνΩ(q)

jΩ(γ,a,b)
. �

Lemma 5.1 has the important corollary that the candle function is sym-

metric. To generalize from an Ω with finite geodesics to an arbitrary M, we

can let Ω be a neighborhood of the geodesic γ , immersed in M.

Corollary 5.2 (Folklore [Yau75, Lem. 5]). In any Riemannian manifold M,

jM(γ,a,b) = jM(γ,b,a).

Combining (20) with (21) yields Santaló’s equality.

Theorem 5.3 (Santaló [San04, §19.4]). If Ω is as above, and if f : UΩ →R

is a continuous function, then
∫

UΩ
f (u)dνUΩ(u) =

∫

U+∂Ω

∫ ℓ(γu)

0
f (γu(t))cos(α(u))dt dνU+∂Ω(u).

Finally, we will consider another reduction of the space G, the projection

πlab : G → R>0 × [0,π/2)2, πlab(γ) = (ℓ(γ),α(γ),β (γ)).

Let

µΩ = (πlab)∗(µG)

be the push-forward of Liouville measure. Then µΩ is a measure-theoretic

reduction of the optical transport map φ , and is close to a transportation

measure in the sense of Monge-Kantorovich. More precisely, equation (21)

yields a formula for the α and β marginals of µΩ, so we can view µΩ,

or rather its projection to [0,π/2)2, as a transportation measure from one

marginal to the other. The projection onto the α coordinate is

α∗(µΩ)
def
=

∫

ℓ,β
dµΩ = |∂Ω|ωn−2 sin(α)n−2 cos(α)dα,

where as in (12) we use the volume of a latitude sphere on U+
p ∂Ω. Using

the abbreviation

z(θ) =
ωn−2 sin(θ)n−1

n−1
,

we can give a simplified formula for both marginals:

α∗(µΩ) = |∂Ω|dz(α), β∗(µΩ) = |∂Ω|dz(β ). (22)
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A final important property of µΩ that follows from its construction is that it

is symmetric in α and β .

5.3. The core inequalities. In this section, we establish three geometric

comparisons that convert our curvature hypotheses to linear inequalities that

can then be used for linear programming. (Section 5.2 does not use either

unique geodesics or a curvature hypothesis. Thus, the results there are not

strong enough to establish an isoperimetric inequality.)

Lemma 5.4. If Ω is Candle(κ) and has unique geodesics, then:

∫

ℓ,α,β

sn,κ(ℓ)

cos(α)cos(β )
dµΩ 6 |∂Ω|2 (Croke) (23)

∫

ℓ,α,β

s
(−1)
n,κ (ℓ)

cos(α)
dµΩ 6 |∂Ω||Ω| (Little Prince) (24)

∫

ℓ,α,β
s
(−2)
n,κ (ℓ)dµΩ 6 |Ω|2 (Teufel) (25)

The first case of Lemma 5.4, equation (23), is due to Croke [Cro84].

Equation (24) generalizes the integral over p ∈ ∂Ω of equation (9) in The-

orem 1.6. Finally equation (25) generalizes an isoperimetric inequality of

Teufel [Teu91]. Nonetheless all three inequalities can be proven in a similar

way.

Proof. We define a partial map

τ : Ω×Ω → G

by letting τ(p,q) be the unique geodesic γ ∈ G that passes through p and q,

if it exists. We define τ(p,q) only when p 6= q and only when γ is available.

Also, if γ exists, we parametrize it by length starting at the initial endpoint

at 0.

By construction,

||τ∗(ν∂Ω×∂Ω)||6 |∂Ω|2

||τ∗(ν∂Ω×Ω)||6 |∂Ω||Ω|
||τ∗(νΩ×Ω)||6 |Ω|2.
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Using Lemma 5.1, we can write integrals for each of the left sides

||τ∗(ν∂Ω×∂Ω)||=
∫

G

j(γ, ℓ)

cos(α)cos(β )
dµG(γ)

||τ∗(ν∂Ω×Ω)||=
∫

G

∫ ℓ

0

j(γ,r)

cos(α)
dr dµG(γ)

||τ∗(νΩ×Ω)||=
∫

G

∫ ℓ

0

∫ t

0
j(γ,r, t)dr dt dµG(γ).

Because Ω is Candle(κ),

j(γ, ℓ)> sn,κ(ℓ),
∫ ℓ

0
j(γ, t)dt > s

(−1)
n,κ (ℓ),

∫ ℓ

0

∫ t

0
j(γ,r, t)dr dt > s

(−2)
n,κ (ℓ).

We thus obtain

∫

G

sn,κ(ℓ)

cos(α)cos(β )
dµG(γ)6 |∂Ω|2

∫

G

s
(−1)
n,κ (ℓ)

cos(α)
dµG(γ)6 |∂Ω||Ω|

∫

G
s
(−2)
n,κ (ℓ)dµG(γ)6 |Ω|2.

Because these integrands only depend on ℓ, α , and β , we can now descend

from µG to µΩ. �

5.4. Extended inequalities. Lemma 5.4 will yield a linear programming

model that is strong enough to prove Theorem 1.4, but not Theorem 1.5 nor

many of the other cases of Theorem 1.16. In this section, we will establish

several variations of Lemma 5.4 using alternate hypotheses.

The following lemma is the refinement needed for Theorem 1.5 and The-

orem 1.15.

Lemma 5.5. Suppose that Ω is a compact domain in an LCD(−1) Cartan-

Hadamard n-manifold M and let

chord(Ω)6 L ∈ (0,∞].
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Then

∫

ℓ,α,β

(s
(−1)
n,−1(ℓ)

cos(α)
−

(n−1)s
(−2)
n,−1(ℓ)

tanh(L)

)

dµΩ 6 |∂Ω||Ω|− (n−1)|Ω|2
tanh(L)

(26)

∫

ℓ,α,β

( sn,−1(ℓ)

cos(α)cos(β )
−

(n−1)s
(−1)
n,−1(ℓ)

tanh(L)cos(α)

)

dµΩ 6 |∂Ω|2 − (n−1)|∂Ω||Ω|
tanh(L)

.

(27)

Proof of (26). We abbreviate

s(ℓ)
def
= sn,−1(ℓ),

and we switch α and β in the integral.

Let G be the space of geodesics of Ω and recall the partial map

τ : Ω×Ω → G

used in the proof of Lemma 5.4 and the measures ν∂Ω×Ω and νΩ×Ω. We

consider the signed measure

σΩ×Ω
def
= νΩ×∂Ω − (n−1)νΩ×Ω.

To be precise, if (p,q) ∈ Ω × ∂Ω, then γ = τ(p,q) is the geodesic that

passes through p and ends at q. We claim two things about the pushforward

τ∗(σΩ×Ω):

1. That the net measure omitted by τ is non-negative:

||τ∗(σΩ×Ω)||6 |∂Ω||Ω|− (n−1)|Ω|2.
2. That the measure that is pushed forward is underestimated by the

comparison candle function:

∫

G

(s(−1)(ℓ)

cos(β )
− (n−1)s(−2)(ℓ)

tanh(L)

)

dµG(γ)6 ||τ∗(σΩ×Ω)||.

Just as in the proof of Lemma 5.4, equation (26) follows from these two

claims.

To prove the second claim, let γ ∈ G be a maximal geodesic of Ω with

unit speed and domain [0, ℓ]. We abbreviate the candle function along γ:

j(t)
def
= j(γ, t), j(r, t)

def
= j(γ,r, t).

Since M and therefore Ω is LCD(−1), we have the inequality

j′(t)
j(t)

>
s′(t)
s(t)

.
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We can rephrase this as saying that

∂ j

∂ t
(r, t)− s′(t − r)

s(t − r)
j(r, t) =

∂ j

∂ t
(r, t)− n−1

tanh(t − r)
j(r, t)

is minimized (with a value of 0) in the K =−1 case. Now

tanh(t − r)6 tanh(L),

while LCD(−1) implies Candle(−1), i.e.,

j(r, t)> s(t − r).

It follows that

∂ j

∂ t
(r, t)− (n−1) j(r, t)

tanh(L)
> s′(t − r)− (n−1)s(t − r)

tanh(L)
. (28)

We can integrate with respect to r and t to obtain:

∫ ℓ

0

∫ ℓ

r

[∂ j

∂ t
(r, t)− (n−1) j(r, t)

tanh(L)

]

dt dr

=
∫ ℓ

0
j(r, ℓ)dr− n−1

tanh(L)

∫ ℓ

0

∫ ℓ

r
j(r, t)dr dt

> s(−1)(ℓ)− (n−1)s(−2)(ℓ)

tanh(L)
.

