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The Little Prince and Weil’s isoperimetric problem

Benoı̂t R. Kloeckner∗

Institut Fourier, Université de Grenoble I

Greg Kuperberg†

Department of Mathematics, University of California, Davis

Using linear programming methods, we derive various isoperimetric inequalities in 2 and 4-dimensional

Riemannian manifolds whose curvature is bounded from above.

First, we consider the problem of shaping a small planet inside a non-positivily curved surface so as to

maximize the gravity feeled by a fixed observer (the Little Prince). This provides a pointwise inequality which,

integrated on the boundary of a domain, yields Weil’s theorem asserting that the planar Euclidean isoperimetric

inequality is satisfied inside all simply connected, non-positively curved surfaces.

Then, generalizing Croke’s proof of the dimension 4 version of this result, we obtain similar statements in

manifolds satisfying an arbitrary sectional curvature upper bound.

Moreover, the method enables us to state all our results under a relaxed curvature condition.
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1. INTRODUCTION

1.1. Weil’s isoperimetric conjecture

Isoperimetric inequalities are one of the most ancestral still active subject in geometry. First

studied in Euclidean space, it is natural to consider their extension to other Riemannian manifolds:

for example it is now well known that in round spheres and real hyperbolic spaces, balls have the

least perimeter amoung domains of given volume. One particularly challenging problem is to obtain

an isoperimetric inequality that is valid for a whole class of Riemannian manifold; obviously, some

geometric constraint must be imposed to such a class. The first result in this spirit has been proved

as early as 1926 by Weil: a simply connected surface with boundary whose Gauss curvature is

non-positive must satisfy the planar isoperimetric inequality [Wei26].

It has been conjectured, (notably by Aubin [Aub76], see also [BZ88], [Gro81]) that similarly in

any dimension n, a domain in any simply-connected manifold of non-positive sectional curvature

must satisfy the isoperimetric inequality of Rn. It has been generalized to a negative upper bound κ
on the sectional curvature; in this case it is expected that any domain satisfy the optimal isoperimetric

inequality of the real hyperbolic space of dimension n and curvature κ .

Up to now, it is known that this conjecture holds in dimension 2 (we refer to [Oss78] for attribution

of the general case but note that the proof by Weil [Wei26] when κ = 0 preceeds the usually cited

one by Beckenbach and Radó [BR33]) and 3 [Kle92], and in dimension 4 for κ = 0 [Cro84].

An interesting feature of Croke’s proof is that it applies to all non-positively curved manifold

with boundary such that every pair of points is linked by at most one geodesic; this is slightly more

general than the usual setting, but more importantly it makes it possible to extend the conjecture to

positive curvature bound.

More precisely, it is expected that any compact manifold with boundary whose sectional curvature

is bounded above by κ > 0 and all of whose pairs of points are linked by at most one geodesic

satisfies the isoperimetric inequality of the sphere of curvature κ .

Since a simply connected non-positively curved manifold is called a Cartan-Hadamard manifold,

the isoperimetric conjecture when κ 6 0 is sometimes known as the Cartan-Hadamard conjecture.

Since Weil’s work is the first one in this direction we shall call “Weil’s isoperimetric conjecture”

both the statement for domains when κ 6 0, and its adaptation for κ > 0 described above.

The goal of this paper is to give a method that

• solves the dimension 4 and κ < 0 case for domains which are small enough in a explicit sense,

• solves the κ > 0 case in dimension 2 and 4,

• makes Weil’s theorem a consequence of a pointwise inequality,

• enable one to use more flexible hypotheses than the usual upper bound on sectional curvature.

Very roughly, the method consists in using the curvature bound (or, rather, a volume comparison

property implied by the curvature bound) to derive linear integral inequalities involving the volume

of the domain, the volume of its boundary, and a natural measure on the set of geodesic segments,

and combining these inequalities in an optimal way using linear programming.

1.2. Notations

Let M be a connected compact Riemannian manifold with boundary of dimension n = 2 or 4, and

let κ be a real number to be used as a curvature bound. All isoperimetric inequalities below also

apply to manifolds with boundary and corners by classical smoothing arguments.

We use | · | to denote the size of an object, in particular the Riemannian volume of a manifold.

Let Sn
κ be the simply connected space form of dimension n and curvature κ , and for all V let

Bn
κ(V ) be the metric ball of Sn

κ having volume V (if κ > 0, we restrict V to be at most the volume
1
2
|Sn

κ |= κ−n/2ωn/2 of an hemisphere, where ωn denotes the volume of the unit n-sphere Sn
1).

Let AM be the volume of ∂M, VM be the volume of M, K(x,P) be the sectional curvature of M at

a point x ∈ M and plane P ⊂ TxM; by K 6 κ we mean that this inequality is satisfied uniformly in x

and P.
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1.3. Candle condition and Root-Ricci curvature

To state our results optimaly, let us describe a few geometric properties whose relations are studied

in our previous article [KK12], to which we refer for more details and proofs.

The “candle function” is simply a normalized version of the Jacobian of the exponential map.

Let γ = γu be a geodesic curve in M that begins at p = γ(0) with initial velocity u ∈ UTpM. Then

the candle function s(γ,r) is by definition the Jacobian of the map u 7→ γu(r). In other words, it is

defined by the equations

dq = s(γu,r)dudr q = γu(r) = expp(ru),

where dq is Riemannian measure on M, dr is Lebesgue measure on R, and du is Riemannian measure

on the sphere UTpM.

The candle function of a geometry of constant curvature κ is denoted by sκ(r). Croke’s Theorem

does not really need K 6 0, but rather s(γ,r) > s0(r) for all γ,r. The latter is a consequence of the

former according to Günther’s inequality [Gün60, BC64], but is also a consequence of a weaker

curvature bound to be described below.

Say that a manifold M is Candle(κ) if the inequality

s(γ,r) > sκ(r) (1)

holds for all γ,r; or LCD(κ), for logarithmic candle derivative if the logarithmic condition

(logs(γ,r))′ > (logsκ (r))
′ (2)

(where the derivative is taken with respect to r) holds for all γ,r. The Candle(κ) condition is weaker

than LCD(κ), since the former can be deduced from the latter by integration.

If κ > 0, then these conditions are only meaningful up to the distance π/
√

κ between conjugate

points in the comparison geometry. We also write Candle(κ , ℓ) and LCD(κ , ℓ) if the same conditions

hold up to a distance of r = ℓ. If LM is the maximal length of a geodesic in M, then in this vocabulary

Croke only uses Candle(0,LM) instead of K 6 0.

Both to show that the candle conditions are much more general than sectional upper bounds and

in order to get equality cases later on, let us introduce the root-Ricci curvature. Assume K ≤ ρ for

some constant ρ > 0. For any unit tangent vector u ∈UTpM with p ∈ M, we define

√
Ric(ρ ,u)

def
= Tr(

√

ρ −R(·,u, ·,u)).

Here R(u,v,w,x) is the Riemann curvature tensor expressed as a tetralinear form, and the square root

is the positive square root of a positive semidefinite matrix or operator. This definition should be

considered an analogue of Ricci curvature: just as

1

n− 1
Ric(u,u) =

1

n− 1
TrR(·,u, ·,u)

is the arithmetic mean of principal curvatures,

ρ − (
1

n− 1

√
Ric(ρ ,u))2 = ρ −

(

1

n− 1
Tr(
√

ρ −R(·,u, ·,u))
)2

(3)

is a non-linear mean of principal curvature, conjugate to the linear mean by the map f (x) =
√

ρ − x.

We refer to [KK12] for a detailled description of various property of root-Ricci curvature; let us

simply recall that we say that M is of
√

Ric class (ρ ,κ) if K 6 ρ and
√

Ric(ρ ,u)> (n− 1)
√

ρ −κ
for all u, which amounts to ask the mean (3) to be 6 κ , and that the following implications hold: for

all ρ ′ > ρ > κ

K 6 κ =⇒
√

Ric class (ρ ,κ) =⇒
√

Ric class(ρ ′,κ) =⇒ Ric 6 κ(n− 1)g

All implications are strict when n > 2; of course in dimension 2 root-Ricci curvature is equivalent to

sectional curvature. Let us give two examples of 4-manifolds of
√

Ric class (0,−1) but not satisfying

K 6−1:
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• the complex hyperbolic plane, normalized to have sectional curvature between − 9
4

and − 9
16

,

• the product of two simply connected surfaces whose Gauss curvature is bounded above by

−9.

The main purpose of [KK12] is to prove the following relation between root-Ricci curvature and

candle conditions:

√
Ric class (ρ ,κ) =⇒ LCD(κ ,

π

2
√

ρ
).

Moreover, if M has
√

Ric class (rho,κ) and for all γ there is a positive r that makes (2) or (1) an

equality, then M has constant curvature κ .

1.4. Isoperimetric inequalities

We start with a simple application of the linear programming method.

Theorem 1.1 (Little Prince). Assume M is a compact domain in a convex,1 simply connected, non-

positively curved surface. For all x ∈ M let Xx be the “gravitational field” generated by x, namely

the radial vector field centered at x whose divergence is the Dirac measure −δx. For any points

p ∈ ∂M and q ∈ ∂B2
0(VM), with inward normal vectors νp, νq, we have

∫

M
Xx ·νp dx 6

∫

B2
0(VM)

Xy ·νq dy

In other words, to feel maximal gravity given the density and mass of its planet, the Little Prince

should make it a round ball in the Euclidean plane. The nice thing is that while the problem data has

a prominent point p, its solution is as symmetric as it could be. As a consequence, when we integrate

this inequality over ∂M, we get a relation between AM and VM, which happens to be precisely Weil’s

isoperimetric inequality, see Section 2

After the Little Prince warm-up, we shall show the following results using the linear programming

method.

We use LM to denote the maximal length of a geodesic with endpoints in M; that is, when M is

a mere manifold with boundary LM is the maximal length of a geodesic segment in M, but if it is

assumed that M is a domain in a convex ambiant manifold N then LM is the diameter of M as a subset

of N.

Theorem 1.2 (non-negative bound). Recall that n = 2 or 4, and assume κ > 0. If M satisfies

Candle(κ ,LM) (e.g. K 6 κ , or
√

Ric class (ρ ,κ) with small enough ρ), if every pair of points is

linked by at most one geodesic, and if VM 6 κ−n/2ωn/2 then M satisfies the isoperimetric inequality

AM > |∂Bn
κ(VM)| . (4)

Note that when κ = 0 the volume upper bound is empty, so that in particular we recover Weil’s

and Croke’s results. The hypothesis on the volume is quite natural in a positive curvature setting;

note in particular that limiting the volume to half the volume of a sphere is unsurprising considering

the hypothesis that M is uniquely geodesic.

The case n = 2,κ > 0 already appeared with slightly different hypotheses in [MJ00]. The case

n = 4 is our most satisfactory new result.

When κ < 0 our method half fails and we need to consider a domain in an ambiant manifold, the

stronger LCD condition, and a smallness condition expressed in terms of LM and the radius rM(κ)
of the comparison ball Bn

κ(VM).