Then, if the terminating angle of γ is β , we can again use the Candle(−1)
condition to obtain
∫ ℓ

0

j(r, ℓ)

cos(β )
dr− n−1

tanh(L)

∫ ℓ

0

∫ t

0
j(r, t)dr dt >

s(−1)(ℓ)

cos(β )
− (n−1)s(−2)(ℓ)

tanh(L)
.

Since the left side is the fiber integral of τ∗(σΩ×Ω), as in the proof of

Lemma 5.4, this establishes the second claim.

To establish the first claim, for each p ∈ Ω, we consider the set Ω \
Vis(Ω, p) consisting of points q ∈ Ω that are not visible from p. The union

of all of these is exactly the pairs (p,q) where τ is not defined. If γ is a

geodesic in M emanating from p, we can restrict further to its intersection

γ ∩ (Ω\Vis(Ω, p))

We claim that the integral of σΩ×Ω on each of these intersections, with the

appropriate Jacobian factor, is non-negative.

To verify this claim, we suppose that the intersection is non-empty, and

we parametrize γ at unit speed so that γ(0) = p. Let I be the set of times t

such that

γ(t) ∈ Ω\Vis(Ω, p),
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let {tk} be the set of right endpoints of I where γ leaves Ω, and for each k,

let βk ∈ [0,π/2] be the angle that γ exits Ω at γ(tk). Let ℓ be the rightmost

point of I. Then the infinitesimal portion of σΩ×Ω on γ(I) is

∑
k

j(tk)

cos(βk)
− n−1

tanh(L)

∫

I
j(t)dt > j(ℓ)− n−1

tanh(L)

∫ ℓ

0
j(t)dt.

(In other words, we geometrically simplify to the worst case: I = [0, ℓ] and

β = 0.) The derivative of the right side is now

j′(ℓ)− n−1

tanh(L)
j(ℓ)> 0. (29)

The inequality holds because it is the same as (28), except with the right

side simplified to 0. This establishes the first claim and thus (26). �

Proof of (27). The proof has exactly the same ideas as the proof of (26),

only with some changes to the formulas. We keep the same abbreviations.

This time we define

σ∂Ω×Ω
def
= ν∂Ω×∂Ω − (n−1)ν∂Ω×Ω,

we consider τ∗(σ∂Ω×Ω), and we claim:

1. That the net measure omitted by τ is non-negative:

||τ∗(σ∂Ω×Ω)||6 |∂Ω|2 − (n−1)|∂Ω||Ω|2.
2. That the integral underestimates the pushforward:
∫

G

( s(ℓ)

cos(α)cos(β )
− (n−1)s(−1)(ℓ)

cos(α) tanh(L)

)

dµG(γ)6 ||τ∗(σ∂Ω×Ω)||.

To prove the second claim, we define γ and j as before and we again

obtain (28). In this case, we integrate only with respect to t ∈ [0, ℓ] to obtain

j(0, ℓ)− n−1

tanh(L)

∫ ℓ

0
j(r, t)> s(ℓ)− (n−1)s(−1)

tanh(L)
.

Now divide through by cos(α), and we use the Candle(−1) property to

divide the first term cos(β ), to obtain

j(0, ℓ)

cos(α)cos(β )
− n−1

cos(α) tanh(L)

∫ ℓ

0
j(r, t)

>
s(ℓ)

cos(α)cos(β )
− (n−1)s(−1)

cos(α) tanh(L)
.

The left side is the fiber integral of τ∗(σ∂Ω×Ω), so this establishes the second

claim.

The proof of the first claim is identical to the case of (26), except that

p ∈ ∂Ω, and we divide through by cos(α). �
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Meanwhile Theorem 1.14 requires the following striking inequality that

depends only on the condition of unique geodesics rather than any bound

on curvature. We omit the proof as the lemma is equivalent to Lemma 9 of

Croke [Cro80].

Lemma 5.6 (Croke-Berger-Kazdan). If Ω is a compact Riemannian mani-

fold with boundary and with unique geodesics, then
∫

ℓ,α,β
s
(−2)

n,(π/ℓ)2(ℓ)dµΩ 6 |Ω|2.

5.5. Mirrors and multiple images. In this section, we establish the geo-

metric inequalities needed for Theorem 1.8. Let M be a Riemannian man-

ifold with boundary ∂M (although M might not be compact), and consider

geodesics that reflect from ∂M with equal angle of incidence and angle of

reflection. Let G̃ be the space of these geodesics, for simplicity considering

only those geodesics that are never tangent to ∂M. Then the results of Sec-

tion 5.2 still apply, with only slight modifications. In particular M might

have a compactification Ω with ∂M = W ⊆ ∂Ω. Then (21) applies if we

replace ∂Ω by ∂Ω\W ; Lemma 5.1 holds; etc.

If Ω has a mirror W as part of its boundary, then some pairs of points

have at least two connecting, reflecting geodesics. We can suppose in gen-

eral that every two points in (Ω,W ) are connected by at most m geodesics

(which is also interesting even if W is empty), and we can suppose that

(Ω,W ) is Candle(κ) in the sense of reflecting geodesics. In this case it is

straightforward to generalize Lemma 5.4. The generalization will yield the

linear programming model for Theorem 1.8.

Lemma 5.7. If (Ω,W ) is Candle(κ) and has at most m reflecting geodesics

between any pair of points, then:
∫

α,β ,ℓ

sn,κ(ℓ)

cos(α)cos(β )
dµΩ 6 m|∂Ω|2 (30)

∫

α,β ,ℓ

s
(−1)
n,κ (ℓ)

cos(α)
dµΩ 6 m|∂Ω||Ω| (31)

∫

α,β ,ℓ
s
(−2)
n,κ (ℓ)dµΩ 6 m|Ω|2. (32)

Proof. The proof is nearly identical to that of Lemma 5.4. In this case

τ : Ω×Ω → G

is not a partial map, but rather a multivalued correspondence which is at

most 1 to m everywhere. We can define a pushforward measure such as

τ∗(νΩ×Ω) by counting multiplicities.
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By construction:

||τ∗(ν∂Ω×∂Ω)||6 m|∂Ω|2

||τ∗(ν∂Ω×Ω)||6 m|∂Ω||Ω|
||τ∗(νΩ×Ω)||6 m|Ω|2.

On the other hand,

||τ∗(ν∂Ω×∂Ω)||=
∫

G

j(γ, ℓ)

cos(α)cos(β )
dµG(γ)

||τ∗(ν∂Ω×Ω)||=
∫

G

∫ ℓ

0

j(γ,r)

cos(α)
dr dµG(γ)

||τ∗(νΩ×Ω)||=
∫

G

∫ ℓ

0

∫ t

0
j(γ,r, t)dr dt dµG(γ).

Using the Candle(κ) hypothesis, we obtain the desired inequalities. �

Finally, the following generalization of Günther’s inequality [Gün60, BC64]

shows that the Candle(κ) condition is actually useful for reflecting geode-

sics.

Proposition 5.8. Let M be a Riemannian manifold with K 6 κ for some

κ ∈ R, and suppose that ∂M is concave relative to the interior. If κ > 0,

suppose also that chord(M) < π/
√

κ . Then M is LCD(κ) with respect to

geodesics that reflect from ∂M.

Proposition 5.8 generalizes Lemma 3.2 of Choe [Cho06], which claims

Candle(0) using (in the proof) the same hypotheses when κ = 0. However,

the argument given there omits many details about reflection from a convex

surface. (Which is thus concave from the other side as we describe it.) We

will prove Proposition 5.8 in Section 8.2.

6. LINEAR PROGRAMMING AND OPTIMAL TRANSPORT

6.1. Linear programming. In this section we abstract the results of Sec-

tion 5.2 and 5.3 into a linear programming model. Let

µ = µΩ, V = |Ω|, A = |∂Ω|.
(In fact, both V and A are linear functions of µ by (21) and (22).) Then

equations (21), (22) (23), (24), and (25), and symmetrization in α and β ,

can be summarized as a problem in linear programming:

LP Problem 6.1. Fix n, κ , A, and V , and let

z(θ) =
ωn−2 sin(θ)n−1

n−1
.
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Is there a positive measure µ(ℓ,α,β ) on R>0× [0,π/2)2, which is symmet-

ric in α and β , and such that

α∗(µ) =
∫

ℓ,β
dµ = A dz(α) (33)

∫

ℓ,α,β
sn,κ(ℓ)sec(α)sec(β )dµ 6 A2 (34)

∫

ℓ,α,β
s
(−1)
n,κ (ℓ)

(

sec(α)+ sec(β )
)

dµ 6 2AV (35)

∫

ℓ,α,β
s
(−2)
n,κ (ℓ)dµ 6V 2 (36)

∫

ℓ,α,β
ℓdµ = ωn−1V ? (37)

(We could have written Problem 6.1 without symmetrization in α and β .