1 By convex, we mean that every pair of points is linked by a geodesic; we do not need the surface to be complete.
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Theorem 1.3 (negative bound). Recall that n = 2 or 4 and let κ be negative. Assume M is a compact

domain in a convex manifold N which satisfies LCD(κ ,LM) (e.g., K 6 κ or
√

Ric class (0,κ)) and

that every pair of points of M is linked by exactly one geodesic in N. If n = 4, assume further that M

satisfies the smallness condition

tanh
(

LM

√
−κ
)

tanh
(

rM(κ)
√
−κ
)

6 1/2 (5)

Then M satisfies the hyperbolic isoperimetric inequality

AM > |∂Bn
κ(VM)| .

Note that tanh 6 1, so that a diameter bound or a volume bound is sufficient to get the smallness

condition. Of the three restrictions in that case, the smallness condition is the most undesirable, but

getting rid of it would need a different approach.

This isoperimetric inequality has been proved in all dimensions for very small domains by Morgan

and Johnson [MJ00], then by Druet [Dru02] under a very mild scalar curvature condition, but since

they use compactness arguments they do not give any uniform (let alone explicit) size condition.

The case of equality in both above results is not completely clear, but we can recover it under a

curvature bound.

Theorem 1.4. Consider M as in Theorem 1.2 or 1.3 but replace the candle condition by
√

Ric class

(ρ ,κ) for any ρ > κ such that 2
√

ρLM 6 π; alternatively, if κ > 0 and no such ρ exists, assume

K 6 κ .

If equality holds in (4), then M is isometric to Bn
κ(VM).

Let us end with a variation when the number of geodesics connecting two points is only bounded.

Theorem 1.5 (relative version). Consider M as in Theorem 1.2 or 1.3 but:

• only assume that every pair of points in M is linked by at most m geodesics (in N if κ < 0),

• if κ > 0, assume mVM 6 κ−n/2ωn/2,

• if κ < 0, assume

tanh(LM

√
−κ) tanh(r

√
−κ)6 1/2

where r is the radius of Bn
κ(mVM).

Then M satisfies the following isoperimetric inequality:

AM >
1

m
|∂Bn

κ(mVM)|

We call this result “relative” since it is related to the more classical relative isoperimetric in-

equality of Choe [Cho06] and Choe-Ritore [CR07], which are Didon version of Weil’s isoperimetric

conjecture: M lies in some ambiant manifold N outside of a convex body C and the parts of M

and ∂M included in C are not counted in VM and AM . The geodesic flow then extends by bouncing

against the convex, and some pairs of points get linked by two geodesics (one classical, the other

one bouncing).

Let us give an example that shows the optimality of Theorem 1.5.

Example 1.1. Let us first construct an orbifold example. Let B0 be a ball in a space form Sn
κ , A be a

totally geodesic 2-codimensional subspace containing the center of B0, and θ be a rotation of axis A

and angle 2π/m for some positive integer m. Then R := B0/θ is an orbifold with a cone singularity

along A, and any two points of R are connected by exactly m geodesics (defined as the projections

of geodesics of B0). Moreover R realizes the equality in Theorem 1.5.

One would prefer to have manifold examples. Most simply, consider C a solid cylinder of axis A

and very small radius r and let M := (B \C)/θ . Then M is a manifold with boundary and corners,

and letting r → 0 we see that Theorem 1.5 is sharp among such manifolds.
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1.5. Faber-Krahn inequalities

As usual, isoperimetric inequalities have consequences for the bottom of the spectrum λ (M) of

the Laplacian with Dirichlet boundary condition. This is a consequence of the Faber-Krahn method,

see for example the book of Chavel [Cha84]. In our case, we get that under the assumptions of

Theorems 1.2 or 1.3,

λ (M)> λ (Bn
κ(VM))

and under the assumptions of Theorem 1.4, equality of these eigenvalues implies that M is isometric

to Bn
κ(VM).

Acknowledgements

B.K. thanks Sylvain Gallot for fruitful conversations about Riemannian geometry.

2. SHAPING THE LITTLE PRINCE PLANET

In this section, we prove Theorem 1.1. Beside the individual interest of having a “pointwise”

version of an isoperimetric inequality, the proof already contains all the main ideas for our other

results, but in a simple form so that everything appears clearly.

Here n = 2 and κ = 0, so M is a compact smooth domain in a simply connected surface N satis-

fying Candle(0) and assumed to be convex (every pair of points is linked by a geodesic, which must

be unique thanks to the candle condition which prevents conjugate points). In particular, for any

x ∈ N the polar coordinates y = expx(tu) with u ∈UTxM, t > 0 define a global chart of N \ {x}. To

simplify the notations, we shall write sx(y) = sx(tu) = s(γu, t) so that sx, depending on the context,

denotes a function either on N or on TxN.

We consider a given point p ∈ ∂M. For each x ∈ M, we define

Xx =−(2πsx)
−1

expx∗

(

∂

∂ t

)

This defines a radial vector field(singular at x) whose flux through a piece of sphere expx(tA) where

A ⊂UTxN is equal to −|A|/2π , so that divXx =−δx in the sense of distributions.

Proof of Theorem 1.1. First, remark that, since we try to bound from above the gravity
∫

M Xx ·νp dx,

we can assume that M is starshaped at p and contained in one of the halves of N separated by Tp∂M

(if there is mass above the Little Prince or holes in the planet, we can easily increase gravity by

changing the shape of M without changing its volume).

Let Gp denote the set of maximal unit-speed geodesic segments of M that start at p; it can be

identified with the set UT+
p M of unit, inward tangent vectors at p, which is endowed with its usual

measure. Let µ be the corresponding measure on Gp.