It would have been equivalent, but more complicated.)

We will analyze this linear programming problem using a tool which is

variously known as Farkas’ lemma, the Farkas-Minkowski theorem, and

linear programming duality. The original version of the result is formulated

in the finite case.

Theorem 6.2 (Farkas-Minkowski). Consider a finite system of linear in-

equalities ∑i M j,ixi 6 b j, or Mx 6 b, for real-valued variables x = {xi}.

Then

1. The relations Mx6 b are infeasible if and only if some non-negative

linear combination of them is the falsehood 0 6−1.

2. A linear bound ∑i cixi 6 c0 holds if and only if it is a linear combi-

nation of the rows of Mx 6 b.

3. If Mx 6 b is feasible and ∑i cixi is bounded, then it has a maxi-

mum c0, which is also the minimum of ∑ j b jy j subject to y j > 0 and

∑ j M j,iy j = ci, or MT y= c. This is the dual problem of the minimum

bound derived from the rows of Mx 6 b.

We cannot directly apply Theorem 6.2 to Problem 6.1 because it is an

infinite-dimensional problem. The theorem still holds in infinite dimen-

sions, or in finite dimensions with infinitely many inequalities, with an ex-

tra hypothesis such as compactness. We do not know a simple way to make

Problem 6.1 compact, but in practice it behaves as if it were. Fortunately, we

only really need the “if” direction of Theorem 6.2, which is trivial in every

setting, finite or infinite. Thus we formulate the dual problem as follows.

LP Problem 6.3 (Dual to Problem 6.1). Given n, κ , A, and V , are there

numbers a,b,c > 0 and d ∈ R and a continuous function f : [0,π/2)→ R
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such that

asn,κ(ℓ)sec(α)sec(β )+bs
(−1)
n,κ (ℓ)

(

sec(α)+ sec(β )
)

+ cs
(−2)
n,κ (ℓ)−dℓ+ f (α)+ f (β )> 0 (38)

aA2 +2bAV + cV 2 −dωn−1V +2A

∫ π/2

0
f (α)dz(α)< 0? (39)

Here are three remarks about Problem 6.3:

1. Duality tells us that if Problem 6.3 is feasible, then Problem 6.1 is

infeasible.

2. Linear programming duality in general might allow f (α) to be

merely integrable, or even to replace f (α) dz(α) by a Borel mea-

sure. However, Proposition 6.4 from optimal transport theory tells

us that an optimal f (α) is continuous.

3. The constant d can have either sign. We subtract it that it will be

positive in practice.

In addition to viewing Problem 6.1 as a linear feasibility problem, we will

also view it as a minimization problem in A. But Problem 6.1 is non-linear if

(34) is used, equivalently if a> 0 in Problem 6.3. For any fixed set of values

of a,b,c,d, f in Problem 6.3, equation (39) becomes a relation P(A)< 0 for

a function P(A). Suppose now that there is a minimum feasible value A0 of

A. Then the cleanest possibility is that P(A) < 0 for all A ∈ [0,A0). Since

P(A) is a convex quadratic polynomial when a > 0, this amounts to the

condition that P(A0) = 0 and that

P(0) = cV 2 −dωn−1V < 0,

equivalently,

cV < dωn−1. (40)

On the other hand, if a fixed set of values of a,b,c,d, f is optimal in any

sense, then P(A) < 0 on some interval (A1,A0). To ensure that we are in

this case, we require that P(A0) = 0 and

P′(A0) = 2aA+2bV +2A

∫ π/2

0
f (α)dz(α)> 0,

equivalently that

A0P′(A0)−P(A0) = aA2
0 +dω3V − cV 2 > 0. (41)

We can then look for other values of the dual variables to eliminate A ∈
[0,A1] to justify the linear programming model, even though it will not be

needed to prove our main results.
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6.2. Optimal transport. In this section, we interpret Problem 6.1 as an

optimal transport problem. See Villani [Vil09, Ch.3-5] for background ma-

terial on optimal transport. Following Villani, we assume that A dz(α) is a

distribution of boulangeries and A dz(β ) is a distribution of cafés. More-

over, for each boulangerie α and café β , there are a range of possible roads

parametrized by ℓ. By (33), µ is a transport of baguettes2 from the boulan-

geries to the cafés. Problem 6.1 then asks whether the transport is feasible

given the constraints that we must pay separate road tolls in Polish zlotys

(34), Czech korunas (35), and Hungarian forints (36); and given an exact

labor requirement (37) (neither more nor less). As an optimization problem,

the objective is to minimize the amount of bread, which is proportional to

A, given a fixed labor expenditure V . (It could be a multinational, sub-

sidized employment program in a region with only moderate demand for

baguettes.)

As a moral corollary of Theorem 6.2, we can reduce all four resource

limits to one in a linear combination to make a cost function

E(ℓ,α,β ) = asn,κ(ℓ)sec(α)sec(β )

+bs
(−1)
n,κ (ℓ)

(

sec(α)+ sec(β )
)

+ cs
(−2)
n,κ (ℓ)−dℓ. (42)

In the economics interpretation, the coefficients are wage rates and cur-

rency conversions. The last term is naturally subtracted if employment is

the goal of the program and thus a negative cost. It may be non-trivial to

choose the coefficients a,b,c,d optimally or even well. Once they are cho-

sen, Problem 6.1 is then almost a standard optimal transport problem. The

two differences are:

1. We have a choice of “roads” parametrized by ℓ. Given a scalar

cost, we can convert it to a standard optimal transport problem if we

choose the most efficient road for each pair (α,β ) and let the cost

be minℓE.

2. The transport µ does not usually have to be symmetric in α and

β . We can live without this constraint because Problem 6.1 is it-

self symmetric in α and β , if we add the relation β∗(µ) = A dz(β ),
which is the other half of (22). We can symmetrize any solution

using

µ̃(ℓ,α,β )
def
=

µ(ℓ,α,β )+µ(ℓ,β ,α)

2
.

Having fixed a,b,c,d, the remaining dual variable in Problem 6.3 is

f (α). Its sole constraint is

F(ℓ,α,β )
def
= E(ℓ,α,β )+ f (α)+ f (β )> 0. (43)

2Even though in Section 5.2, we transported photons.
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In optimal transport terminology, f (α) is known as a Kantorovich potential.

We will call the left side, F(ℓ,α,β ), the adjusted cost function. In standard

optimal transport, we would have two potentials f (α) and g(β ) satisfying

the equation

E(ℓ,α,β )+ f (α)+g(β )> 0. (44)

But, just as symmetry is optional in Problem 6.1, it is also optional in Prob-

lem 6.3; we can symmetrize a solution to make f = g.

Proposition 6.4. An optimal potential f (α) in Problem 6.3 is a convex

function of sec(α) and therefore continuous.

Proposition 6.4 is a standard type of result in optimal transport theory. A

potential that satisfies an equation such as (45) below is called cost convex.

Proof. We assume two potentials f (α) and g(β ). In the asymmetric varia-

tion of Problem 6.3, they are chosen to minimize
∫ π/2

0
f (α)dz(α)+

∫ π/2

0
g(β )dz(β ).

For each fixed g(β ), we can minimize this integral subject to the constraint

(44) by choosing

f (α) = sup
ℓ,β

[

−E(ℓ,α,β )−g(β )
]

. (45)

For each fixed value of ℓ and β , the supremized function on the right side is

linear in sec(α) by (42). It follows that f (α) is convex in sec(α) and thus

continuous; the same is true of g(β ). If this asymmetric optimization yields

f 6= g, then their average ( f +g)/2 has all of the desired properties. �

6.3. Sharpness. If a dual pair of feasible solutions {xi} and {y j} in the last

part of Theorem 6.2 satisfies

∑
i

cixi = c0 = ∑
j

b jy j,

then it is called an optimal pair. An optimal pair is a simultaneous proof

that c0 is the maximum of the left side and the minimum of the right side.

Theorem 6.2 says that if both the primal and dual problems are feasible,

then an optimal pair exists. In addition, a feasible pair is an optimal pair if

and only if ∑i M j,ixi = b j for every j such that y j > 0.

We can morally expect an optimal pair of solutions to Problems 6.1 and

6.3, at least with the optimality condition (41). We fix n, κ , and V . Sup-

pose that we find a solution a,b,c,d, f to Problem 6.3 that satisfies (40)

and proves that A > A0. Then we have proven the isoperimetric inequality

|∂Ω|> A0. Suppose that we also find a measure µ that satisfies Problem 6.1

with A0 = A(µ). Then we have also proven that Problem 6.1 or Lemma 5.4
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cannot prove any better isoperimetric inequality. We also do not need to

calculate A0; we can instead confirm optimality by checking that µ is sup-

ported on the equality locus in (43).

In this case, A0 is not necessarily a sharp isoperimetric inequality; it is

merely sharp for the linear programming relaxation. If finally µ = µΩ for a

domain Ω that satisfies the hypotheses, then we have proven a sharp isoperi-

metric inequality.

Equation (43) makes it look as if an optimal µ is supported on the diag-

onal α = β , but we do not know that this is always true. If an optimal µ
is supported on the diagonal, then this is an especially good circumstance.

We summarize what happens in this case with a proposition.

Proposition 6.5. Fix n, κ , and V . Suppose that a,b,c > 0 and d ∈ R are

candidate values that satisfy (40), and that ℓ(α) is a candidate dependence

of ℓ on α . Let µ be the unique measure that satisfies (33) and that is sup-

ported on α = β and ℓ= ℓ(α), and let

f (α) =−E(ℓ(α),α,α)

2
. (46)

If µ satisfies Problem 6.1, and if f satisfies (43), then they are both optimal.

If in addition µ = µΩ for an admissible domain Ω, then A = |∂Ω| is a sharp

isoperimetric value.

We can derive a consistency check from Proposition 6.5, to see when

we have any hope to establish a sharp isoperimetric inequality for a round

ball Ω in a constant-curvature geometry Xn,κ . The consistency check will

be much weaker than equation (43), which will be the real work to verify

Proposition 6.5 and thus prove Theorems 1.4 and 1.5. Of course Lemma 5.4

shows that µΩ must satisfy Problem 6.1, so this part of Proposition 6.5 is

guaranteed.

The consistency check is, first, that every geodesic chord in Ω should

meet the boundary ∂Ω at the same angle α = β at both ends; and its length

ℓ= ℓ(α) should be a function of α . Happily, round balls have this property.

Second, if the potential f (α) that then results from (46) satisfies (43), then

f (α) =−minℓE(ℓ,α,α)

2
.

We can use the derivative test to see whether there exist a,b,c,d such that

E(ℓ,α,α) has a critical point at ℓ(α). Of course, a critical point need not

be a local minimum, much less a global minimum, if there even is a global

minimum. Even so, this limited consistency check is an overdetermined

equation that has no solutions for a,b,c,d in most dimensions n. We will

see a minor miracle in dimension n = 2 and a greater miracle in dimension

n = 4, for all values of κ .
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Up to rescaling, we can assume that κ ∈ {−1,0,1}. If Ω = Bn,κ(r), then

the length of a geodesic chord that makes an angle of α from the normal to

∂Ω is given by the relation

cos(α) = Tκ,r(ℓ)
def
=



































tan(ℓ/2)

tan(r)
if κ = 1

ℓ

2r
if κ = 0.

tanh(ℓ/2)

tanh(r)
if κ =−1

(47)

The remaining consistency check is to solve for a,b,c,d using the derivative

of (42):

∂E

∂ℓ
(ℓ,α,α) = a

s′n,κ(ℓ)

cos(α)2
+2b

sn,κ(ℓ)

cos(α)
+ cs

(−1)
n,κ (ℓ)−d = 0.

Combining with (47), we obtain

a
s′n,κ(ℓ)

Tκ,r(ℓ)2
+2b

sn,κ(ℓ)

Tκ,r(ℓ)
+ cs

(−1)
n,κ (ℓ)−d = 0. (48)

We take this as an equation for the coefficients a,b,c,d that should hold for

all 0 6 ℓ 6 2r. Note that the factor of tan(r), r, or tanh(r) that appears in

Tκ,r factors of out of the question of whether there is a solution, since this

factor can be absorbed into the constants a and b.

6.4. Extended models. In this token section, we remark that Problem 6.1

turns out to be only strong enough for Theorems 1.4, 1.10, and 1.12. In later

sections we will make other, similar linear programming models: Prob-

lems 7.2, 8.1, 8.2, and 8.3. The arguments of Sections 6.1, 6.2, and 6.3 will

all still apply.

7. PROOF OF THE MAIN RESULTS

In this section we will prove Theorems 1.4 and 1.5. Again, we assume

that κ ∈ {−1,0,1} and we abbreviate s = sn,κ . We warn the reader that we

made pervasive use of symbolic algebra software in Sections 7.2 and 7.3.

Also, each case when we solve for dual coefficients a,b,c,d, the solution is

unique up rescaling by a positive real number.

Here are two general remarks about dimension n = 2. First, for every

value of κ , there is a separation (50) in this dimension. This means that we

could have proved the results with a simpler measure µ(ℓ,α) that depends

on only one angle. Second, a = 0 in all of these cases, so we can accept A

as a linear variable and ignore the optimality conditions (40) and (41).
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7.1. Weil’s and Croke’s theorems. As a warm-up to the more difficult

cases with κ 6= 0, we include certain steps that are convenient for later

derivations. In particular, we introduce the change of variables

(x,y)
def
=

(sec(α)

r
,
sec(β )

r

)

(49)

in place of α and β . We will give them the range x,y ∈ R>0. By abuse of

notation, we can change variables without changing the names of functions;

for example, we can write

E(ℓ,α,β ) = E(ℓ,α(x),β (y)) = E(ℓ,x,y).

If κ = 0, then

s(ℓ) = ℓn−1, s′(ℓ) = (n−1)ℓn−2,

s(−1)(ℓ) =
ℓn

n
, s(−2)(ℓ) =

ℓn+1

n(n+1)
.

Equation (48) becomes

4(n−1)r2aℓn−4 +4rbℓn−2 +
cℓn

n
−d = 0.

Obviously this has solutions if n ∈ {2,4} and not otherwise; this point was

known to Croke (personal communication).

When n = 2, the solution is

a = 0, b =
1

r
, c = 0, d = 4.

From (42), we thus obtain

E(ℓ,α,β ) =
ℓ2(sec(α)+ sec(β ))

2r
−4ℓ

Then (46) and (47) give us the potential

f (α) =−E(2r cos(α),α,α)

2
= 2r cos(α).

Then the adjusted cost (43) separates as

F(ℓ,α,β ) = G(ℓ,α)+G(ℓ,β ) (50)

with

G(ℓ,α) =
ℓ2 sec(α)

2r
−2ℓ+2r cos(α)

=
(2cos(α)− ℓ)2

2r cos(α)
> 0.

This establishes Weil’s theorem.
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When n = 4, the solution to (48) is

a =
1

r2
, b = 0, c = 0, d = 4.

These coefficients plainly satisfy condition (40). The cost function is

E(ℓ,α,β ) =
ℓ3 sec(α)sec(β )

r2
−12ℓ,

the potential is

f (α) =−E(2r cos(α),α,α)

2
= 8r cos(α),

and their sum is

F(ℓ,α,β ) =
ℓ3 sec(α)sec(β )

r2
−12ℓ+8r(cos(α)+ cos(β )).

Using the change of variables (49),

F(ℓ,x,y) = ℓ3xy−12ℓ+
8

x
+

8

y
.

We want to show that F > 0. For each fixed value of xy, F is minimized

when x = y. We can then calculate

F(ℓ,x,x) = ℓ3x2 −12ℓ+
16

x
=

(ℓx+4)(ℓx−2)2

x
> 0.

This establishes Croke’s theorem.

Following the comments after the proof of Theorem 1.6 in Section 3.2,

our proof of Croke’s theorem is only superficially different from Croke’s

proof. The extra point here is that Croke’s theorem (and Weil’s theorem

along with it) hold in Model 6.1, which establishes part of Theorem 1.16.

7.2. The positive case. In this section we will establish Theorem 1.4. We

will let κ = 1, before we do that, we note that κ = 0 is a limiting case of

κ > 0. Section 7.1 established that a sharp result in the case κ = 0 is only

possible when n ∈ {2,4}, this justifies the same restriction in Theorem 1.4.

We will use the change of variables

(x,y)
def
=

(sec(α)

tan(r)
,
sec(β )

tan(r)

)

(51)

with the range x,y ∈ R>0. Note that equation (47) simplifies to

tan(
ℓ

2
) =

1

x
. (52)
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7.2.1. Dimension 2. In dimension n = 2,

s(ℓ) = sin(ℓ), s′(ℓ) = cos(ℓ),

s(−1)(ℓ) = 1− cos(ℓ), s(−2)(ℓ) = ℓ− sin(ℓ)

when ℓ < π , and

s(ℓ) = 0, s(−1)(ℓ) = 2, s(−2) = 2ℓ−π

for ℓ> π . Equation (48), with (47), becomes

a tan(r)2 cos(ℓ)

tan(ℓ/2)2
+

2b tan(r)sin(ℓ)

tan(ℓ/2)
+ c(1− cos(ℓ))−d = 0.

The solution is

a = 0, b =
1

tan(r)
, c = 2, d = 4.