Consider the functions α, ℓ defined on Gp that to a ray associate its starting angle with the inward

normal νp, and its length. We shall identify µ with its image measure (α, ℓ)#µ on D := [0,π/2]×
[0,+∞). Similarly, we identify α, ℓ with the corresponding functions on UT+

p M, as well as with the

canonical coordinates on D.

Using a polar change of coordinates, we have
∫

M
Xx ·νp dx =

1

2π

∫

exp−1
p (M)

cosα(u)dt du

=
∫

D
ℓcosα dµ(α, ℓ)

Similarly, the candle condition yields

VM =

∫

M
dx =

∫

exp−1
p (M)

sp(tu)dt du

>

∫

D

1

2
ℓ2 dµ(α, ℓ)
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We have another constraint: we know the α-marginal of µ , namely for all function f : [0,π/2]→ R

it holds

∫

f (α)dµ(α) = 2

∫ π
2

0
f (α)dα

We are led to the following linear programming problem: given a number VM, find a positive

measure µ0 on D satisfying

∫

1

2
ℓ2 dµ0 6VM (6)

∫

f (α)dµ0 = 2

∫

f (α)dα ∀ f (7)

and maximizing

∫

ℓcosα dµ0

The point is then to use the classical duality principle. Assume that we find µ0, f and a number

a > 0 such that:

• there is equality in (6),

• for all (α, ℓ), it holds

a

2
ℓ2 + f (α)> ℓcosα (8)

with equality on supp µ0

then we claim that µ0 achieves the maximum we seek. Indeed, for all µ satisfying the constraints

we would have
∫

ℓcosα dµ 6

∫

(a

2
ℓ2 + f (α)

)

dµ

6 aVM + 2

∫

f (α)dα

=
∫

(

a
1

2
ℓ2 + f (α)

)

dµ0

=

∫

ℓcosα dµ0

In general, finding such µ0, f ,a could be difficult; but here we know that µ0 should be the measure

µ associated with the domain B2
0(VM). It satisfies the constraints by what preceeds, realizes equality

in (6), and is concentrated on the set

{

(α, ℓ) | cosα =
ℓ

2r

}

where r is the radius of B2
0(V ). Moreover, a being fixed we should take f as small as possible, thus

we let

f (α) = sup
ℓ

(

ℓcosα − a

2
ℓ2
)

=
cos2 α

2a

and we see that (8) is realized when cosα = aℓ. Taking a = 1/2r, we are done. The maximizaton

objective is realized by the planar disk of volume VM , proving Theorem 1.1.

Proof of Weil’s Theorem. Let M be a domain in a simply connected non-positively curved surface

(or more generally, a surface without cut-locus satisfying Candle(0)). Recall that AM denotes the
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length of ∂M, let B = B2
0(VM), q ∈ ∂B and AB = |∂B|. Integrating the Little Prince inequality over

p ∈ ∂M, we get
∫

∂M

∫

M
Xx ·νp dxdp 6 AM

∫

B
Xy ·νq dy

∫

M

∫

∂M
Xx ·νp dpdx 6

AM

AB

∫

B

∫

∂B
Xy ·νq dqdy

∫

M2
−divXx(ξ )dxdξ 6

AM

AB

∫

B2
−divXy(η)dydη

∫

M
dx 6

AM

AB

∫

B
dy

AM > AB

This proof is limited to n = 2 and κ = 0 because it needs two quantities to be proportional:

the function T defining the Euclidean ball in polar coordinates centered at a boundary point by

{cosα = T (ℓ)} and the ratio between the derivatives of the contribution ℓn/n to the volume and the

contribution ℓ=
∫ ℓ

0 |Xexpp(tu)
|sp(tu)dt to the gravitational force of the direction u.

In other cases, one could try to change the expression of the gravitational field to ensure this

coincidence, but |Xexpp(tu)
|sp(tu) needs to be constant to ensure that the divergence is zero outside the

singularity. We expect that when κ 6= 0, this method can be adapted by using a constant divergence

vector field to get a similar pointwise inequality implying the isoperimetric inequality, but only in

surfaces of constant curvature.

3. THE LINEAR PROGRAMMING PROBLEM BEHIND THE ISOPERIMETRIC INEQUALITY

In this section we shall derive the linear programming problem that lies behind theorems 1.2 and

1.5. The starting point is a set of inequalities that translate the curvature bounds, and are formulated

in terms of a measure on geodesic segments we first define. We keep the notations of the introduction

all along. From now on we assume that M satisfies Candle(κ).

3.1. A measure on geodesic segments

The cotangent bundle T ∗M has a canonical symplectic structure, and since M is Riemannian we

can translate it to a symplectic structure on TM. The geodesic flow induces a 1-dimensional foliation

of TM, which leaves invariant the unit tangent bundle UTM, a 1-codimensional manifold. By the

general principle of symplectic quotients, these data induce a symplectic structure on any hypersur-

face U ⊂UTM transversal to the geodesic flow, with compatibility when the geodesic flow is used

to identify two pieces of transversal U1, U2. Here M is assumed to be uniquely geodesic, so that the

picture becomes global: the set G of maximal, oriented, unparametrized geodesic segments identi-

fies with the manifold of leaves of the geodesic flow, and therefore inherits a symplectic structure.

The corresponding volume µM is the measure we are interested in.

If dx is the Riemannian volume on M and du the usual volume on the sphere UTxM, the Liouville

measure is defined as the measure on UT M that writes dxdu (note that du denotes measures on each

fiber of UTM, but they are equivariant under parallel transport so that they can all be identified). The

measures µM and dxdu are closely related: the latter is obtained from the former by time integration.

In other words, the Liouville measure of A ⊂ UTM is the integral of the function γ ∈ G 7→ |γ ∩A|
(where | · | donotes length) against the measure µM.