In the variables (51), the cost function (42) is

E(ℓ,x,y) = (1− cos(ℓ))(x+ y)−2sin(ℓ)−2ℓ,

for ℓ6 π , and is constant for larger values of ℓ:

E(ℓ,x,y) = E(π,x,y) ∀ℓ> π. (53)

The potential (46) is

f (x) = 2arctan(
1

x
).

The adjusted cost (43) again separates according to (50), where this time

G(ℓ,x) = (1− cos(ℓ))x− sin(ℓ)− ℓ+2arctan(
1

x
).

We can minimize G with the derivative test either in ℓ or in x. The latter is

slightly simpler and gives us

∂G

∂x
(ℓ,x) =

x2(1− cos(ℓ))− (cos(ℓ)+1)

x2 +1
.

We learn that ∂G/∂x crosses 0 exactly once, when x and ℓ satisfy (52); this

is therefore the minimum of G for each fixed ℓ. Since the relation (52) is

used to define the potential f (x), it is automatic that this minimum value

is 0; the substitution x = 1/ tan(ℓ/2) also establishes it. Thus G(ℓ,x) > 0,

which confirms (43) and establishes the n = 2 case of Theorem 1.4.
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7.2.2. Dimension 4. In dimension n = 4,

s(ℓ) = sin(ℓ)3,

s′(ℓ) = 3sin(ℓ)2 cos(ℓ),

s(−1)(ℓ) =
cos(ℓ)3 −3cos(ℓ)+2

3
,

s(−2)(ℓ) =
6ℓ− sin(ℓ)3 −6sin(ℓ)

9

when ℓ < π , and

s(ℓ) = 0, s(−1)(ℓ) =
4

3
, s(−2)(ℓ) =

4ℓ−2π

3

when ℓ> π . Equation (48) becomes

3a tan(r)2 cos(ℓ)sin(ℓ)2

tan(ℓ/2)2
+

2b tan(r)sin(ℓ)3

tan(ℓ/2)

+
c(cos(ℓ)3 −3cos(ℓ)+2)

3
−d = 0.

The solution is

a =
1

tan(r)2
, b =

3

tan(r)
, c = 9, d = 12.

The clean optimality condition (40) becomes

9V < 12ω3 = 24π2.

Since V is at most the volume of a hemisphere, we have

9V <
9ω4

2
= 12π2.

Thus (40) holds.

The cost function (42) is

E(ℓ,x,y) = sin(ℓ)3xy+(cos(ℓ)3 −3cos(ℓ)+2)(x+ y)

− sin(ℓ)3 −6sin(ℓ)−6ℓ.

for ℓ 6 π , while once again E is constant ℓ for ℓ > π , as in (53). The

potential from (46) and (52) is

f (x) = 6arctan(
1

x
)+

2x

x2 +1
.

We will include the values x= 0 and y= 0 in our calculations, so it is helpful

to recall that

arctan(
1

x
) =

π

2
− arctan(x).
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FIGURE 6. The slice F(π/6,x,y) in the case κ = 1.

The adjusted cost (43) is

F(ℓ,x,y) = sin(ℓ)3xy+(cos(ℓ)3 −3cos(ℓ)+2)(x+ y)

− sin(ℓ)3 −6sin(ℓ)−6ℓ+6π −6arctan(x)

+
2x

x2 +1
−6arctan(y)+

2y

y2 +1
. (54)

The remainder of the proof of Theorem 1.4 is given by the following lemma.

Although the lemma is evident from contour plots (e.g., Figure 6), the au-

thors found it surprisingly tricky to prove rigorously.

Lemma 7.1. The function F(ℓ,x,y) on [0,π]×R2
>0 given by (54) is non-

negative, and vanishes only when

x = y =
1

tan(ℓ/2)
.

Proof. We will use these immediate properties of the potential f (x):

f (0) = 3π, f (x)> 0.

We first check the non-compact direction of the domain of F . There

exists a constant k > 0 such that

s(−1)(ℓ)> kℓ4.
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(Because ℓ4/s(−1)(ℓ) is continuous on [0,π] and therefore bounded. In fact

k = s(−1)(π)/π4 works.) Thus

F(ℓ,x,y) = s(ℓ)xy+3s(−1)(ℓ)(x+ y)+9s(−2)(ℓ)−12ℓ+ f (x)+ f (y)

> 3k(x+ y)ℓ4 −12ℓ

by discarding positive terms and simplifying s(−1)(ℓ). Thus

liminf
x+y→∞

(

min
ℓ

F(ℓ,x,y)
)

> liminf
x+y→∞

(

min
ℓ>0

(

3k(x+ y)ℓ4 −12ℓ
)

)

= liminf
x+y→∞

−9
3
√

k(x+ y)
= 0.

The inequality comes from discarding positive terms, while the equality

follows just from the properties of s(−1)(ℓ) that it is continuous, and that it

is positive for ℓ > 0.

Having confined the negative values of F to some compact region, we

will calculate derivatives and boundary values to show that there are no

negative values. First, taking ℓ= 0, we get

F(0,x,y) = f (x)+ f (y)> 0.

Second, taking ℓ= π , we get

F(π,x,y) = 4(x+ y)−6π + f (x)+ f (y).

Here we check that

∂F

∂x
(π,x,y) =

4x4

(x2 +1)2
> 0

∂F

∂y
(π,x,y) =

4y4

(y2 +1)2
> 0

F(π,0,0) = 0.

Fourth, taking x = y = 0, we obtain

F(ℓ,0,0) = 9s(−2)(ℓ)−12ℓ+6π.

We check in this case that

F(π,0,0),
∂F

∂ℓ
(ℓ,0,0) = 9s(−1)(ℓ)−12 6 0.

The fifth case is the case y = 0 with x and ℓ interior, which by symmetry

is equivalent to the case x = 0 with y and ℓ interior. The sixth and final case

is the interior for all three coordinates. We will handle the fifth and sixth

cases together. Using the final change of variables

t
def
= tan

( ℓ

2

)

,
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and with the help of Sage, we learn that

∂F

∂ℓ
(t,x,y) =−12

(t4 − t2)xy−2t3(x+ y)+3t2 +1

(t2 +1)3
,

∂F

∂x
(t,x,y) = 4

(2t3y−3t2 −1)(x2 +1)2 + x4(t2 +1)3

(t2 +1)3(x2 +1)2
.

The conceptual point is that the partial derivatives are rational functions

in x, y, and t. We can rigorously determine the common zeroes of their

numerators by finding their associated prime ideals in the ring Q[x,y, t] us-

ing the “associated primes” function in Sage3 (In other words, we use

the Lasker-Noether factorization theorem converted to an algorithm by the

Gröebner basis method.) The solution set is characterized by five prime

ideals. Four of the ideals are not consistent with the conditions x > 0 and

y, ℓ> 0: Two contain t2 +1, one contains x, and one contains

2x2y+3x2t + xyt + x+ y > 0.

The fifth ideal yields the desired locus x = y = 1/t.

A careful examination of the equality cases shows that x = y = 1/t is the

only possibility for the minimum value F = 0. �

7.3. The negative case. In this section we will establish Theorem 1.5. As

in Section 7.2, we let κ = −1 and we must take n ∈ {2,4}. We cannot

use Problem 6.1, because in both dimensions, one of the dual coefficients

turns out to be negative. Instead we the use the following model, which is

provided by Lemma 5.5.

LP Problem 7.2. Given n, A, V , and L, let

q =
n−1

tanh(L)
.

3See the attached Sage files in the source file of the arXiv version of this paper.



48 BENOÎT R. KLOECKNER AND GREG KUPERBERG

Is there a symmetric, positive measure µ(ℓ,α,β ) such that

α∗(µ) =
∫

ℓ,β
dµ = A dz(α)

∫

ℓ,α,β

(

s(ℓ)sec(β )−qs(−1)(ℓ)
)

sec(α)dµΩ 6 A2 −qAV.

∫

ℓ,α,β

(

s(−1)(ℓ)sec(α)−qs(−2)(ℓ)
)

dµΩ 6 AV −qV 2

∫

ℓ,α,β
s(−2)(ℓ)dµ 6V 2

∫

ℓ,α,β
ℓdµ = ωn−1V ?

We will need the dual problem, which we can state without changing

variables.

LP Problem 7.3 (Dual to Problem 7.2). Given n, A, V , and L, let

q =
n−1

tanh(L)
.

Are there numbers a,b,c,d ∈R and a continuous function f : [0,π/2)→R

such that

a > 0 2b+qa > 0 c+q(2b+qa)> 0 (55)

asn,−1(ℓ)sec(α)sec(β )+bs
(−1)
n,−1(ℓ)

(

sec(α)+ sec(β )
)

+ cs
(−2)
n,−1(ℓ)−dℓ+ f (α)+ f (β )> 0

aA2 +2bAV + cV 2 −dωn−1V +2A

∫ π/2

0
f (α)dz(α)< 0?

We will use the change of variables

(x,y)
def
=

( sec(α)

tanh(r)
,

sec(β )

tanh(r)

)

(56)

with the range x,y ∈ (1,∞). Equation (47) simplifies to

tanh(
ℓ

2
) =

1

x
. (57)

7.3.1. Dimension 2. In dimension n = 2,

s(ℓ) = sinh(ℓ), s′(ℓ) = cosh(ℓ),

s(−1)(ℓ) = cosh(ℓ)−1, s(−2)(ℓ) = sinh(ℓ)− ℓ.



LE PETIT PRINCE 49

Equation (48), with (47), becomes

a tanh(r)2 cosh(ℓ)

tanh(ℓ/2)2
+

2b tanh(r)sinh(ℓ)

tanh(ℓ/2)
+ c(cosh(ℓ)−1)−d = 0.

The solution is

a = 0, b =
1

tanh(r)
, c =−2, d = 4.

We need to check the third case of condition (55), which reduces to

c+2qb =−2+
2

tanh(r) tanh(L)
> 0.

Since the tanh function is bounded above by 1, this is immediate.

In the variables (56), the cost function (42) is

E(ℓ,x,y) = (cosh(ℓ)−1)(x+ y)− sinh(ℓ)−2ℓ.

The potential (46) is

f (x) = 2arctanh(
1

x
).

The adjusted cost (43) separates according to (50) with

G(ℓ,x) = (cosh(ℓ)−1)x− sinh(ℓ)− ℓ+2arctanh(
1

x
).

We minimize G using the derivative test in x to obtain

∂G

∂x
(ℓ,x) =

x2(cosh(ℓ)−1)− (cosh(ℓ)+1)

x2 −1
.

We learn that the minimum of G in x for each fixed ℓ occurs when x and ℓ
satisfy (57) and it is easy to confirm that the value is 0. Thus G(ℓ,x) > 0,

which confirms (43) and establishes the n = 2 case of Theorem 1.5.

7.3.2. Dimension 4. In dimension n = 4,

s(ℓ) = sinh(ℓ)3,

s′(ℓ) = 3cosh(ℓ)sinh(ℓ)2,

s(−1)(ℓ) =
cosh(ℓ)3 −3cosh(ℓ)+2

3
,

s(−2)(ℓ) =
sinh(ℓ)3 −6sinh(ℓ)+6ℓ

9
.
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Equation (48) becomes

3a tanh(r)2 cosh(ℓ)sinh(ℓ)2

tanh(ℓ/2)2
+

2b tanh(r)sinh(ℓ)3

tanh(ℓ/2)

+
c(cosh(ℓ)3 −3cosh(ℓ)+2)

3
−d = 0.

The solution is

a =
1

tanh(r)2
, b =− 3

tanh(r)
, c = 9, d = 12.

We need to check the second case of condition (55):

2b+qa =− 6

tanh(r)
+

3

tanh(L)
> 0.

This condition is equivalent to the smallness hypothesis (4). We also note

that the clean optimality condition (40) does not hold for all V . We instead

check (41), which says that

A2
0

tanh(r)2
+12ω3V −9V 2 > 0. (58)

Recall that

V = |B4,−1(r)|= ω3s(−1)(r)

A0 = |∂B4,−1(r)|= ω3s(r).

By Theorem 1.15, A0 > 3V , so the first term is greater than the third term

in (58); the middle term is plainly positive.

We also want to confim that Problem 7.2 is strong enough to exclude all

A ∈ [0,A0], even if (40) does not hold. To this end, we first use P(A0) = 0

to calculate that
∫ π/2

0
f (α)dz(α) =

dω3V −aA2
0 −2bA0V − cV 2

2A0

=
4π2(cosh(r)−1)

sinh(r)
.

Now let A1 = 3tanh(r)V . On the one hand,

P(A1) =
( A1

tanh(r)
−3V

)2

−12ω3V +2A1

∫ π/2

0
f (α)dz(α)

=− 24π2

cosh(r)
< 0.

On the other hand, A 6 A1 is excluded by Theorem 1.15, which we will

prove using the same Problem 7.2 in Section 8.5.1. Thus we fully establish
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Theorem 1.5 as a corollary of Problem 7.2, if we can confirm (43) for the

given values of a,b,c,d.

The cost function (42) is

E(ℓ,x,y) = sinh(ℓ)3xy− (cosh(ℓ)3 −3cosh(ℓ)+2)(x+ y)

+ sinh(ℓ)3 −6sinh(ℓ)−6ℓ.

The potential from (46) and (57) is

f (x) = 6arctanh(
1

x
)+

2x

x2 −1
.

The adjusted cost (43) is

F(ℓ,x,y) = sinh(ℓ)3xy− (cosh(ℓ)3 −3cosh(ℓ)+2)(x+ y)

+ sinh(ℓ)3 −6sinh(ℓ)−6ℓ+6arctanh(
1

x
)

+
2x

x2 −1
+6arctanh(

1

y
)+

2y

y2 −1
. (59)

We conclude the proof of Theorem 1.5 with the following lemma. The

lemma is also numerically evident but surprisingly tricky (for the authors).

Lemma 7.4. The function F(ℓ,x,y) on R>0 × (1,∞)2 given by (59) is non-

negative, and vanishes only when

x = y =
1

tanh(ℓ/2)
.

Proof. The proof is analogous to that of Lemma 7.1, but differs in its tech-

nical details. Throughout the proof, we will fix y and minimize F(ℓ,x,y)
with respect to x and ℓ.

To check the non-compact limits of x and ℓ, we re-express F as:

F(ℓ,x,y) = sinh(ℓ)3(x−1)(y−1)+h(ℓ)(x+ y)

−6sinh(ℓ)−6ℓ+ f (x)+ f (y),

where

h(ℓ) = (sinh(ℓ)3 − cosh(ℓ)3 +3cosh(ℓ)−2)

=
(3eℓ+1)(1− e−ℓ)3

4
> 0.

We also have

f (x) =
1

x−1
+

1

x+1
+ arctanh(

1

x
)>

1

x−1
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and the elementary relation sinh(ℓ)> ℓ. We combine these comparisons to

obtain the bound

F̃(ℓ,x,y)
def
= sinh(ℓ)3(x−1)(y−1)+

1

x−1
−12sinh(ℓ)

< F(ℓ,x,y).

The function F̃ is useful for minimizing with respect to either ℓ or x, leaving

the other variables fixed. It is a bit simpler to use the variables

(x̃, ỹ)
def
= (x−1,y−1),

which we will need anyway later in the proof. We obtain

F̃(ℓ, x̃, ỹ) = sinh(ℓ)3x̃ỹ+
1

x̃
−12sinh(ℓ)

min
ℓ

F̃(ℓ, x̃, ỹ) =
−16√

x̃ỹ
+

1

x̃

min
x̃

F̃(ℓ, x̃, ỹ) = 2

√

sinh(ℓ)3ỹ−12sinh(ℓ).

We obtain these uniform lim infs:

liminf
x→∞

(

inf
ℓ

F(ℓ,x,y)
)

> lim
x̃→∞

(

min
ℓ

F̃(ℓ, x̃, ỹ)
)

= 0

liminf
x→1

(

inf
ℓ

F(ℓ,x,y)
)

> lim
x̃→0

(

min
ℓ

F̃(ℓ, x̃, ỹ)
)

= ∞

liminf
ℓ→∞

(

inf
x

F(ℓ,x,y)
)

> lim
ℓ→∞

(

min
x̃

F̃(ℓ, x̃, ỹ)
)

= ∞

liminf
ℓ→0

(

inf
x

F(ℓ,x,y)
)

> lim
ℓ→0

(

min
x̃

F̃(ℓ, x̃, ỹ)
)

= 0.

Once we control x, we can also check the last case more directly by calcu-

lating that

F(0,x,y) = f (x)+ f (y)> 0.

Either way, this establishes that we can use the derivative test for each fixed

y to confirm that F(ℓ,x,y)> 0.

We use the final change of variables

t
def
= tanh(

ℓ

2
).

Sage tells us that

∂F

∂ℓ
(t,x,y) =−12

(t4 + t2)xy−2t3(x+ y)+3t2 −1

(t2 −1)3
,

∂F

∂x
(t,x,y) =−4

(2t3y−3t2 +1)(x2 −1)2 + x4(t2 −1)3

(t2 −1)3(x2 −1)2
.
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We again rigorously determine the common zeroes of their numerators by

finding their associated prime ideals in the ring Q[x,y, t] using Sage. The

solution set in this case is characterized by 7 prime ideals. Six of the ideals

are inconsistent with the conditions 0 6 t < 1 and x,y > 1, while the 7th

yields the desired locus x = y = 1/t. We eliminate the 6 unwanted ideals.