There is a natural identification between G and

UT+∂M = {(p,v) | p ∈ ∂M,v ∈UTpM inward pointing}

(a geodesic segment is identified to its starting point and initial velocity). Since UT+∂M is transver-

sal to the geodesic flow, the image measure of µM under this map is nothing else than the volume

of the symplectic structure inherited from the canonical symplectic structure of T ∗M. In coordi-

nates, denoting by α(p,v) the angle between u and the inward normal to ∂M at x, this measure is

ha
l-0

08
00

02
7,

 v
er

si
on

 1
 - 

13
 M

ar
 2

01
3



9

cosα dpdv (where dp is the volume measure on the boundary). Under the above identification, the

function α can be defined for a geodesic segment; we define similarly both on G and UT+∂M, the

functions β and ℓ that give respectively the angle between a geodesic and the outward normal at its

final point, and its length.

Santaló’s equality states that for all integrable function f ,

∫

UT M
f (x,u)dudx =

∫

UT+∂M

∫ ℓ(v)

0
f (ξ t(p,v))cos(α(v))dt dvdp

where ξ t is the geodesic flow; this of course follows from the compatibility of the induced symplectic

structures on transversals and the relation between µM and the Liouville measure. Applying this to

the length ℓ(x,u) of the geodesic segment γ(x,u) ∈ G defined by an element of UTM, we get with

some abuse of notation

µM = cosα dvdp =
1

ℓ
dudx

Note that compared to the proof of the Little Prince Theorem, we changed the normalization by

including the cosα factor in the measure.

It is a positive measure on G , and we have

∫

ℓdµM = ωn−1VM (9)

where as above, ωn−1 denotes the total volume of the unit sphere in the n-dimensional Euclidean

space.

Moreover, the reversibility of the geodesic flow implies that µM is symmetric in (α,β ) in the

sense that for all function f : R× [0,π/2]2 →R, we have

∫

f (ℓ(γ),α(γ),β (γ))dµM(γ) =

∫

f (ℓ(γ),β (γ),α(γ))dµM(γ) (10)

and the α marginal of µM is AMωn−2 sinn−2(α)cos(α)dα in the sense that for all f : [0,π/2]→ R

we have

∫

f (α(γ))dµM(γ) = AM

∫ π/2

0
f (α)δ n(α)dα (11)

where have set δ n(α) = ωn−2 sinn−2(α)cos(α) for simplicity. Beware that we abusively used α as

a mute variable in the second member; we shall proceed similarly in the sequel, using µM also to

denote its projection on [0,+∞)× [0, π
2
]2 given by the map γ 7→ (ℓ(γ),α(γ),β (γ)), and using the

letters ℓ,α,β as coordinates on [0,+∞)× [0, π
2
]2.

3.2. Croke’s inequality and its siblings

We shall now introduce three inequalities satisfied by µM under the condition Candle(κ), that we

will then combine to give informations on AM and VM.

Let sκ : [0,+∞) → [0,+∞) (which depends implicitely on n) be the jacobian fonction of Sn
κ ,

namely

sκ(t) =



























1√
κ

sinn−1(
√

κt) if κ > 0 and
√

κt 6 π

tn−1 if κ = 0

1√
κ

sinhn−1(
√

κt) if κ < 0

When κ > 0 and
√

κt > π , we set sκ (t) = 0.

If f : [0,+∞)→ R is any function, we denote by f ˆ its primitive that vanishes at 0.
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Lemma 3.1. If every pair of points in M is linked by at most m geodesic, the following inequalities

hold:
∫

sκ(ℓ)

cosα cosβ
dµM 6 mA2

M (12)

∫

sκ̂ (ℓ)

cosα
dµM 6 mAMVM (13)

∫

sˆˆκ (ℓ)dµM 6 mV 2
M (14)

Moreover, if M is of
√

Ric class (ρ ,κ) for some ρ such that 2
√

ρLM 6 π , or if K 6 κ , then each one of

these inequality is an equality if and only if M has constant sectional curvature κ and, respectively:

• almost every pair of boundary points is connected by exactly m geodesics,

• almost every pair of a boundary point and an interior point is connected by exactly m

geodesics,

• almost every pair of interior points is connected by exactly m geodesics.

Proof. These three inequalities are proved in a similar way, and when m = 1 the first one is Croke’s

inequality, proved in [Cro84]. Let us give here the proof of the second one, the last one being left to

the reader.

Fix a point p ∈ ∂M. Denoting by dv the Riemannian volume of the hemisphere UT+
p ∂M we have

for x = expp(tv) that dx = sp(tv)dvdt > sκ(t)dvdt. Integrating in v and t, and using that each point

x is the exponential image of at most m vectors tv, we get

mVM >

∫

sκ(t)dvdt =

∫

sκ̂ (ℓ(γ(p,u)))dv

Integrating this inequality in p, we get

mAMVM >

∫

sκ̂(ℓ(γ(p,v)))dvdp =

∫

sκ̂(ℓ)

cosα
dµM

as claimed.

The case of equality, as in Croke’s article, follows from the equality case in Günther’s Theorem

and its refinement.

We shall mainly use these inequalities when m = 1. If M has the property that every pair of points

is linked by exactly one geodesic, we say that M is convex.

We have now four inequalities and equalities involving µM, AM and VM, and we would like to

combine them in an optimal way. However, to use them efficiently we need a last, more flexible

inequality that translates the symmetry and marginal information on µM . This is obtained in the

most ad hoc way: for all function f : [0,π/2]2 →R
+ such that

f (α,β ) 6
1

2
( f (α,α)+ f (β ,β )) (15)

we obviously have

∫

f (α,β )dµM 6 AM

∫ π/2

0
f (α,α)δ n(α)dα (16)

We denote by F the set of all non-negative functions f satisfying inequality (15). This set contains

in particular all symmetric product functions (α,β ) 7→ g(α)g(β ).

3.3. A linear programming problem

We consider, from now on and until further notice, the case when every pair of point in M is linked

by at most one geodesic (m = 1).
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A µ

a AB − sκ (ℓ)

cos(α)cos(β )
> 0

b VM − sκ̂ (ℓ)

2

(

1

cosα
+

1

cosβ

)

> 0

c 0 −sˆˆκ (ℓ) >−V 2
M

d 0 ℓ > ωn−1VM

f ∈ F 0 − f (α,β ) >−AB

∫

f (α,α)δ n(α)dα

6 1 6 0

TABLE I. A linear programming problem

To use linear programming to combine our inequalities, we must first give them a linear form. Let

AB be the surface area of the space form ball that has volume VM , so that either AM > AB (and the

desired result holds), or we can replace inequality (12) by its linearized version

∫

sκ(ℓ)

cosα cosβ
dµM 6 ABAM (17)

Similarly, either AM > AB or the following version of (16) holds for all f ∈ F :

∫

f (α,β )dµM 6 AB

∫ π/2

0
f (α,α)δ n(α)dα (18)

We can also replace (13) by its symmetric form

∫

sκ̂ (ℓ)

2

(

1

cosα
+

1

cosβ

)

dµM 6 AMVM (19)

Last, we only use the inequality
∫

ℓdµM > ωn−1VM instead of the whole of (9).

Table I summarizes the following linear programming problem: find a non-negative real A and a

non-negative measure µ on [0,+∞)× [0,π/2]2 satisfying the constraints

AAB −
∫

sκ(ℓ)

cos(α)cos(β )
dµ > 0

AVM −
∫

sκ̂ (ℓ)

2

(

1

cosα
+

1

cosβ

)

dµ > 0

−
∫

sˆˆκ (ℓ)dµ > −V 2
M

∫

ℓdµ > VM

∀ f ∈ F −
∫

f dµ > −AB

∫

f (α,α)δ n(α)dα

so that A is minimal.

The table is to be read as follows: the first line gives the variables names, each following line

expresses a constraints, except the last one that expresses the minimization objective. Since AM,µM

satisfy the constraints, we have AM > infA.

The interest of the table is that it can be read in columns to obtain the so-called dual problem.

Here: find non-negative reals a,b,c,d and a function f ∈ F satisfying the constraints

aAB + bVM 6 1

−a
sκ(ℓ)

cos(α)cos(β )
− b

sκ̂(ℓ)

2

(

1

cosα
+

1

cosβ

)

−csˆˆκ (ℓ)+ dℓ− f (α,β )6 0 ∀(ℓ,α,β )
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in order to maximize

−cV 2
M + dωn−1VM −AB

∫

f (α,α)δ n(α)dα.

The relevance of the dual problem shall be recalled below.

3.4. Solving the linear programming problem

In view of the maximization objective in the dual problem, we see that it cannot hurt to take f has

small as possible. Given the values of the other dual variables (a,b,c,d), the constraint involving f

shows that we should take

f (α,β ) = sup
ℓ

(

−a
s(ℓ)

cos(α)cos(β )
− b

sˆ(ℓ)

2

(

1

cosα
+

1

cosβ

)

− csˆˆ(ℓ)+ dℓ

)

(20)

as long as this defines a function in F . From this point will originate some technical difficulties

in the following. Note that the Taylor series in ℓ of the supremum argument shows that f is non-

negative.

The set where the ℓ derivative of the above supremum argument vanishes will therefore be of

primary importance, namely the (ℓ,α,β ) satisfying

d = a
s′κ (ℓ)

cos(α)cos(β )
+ b

sκ(ℓ)

2

(

1

cosα
+

1

cosβ

)

+ csκ̂(ℓ) (21)

Let us state as a lemma adapted to our case the fundamental result of linear programming, that we

shall use several times.

Lemma 3.2 (Duality principle). Let B = Bn
κ(VM) be the ball of the reference space form that

has same volume as M. There is a function T such that µB is concentrated on the set C =
{(ℓ,α,β ) | cosα = cosβ = T (ℓ)}. Assume that there are non-negative constants a,b,c,d with

at least one of a,b non-zero such that

1. equation (21) holds on C;

2. the sup in (20) is realized exactly when (ℓ,α,β ) ∈C;

3. the function f defined by (20) is in F , and f (α,β ) = ( f (α,α)+ f (β ,β ))/2 only when α = β .

Then AM > AB, and if M is of
√

Ric class (ρ ,κ) for some ρ such that 2
√

ρLM > LM or K 6 κ , then

there is equality if and only if M is isometric to B.

For the sake of completeness, let us give the (classical) proof.

Proof. For all A,µ ,a,b,c,d, f satisfying the constraints, denoting by D = −cV 2
M + dωn−1VM −

∫

f (α,α)δ n(α)dα the quantity to be maximized in the dual problem, by using first the primal

constraints, then the dual ones we have

D 6 aAAB + bAVM +

∫

(

−a
sκ (ℓ)

cosα cosβ

−b
sκ̂(ℓ)

2

(

1

cosα
+

1

cosβ

)

− csˆˆκ + dℓ− f (α,β )

)

dµ

6 A.

If a,b,c,d, f satisfy the hypothesis, we can by multiplying a,b,c,d by a suitable constant assume

that aAB + bVM = 1. Then a,b,c,d, f satisfy the dual constraints, with equality in the first one, and

equality in the second one precisely for (ℓ,α,β ) ∈C. For A = AB and µ = µB, we then have equality

in the above inequality.