Two of them contain t −1, two contain t +1, and one contains x.

The final unwanted primary ideal is more complicated and includes the

left sides of these two equations:

3tx2 + txy−2x2y+ x+ y = 0

t3x2 + t3xy− t2x− t2y+2t +2x = 0.

Since the first equation is linear in t, we can eliminate it by substitution. The

resulting relation between x and y has a factor of x+ y, which is excluded

easily. The other factor in the numerator is

C(x,y)
def
= 4x6y3 −12x5y2 −8x4y3 +27x5 +27x4y+17x3y2

+5x2y3 −11x3 −11x2y−5xy2 − y3.

We can confirm that this has no solutions with x,y > 1 by writing

C(x̃, ỹ) = D(x̃, ỹ)+9x̃2ỹ(ỹ−1)2 +2x̃ỹ(ỹ−2)2,

whence it turns out that D(x̃, ỹ) has non-negative coefficients in x̃ and ỹ.

Thus C(x,y) = 0 has no solutions with x,y > 1, which completes the deriv-

ative test for F(ℓ,x,y). �

8. PROOFS OF OTHER RESULTS

8.1. Uniqueness. Problems 6.1 and 7.2 both place strong restrictions on

µ and therefore on Ω in the sharp case. First, all of the inequalities in

Problem 6.1 become equalities when κ > 0; all of the inequalities in Prob-

lem 7.2 become equalities when κ < 0. In particular, equation (25) becomes

an equality, which implies that Ω is convex and that the candle compar-

ison is an equality at short distances. That in turn implies that Ω satis-

fies Ric > (n− 1)κg and that it is the equality case of Bishop’s inequality

[BC64, §11.10], which implies that it has constant curvature K = κ .

The case κ = 0 does not use (25), but it does use (23). This again implies

that Ω is convex. The stronger assumption that Ω is
√

Ric class 0 together

with equality in (23) tells us again that Ω has constant curvature K = 0.

Second, sharpness tells us that µΩ is concentrated on the locus given

by equation (47). In other words, every chord in Ω has the same length

and incident angles as if Ω were a round ball Bn,κ(r). If Ω is convex with

constant curvature, this implies that Ω is isometric to Bn,κ(r).
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8.2. Günther’s inequality with reflections. In this section, we will prove

Proposition 5.8.

If γ(t) is a smooth curve in M with t ∈ [0,r], then it is a constant-speed

geodesic if and only if it is a critical point of the energy functional

E(γ) =
∫ r

0

〈γ ′(t),γ ′(t)〉
2

dt

assuming Dirichlet boundary conditions (i.e., that we fixed the endpoints

of γ). Let γ be such a geodesic with unit speed, and let y(t) be a smooth,

infinitesimal normal displacement. Then we can define a relative energy

E(y)
def
= E(γ + y)−E(γ)+O(||y||3),

which is just the second variational derivative of the curve energy, equiv-

alently half of the second variation of the curve length. We can identify

the normal bundle to γ(t) with Rn−1 using parallel transport, thus view y

as a function with values y(t) ∈ Rn−1. If γ is an ordinary geodesic without

reflections, then by a standard calculation,

E(y) =
∫ r

0

[

〈y′(t),y′(t)〉−〈y(t),R(t)y(t)〉
]

dt,

where

R(t) = R(·,γ ′(t), ·,γ ′(t))
is the Riemann curvature tensor specialized at the unit tangent γ ′. This leads

to the differential equation

y′′ =−R(t)y(t),

which is satisfied by y when it is a Jacobi field, i.e., a geodesic displacement

of γ .

γ(t)

(γ + y)(t)

∂M

∂M

FIGURE 7. Diagram of a vector field y that displaces a geo-

desic γ in a curved surface (non-geodesically), and a contin-

uation if γ were straight. The short red segment is the length

variation of γ + y due to the reflection.

If γ reflects from ∂M, then the energy has extra terms. We will derive

the energy (60) and a modified Jacobi field equation (61). Although these
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equation are not really new [Inn98, §2], we give a geometric argument that

we have not seen elsewhere. To understand the extra terms in E(y) due to

the reflections, suppose that γ reflects from ∂M at a point p = γ(t), and

let Q = Q(p) be shape operator ∂M relative to the inward unit normal w =
w(p), i.e.,

Qu =−∇uw.

If we give γ a ghost extension as in Figure 7, then the displacement γ + y

has a gap when ∂M is curved. (The figure shows the convex case with a

positive gap; the gap can also have negative width.) We first assume the

simplest case in which γ is normal to ∂M. The quadratic form 〈·,Q·〉/2

osculates ∂M, so that the width of the gap, and thus the negative of the

change in length, is 〈y,Qy〉. If the angle of incidence of γ is θ 6= 0, then this

answer is subject to two corrections. First, the gap is at an angle of θ from

γ , so the length saved is cos(θ)〈·,Q·〉. Second, y no longer represents the

position that γ + y meets Tp∂M, again because the surface is angled.

To derive where γ + y meets Tp∂M, we call Tp(∂M) the tangent hy-

perplane, the normal Np(γ) to γ(t) the coronal hyperplane, and the 2-

dimensional plane spanned by w(p) and γ ′(t) the sagittal plane4. Let P

be the orthogonal projection from the tangent hyperplane to the coronal hy-

perplane. If we choose an orthonormal coronal basis e1, . . . ,en−1 such that

e1 is in the sagittal plane, and a matching tangent basis, then

P =























cos(θ) 0 · · · 0

0 1 0

...
. . .

...

0 0 · · · 1























.

Then the change in length, and therefore the extra energy term, is

−cos(θ)〈P−1y,QP−1y〉.
(This formula still works when θ = 0 if we take P to be the identity matrix.)

If γ reflects from a sequence of boundary points {pk} at times {tk}, then we

have the same change in length using angles θk and symmetric matrices Pk

and Qk, and we can abbreviate the result by letting

Ak
def
= cos(θk)P

−1
k QkP−1

k .

4This terminology is borrowed from human anatomy.
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Then energy of the normal field y is

E(y) =
∫ r

0

[

〈y′(t),y′(t)〉−〈y(t),R(t)y(t)〉
]

dt −∑
k

〈y(tk),Aky(tk)〉. (60)

Thus, if y is a (reflecting) Jacobi field, it satisfies the distributional differen-

tial equation

y′′(t) =−R(t)y(t)−∑
k

Aky(tk)δtk(t), (61)

where δt is a Dirac delta measure on R concentrated at t. Note that if ∂M is

concave, then Qk is negative semidefinite and therefore so is Ak.

We now follow a standard proof of Günther’s inequality; see Theorem

3.101 in [GHL90]. First, we will need that the energy (60) is positive def-

inite, so that if y Jacobi field, it is an energy minimum (assuming Dirich-

let boundary conditions) and not just a critical point. This is standard in

the proof of Günther’s inequality without the Ak terms, with the aid of the

length restriction when κ > 0. It is still true with the Ak terms, since each

such term is positive semidefinite.

Second, we consider a matrix solution Y to (61) with Y (0)= 0 and Y (r)=
I. Then the candle function of γ satisfies

j(γ,0, ℓ) =
detY (ℓ)

detY (r)
,

and the logarithmic derivative at r is given by

∂

∂ t

∣

∣

∣

t=r
log( j(γ,0, t)) = (detY )′(r) = Tr(Y )(r).

We generalize the energy (60) to the matrix argument Y , and we interpret it

as a function of Y , R(t), and each Ak:

E(Y,R,A) =
∫ r

0

[

〈Y ′(t),Y ′(t)〉−〈Y (t),R(t)Y (t)〉
]

dt

−∑
k

〈Y (tk),AkY (tk)〉, (62)

using the Hilbert-Schmidt inner product

〈X ,Y 〉= Tr(XTY ).

If Y is a solution to (61), then integration by parts yields the remarkable

equality

Tr(Y )(r) = E(Y,R,A).

If we minimize E with respect to all three arguments Y , R, and A, then we

both solve (61) and minimize the logarithmic derivative of γ . If we fix Y ,

then it is immediate from (62) and from the constraints that we should take

R = κI and Ak = 0, i.e., maximum curvature and flat mirrors.



LE PETIT PRINCE 57

8.3. Multiple images. Lemma 5.7 yields the following model.

LP Problem 8.1. Given n, κ , A, V , and m, is there a symmetric, positive

measure µ(ℓ,α,β ) such that

α∗(µ) =
∫

ℓ,β
dµ = A dz(α)

∫

ℓ,α,β
sn,κ(ℓ)sec(α)sec(β )dµ 6 mA2

∫

ℓ,α,β
s
(−1)
n,κ (ℓ)

(

sec(α)+ sec(β )
)

dµ 6 2mAV

∫

ℓ,α,β
s
(−2)
n,κ (ℓ)dµ 6 mV 2

∫

ℓ,α,β
ℓdµ = ωn−1V ?