Since AM,µM satisfy the primal constraints, we have AB = D 6 AM

Assume now that there is equality. Then, since one of a,b is non-zero, one of the three first pri-

mal constraints must be an equality. It follows that M must have constant curvature and be convex.

Moreover, µM must be supported on the set (α = β ) for the last primal constraint to yield an equal-

ity. Similarly, equality in the second dual constraint must occur on the support of µM , which must

therefore be concentrated on C, so that M must be isometric to B.
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We see that knowing the optimum in advance has a great advantage: we only have to find suitable

dual variables, rather that trying to optimize A,µ .

4. CROKE’S AND WEIL’S THEOREMS

In this section we treat the case κ = 0 in both dimensions 2 and 4 by solving the preceding

linear programming problem. From Lemma 3.2, we only have to determine suitable dual variables

a,b,c,d, f .

The optimal domain will be shown to be a Euclidean ball B, for which the function T defining the

support of µB is

T (ℓ) =
ℓ

2r

where r is the diameter of B. Since here sκ(t) = tn−1, equation (21) becomes

d = a
(n− 1)(2r cosα)n−2

cos2 α
+ b

(2r cosα)n−1

cosα
+

c

n
(2r cosα)n ∀α (22)

If n = 4, the following values for the first four dual variables:

d = 12r2 a = 1 b = c = 0

solve this equation. The vanishing of b and c was expected since Croke’s theorem does not need the

extra two inequalities we introduced.

Then, as noticed before, we shall take

f (α,β ) = sup
ℓ

(

− ℓ3

cos(α)cos(β )
+ 12r2ℓ

)

= 16r3(cosα cosβ )1/2 (23)

Since f is a symmetric product, it does belong to F and equality f (α,β ) = ( f (α,α)+ f (β ,β ))/2

holds only when α = β . The duality principle applies and Croke’s Theorem is proved.

Note that this proof is extremly close to the proof given by Croke. The only difference is that we

did not have to guess how to apply Hölder’s inequality and to which function, thanks to the linear

programming formulation.

Consider now the case n = 2 and κ = 0. Equation (21) leads to the following choice of dual

variables:

d = 2r, b = 1, a = c = 0

and

f (α,β ) = sup
ℓ

(

− ℓ2

4

(

1

cosα
+

1

cosβ

)

+ 2rℓ

)

=
4r2

1
cosα + 1

cosβ

which is easily seen to belong to F . Moreover f (α,β ) = ( f (α,α) + f (β ,β ))/2 if and only if

α = β . Weil’s Theorem is proved using the Duality principle.

This proof is in fact very close to the one we already gave in Section 2, we simply seeked at once

the integrated inequality.

5. POSITIVE BOUND

In this section, we assume κ > 0 and apply the same method as above to prove Theorem 1.2. Up

to a dilation, we can assume κ = 1; we therefore assume further VM < ωn/2 in all this section. The
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only additional difficulty is that the expressions of the length of a chord in a ball and of the Jacobian

function lead to more intricate values for the dual variables.

More precisely, if B = Bn
1(VM) has radius r, the function T defining the support C of µB is

T (ℓ) =
tan ℓ

2

tanr

5.1. Dimension 4

If n = 4, we have

s1(ℓ) = sin3(ℓ), s′1(ℓ) = 3sin2(ℓ)cos(ℓ), s1̂ (ℓ) =
2

3
− 1

3
sin2(ℓ)cos(ℓ)− 2

3
cos(ℓ)

and therefore look for (a,b,c,d) such that

d = a
3sin2(ℓ)cos(ℓ) tan2(r)

tan2(ℓ/2)
+ b

sin3(ℓ) tan(r)

tan(ℓ/2)

+c

(

2

3
− 1

3
sin2(ℓ)cos(ℓ)− 2

3
cos(ℓ)

)

∀ℓ

which happens to have a solution (which is the happy coincidence enabling this method to handle

this case), namely

a = 1, b = 6tanr, c = 9tan2 r, d = 12tan2 r

Here, no dual variable vanishes, so that we do need the three inequalities (12), (13) and (14).

With these values, by construction equation (21) has a solution at cos(α) =
tan(ℓ/2)

tan(r) . We want

to define f by (20) (up to a constant, below we divided by 9tanr), but it is no longer obvious that

f ∈ F , nor that f (α,β ) = ( f (α,α)+ f (β ,β ))/2 happens precisely at α = β . This is proved in the

appendix, see Lemma 9.1. Theorem 1.2 in dimension 4 follows from it by duality principle. Note

that the lemma is elementary but technical: we need to solve a partial degree 4 polynomial system

of equations, which is done using a formal computation software.

5.2. Dimension 2

If n = 2, we have for all ℓ < π :

s1(ℓ) = sinℓ, s′1(ℓ) = cosℓ, s1̂ (ℓ) = 1− cosℓ, sˆˆ1 (ℓ) = ℓ− sinℓ

and therefore look for (a,b,c,d) such that

d = a
cosℓ tan2 r

tan2(ℓ/2)
+ b

sinℓ tanr

tan(ℓ/2)
+ c(1− cosℓ) ∀ℓ

which is solved by

a = 0, b = 1, c = tanr, d = 2tanr

With these values, by construction equation (21) has a solution at cos(α) = tan(ℓ/2)
tan(r) . Following

the usual scheme, we define

g(ℓ,α,β ) =−1− cosℓ

2

(

1

cosα
+

1

cosβ

)

− tanr(ℓ− sinℓ)+ 2(tanr)ℓ

for ℓ< π and g(ℓ> π ,α,β ) = g(π ,α,β ), then f (α,β ) := supℓ g(ℓ,α,β ). This supremum is realized

precisely for

ℓ= 2arctan

(

2tanr
1

cosα + 1
cosβ

)
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and we have

g(ℓ,α,β ) =
1

2
(g(ℓ,α,α)+ g(ℓ,β ,β )) ∀ℓ,α,β

We deduce easily from this two facts that f ∈ F and that f (α,β ) equals ( f (α,α)+ f (β ,β ))/2 if

and only if α = β . The last case of Theorem 1.2 follows, once again from the duality principle.