Theorem 1.8 now follows as a corollary-of-proof5 of Theorem 1.4. If we

apply the transformation

Ṽ = mV, Ã = mA, µ̃ = mµ,

then Problem 8.1 becomes Problem 6.1.

8.4. Alternative functionals. In this section we prove Theorem 1.17. The

proof is almost the same as the proof of Croke’s theorems in Section 7.1.

Given L = L(Ω), we consider the following linear programming problem

based on equation 23.

LP Problem 8.2. Given n, A, and L, is there a symmetric positive measure

µ(ℓ,α,β ) such that

α∗(µ) =
∫

ℓ,β
dµ = A dz(α)

∫

ℓ,α,β
ℓn−1 sec(α)sec(β )dµ 6 A2

∫

ℓ,α,β
ℓn−3 dµ = L?

We can apply a version of Proposition 6.5 to establish Theorem 1.17 as a

sharp inequality.

Given a > 0 and d ∈ R, we consider the energy

E(ℓ,α,β ) = aℓn−1 sec(α)sec(β )−dℓn−3.

5Also known as a porism.
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By design, given a radius r > 0, there are values of a,d > 0 such that

E(ℓ,α,α) is minimized in ℓ when

ℓ= 2r cos(α),

which thus satisfies (47). We can take

a =
n−3

r2
, d = 4(n−1).

(Note that we need n > 4. If n < 3, then a would be negative. If n = 3, then

L(Ω) ∝ |∂Ω| and Theorem 1.17 is vacuous.)

We define the potential

f (α) =−E(2r cos(α),α,α)

2
= 2n−1(r cos(α))n−3.

Applying the change of variables (49), the adjusted cost function is

F(ℓ,x,y) = (n−3)ℓn−1xy−4(n−1)ℓn−3 +2n−1(x3−n + y3−n).

We want to show that F > 0. For any fixed value of xy, F(ℓ,x,y) is mini-

mized when x = y. Then

F(ℓ,x,x) = (n−3)ℓn−1x2 −4(n−1)ℓn−3 +2nx3−n

=
(

(n−3)(ℓx)n−1 −4(n−1)(ℓx)n−3 +2n
)

x3−n.

The first factor is a polynomial in ℓx that, by univariate calculus, decreases

to 0 at ℓx = 2 and then increases again. This completes the proof of Theo-

rem 1.17.

8.5. Old wine in new bottles. In this section, we complete the proof of

Theorem 1.16. The rest of this paper has covered all cases except Theo-

rem 1.15, due to Yau, and Theorem 1.14, due to Croke. The arguments

given here are equivalent to the original proofs, only restated in linear pro-

gramming form.

8.5.1. Yau’s linear isoperimetric inequality. Suppose that Ω is n-dimen-

sional and LCD(−1). Problem 7.2 yields
∫

ℓ,α,β

(

s(−1)(ℓ)sec(α)− (n−1)s(−2)(ℓ)
)

dµΩ 6 AV − (n−1)V 2

since q > n−1. The integrand is positive, since it is the second antideriva-

tive of

s′(ℓ)sec(α)− (n−1)s(ℓ) =

(n−1)sinh(ℓ)n−2
(

cosh(ℓ)sec(α)− sinh(ℓ)
)

> 0.
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Thus the right side is positive, and Theorem 1.15 follows. Stated pedan-

tically in terms of optimal transport, the result follows if we define a cost

function

E(ℓ,α,β ) = s(−1)(ℓ)sec(α)− (n−1)s(−2)(ℓ),

and then a vanishing potential f (α) = 0.

8.5.2. Croke’s curvature-free inequality. For simplicity, we take ρ = 1.

Suppose that Ω is n-dimensional with unique geodesics. Lemma 5.6 pro-

duces the following simple model that does not use any value of κ , and that

could be combined with Problem 6.1.

LP Problem 8.3. Given n, A, and V , is there a symmetric, positive measure

µ(ℓ,α,β ) such that

α∗(µ) =
∫

ℓ,β
dµ = A dz(α)

∫

ℓ,α,β
s
(−2)

n,(π/ℓ)2(ℓ)dµ 6V 2

∫

ℓ,α,β
ℓdµ = ωn−1V ?

In order to analyze this model, we simplify it in two respects. First, we

can integrate away α and β , because none of the integrals explicitly depend

on them. We call the resulting measure µ(ℓ). Second, we can explicitly

evaluate the integrand that arises from Lemma 5.6:

s
(−2)

n,(π/ℓ)2(ℓ) =
( ℓ

π

)n+1

s
(−2)
n,1 (π) =

ℓn+1ωn

2πnωn−1
.

The first equality is just rescaling by ℓ/π . The second equality is a tricky

but standard integral; the answer can also be inferred from the optimal case

of a hemisphere Yn,1. The simplified model is then as follows.

LP Problem 8.4. Given n, A, and V , is there a positive measure µ(ℓ) on

R>0 such that
∫

ℓ
dµ =

ωn−2

n−1
A

∫

ℓ

ℓn+1ωn

2πnωn−1
dµΩ 6V 2

∫

ℓ
ℓdµΩ = ωn−1V

As usual, we state the dual of Problem 8.4.
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LP Problem 8.5. Given n, A, and V , are there constants c > 0 and f ,d ∈R

such that

f + c
ℓn+1ωn

2πnωn−1
−dℓ> 0

f
ωn−2

n−1
A+ cV 2 −dωn−1V < 0? (63)

In the optimal case of Yn,1, we have ℓ= π everywhere and V = ωn/2. We

can solve for the constants f , c, and d assuming that the left side of equation

(63) reaches 0 there and is non-negative for other values of ℓ. We obtain

c = 2ωn−1, d = (n+1)ωn, f = nπωn.

Assuming that A is feasible rather than infeasible, (63) then gives us the

inequality

A >
(n−1)ωnωn−1

2πωn−2
= ωn−1.

This establishes Theorem 1.14.

Remark. It may seem wrong that Yn,1 does not itself have unique geodesics.

But it is a limit of manifolds that do, which is good enough. In any case the

proof of Theorem 1.14 only really uses that Ω has unique geodesics in its

interior.

9. CLOSING QUESTIONS

Of course, we want Theorem 1.5 without the smallness condition (4). It

would suffice to prove a stronger version of Lemma 5.5. At least in the

convex case, this would be implied by the following conjecture; the non-

convex case might not be much harder.

Conjecture 9.1. Let j(r, t) = jM(γ,r, t) be the candle function of a geodesic

in γ in an n-manifold M with curvature K 6−1. Then

[

j− (n−1)
∂ j

∂ t
+(n−1)

∂ j

∂ r
− (n−1)2 ∂ 2 j

∂ r∂ t

]

(r, t)

is minimized when M has constant curvature K =−1. Integrating twice,

j(0, ℓ)− (n−1)
∫ ℓ

0
j(0, t)dt − (n−1)

∫ ℓ

0
j(s, ℓ)ds

+(n−1)2
∫ ℓ

0

∫ t

0
j(s, t)ds dt.

is minimized when K =−1.
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Note that even second relation in Conjecture 9.1 is not true under the

weaker hypothesis LCD(−1). For example, it does not hold when ℓ is large

enough if M is the complex hyperbolic plane CH2, normalized to have sec-

tional curvature between −9/4 and −9/16.

The following relaxation of Kleiner’s theorem is open even though, as

explained in Section 1.4.2, it is close to true. The motivation is that the

even strongest form holds in dimension n= 4 following the proof of Croke’s

theorem.

Question 9.1. Suppose that Ω is a compact, 3-dimensional manifold with

boundary, with unique geodesics, with non-positive curvature, and with

fixed volume |Ω|. Then is its surface area |∂Ω| minimized when Ω is

a round, Euclidean ball? What if non-positive curvature is replaced by

Candle(0)? What if the Candle(0) condition is only required for pairs of

boundary points?

Each part of Question 9.1 could also be asked in dimension n > 5 and for

other curvature bounds κ .

Finally, the following conjecture would give a more robust proof of The-

orem 1.7, with a weaker hypothesis as well when κ = 0.

Conjecture 9.2. Suppose that Ω is a convex, compact Riemannian n-mani-

fold with boundary with unique geodesics. Suppose that for some constants

κ and r, all of the chords in Ω satisfy equation (47). Then Ω is isometric to

Bn,κ(r).
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PLIQUÉES (UMR 8050), UPEM, UPEC, CNRS, F-94010, CRÉTEIL, FRANCE
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