6. NEGATIVE BOUND

Let us turn to Theorem 1.3, and see what happens that perturbs our method.

Here we assume κ =−1 up to dilating the metric on M, and note that if B = Bn
−1(VM) has radius

r, the function T defining the support C of µB is

T (ℓ) =
tanh ℓ

2

tanhr

6.1. Dimension 4

If n = 4, we have

s−1(ℓ) = sinh3(ℓ), s′−1(ℓ) = 3sinh2(ℓ)cosh(ℓ),

s−̂1(ℓ) =
2

3
+

1

3
sinh2(ℓ)cosh(ℓ)− 2

3
cosh(ℓ)

and therefore look for (a,b,c,d) such that

d = a
3sinh2(ℓ)cosh(ℓ) tanh2(r)

tanh2(ℓ/2)
+ b

sinh3(ℓ) tanh(r)

tanh(ℓ/2)

+c

(

2

3
+

1

3
sinh2(ℓ)cosh(ℓ)− 2

3
cosh(ℓ)

)

∀ℓ

which happens to have solution

a = 1, b =−6tanhr, c = 9tanh2 r, d = 12tanh2 r (24)

but has no non-negative solution. It is therefore not possible to use the same inequalities and linear

programming problem as above. To solve this issue, we need to prove that the linear combination

of inequalities (12), (13) and (14) with coefficients a,b,c defined by (24) holds despite the sign of

b. Note that it would be of no use to involve d here since the corresponding inequality is in fact an

equality.

Proposition 6.1. Assume that

• M lies inside a convex manifold N of the same dimension, that satisfies LCD(−1),

• M is small enough in the sense that tanh(L) tanh(r)6 1/2 where L = LM is the maximal length

of a geodesic.

Then it holds

∫

(

s−1(ℓ)

cosα cosβ
− 6tanh(r)

s−̂1(ℓ)

2

(

1

cosα
+

1

cosβ

)

+ 9tanh2(r)sˆˆ−1(ℓ)

)

dµM

6 A2
M − 6tanh(r)AMVM + 9tanh2(r)V 2

M (25)

Proof. In fact we prove the inequality involving s−1 and s−̂1 and add (14) to get the result. It is

probably possible to use this term in the proof to increase the bound on L and r, but we do not know

how to get rid of it completely.
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Let γ : [0, ℓ]→ M be a maximal geodesic segment of unit speed and denote by α and β the angles

of γ with the normals to ∂M at γ(0) and γ(ℓ). Let j : [0, ℓ]2 → [0,+∞) be the candle function of M

along γ , namely:

j(x,y) = sexpγ(x)
((y− x)γ ′(x))

(in particular, j(0,y) = s(γ,y)).
By the exponential candle condition, we have

j2(x,y)

j(x,y)
>

s′(y− x)

s(y− x)

for all y > x, where j2 denotes the second partial derivative of j. Let u(x,y) = j(x,y)− s(y−x); then

u is a non-negative function and

u2(x,y)>

(

j(x,y)

s(y− x)
− 1

)

s′(y− x) = u(x,y)
s′(y− x)

s(y− x)

Using the expression of s and the monotony of tanh, it comes u2(x,y) > 3u(x,y)/ tanh(L) then, by

integration

u(0, ℓ)>
3

tanh(L)

∫ ℓ

0
u(0,y)dy and u(0, ℓ)>

3

tanh(L)

∫ ℓ

0
u(x, ℓ)dx

where the second inequality is derived as the first one, using −u1(x,y) > u(x,y)(s′/s)(y− x). Then

we combine them into

u(0, ℓ)

cosα cosβ
>

3

2tanh(L)

(

∫ ℓ
0 u(0,y)dy

cosα
+

∫ ℓ
0 u(x, ℓ)dx

cosβ

)

Now we can recall the definition of u and integrate in µM (with j =: jγ ) to get

∫

(

jγ (0, ℓ)

cosα cosβ
− 3

2tanh(L)

(

∫ ℓ
0 jγ (0,y)dy

cosα
+

∫ ℓ
0 jγ (x, ℓ)dy

cosβ

))

dµM(γ)

>

∫

(

s−1(0, ℓ)

cosα cosβ
− 3

2tanh(L)
s−̂1(ℓ)

(

1

cosα
+

1

cosβ

))

dµM

When M is convex, the left-hand side is equal to A2
M − 3/(tanhL)AMVM. Then if the smallness

condition holds, it is possible to add a positive multiple of (13) to replace the factor −3/(tanhL) by

the wanted −6tanhr in the second terms.

When M is not convex, we prove that the left-hand side is lesser than A2
M − 3/(tanhL)AMVM.

Given γ starting at p∈ ∂M, instead of stopping it as soon as it reaches ∂M, extend it in both direction

in N. Write {t ∈R |γ(t)∈M} as a disjoint union of linearly ordered segments I−k1
∪·· ·∪I0∪·· ·∪Ik2

where I0 = [0, ℓ], and write Ii = [pi,qi] when i > 0, Ii = [qi, pi] when i < 0. Let βi ∈ [0,π/2] be the

angle between γ and the direction normal to the boundary at qi. Using the LCD(−1) condition and

the definition of L as he diameter of M in N, it comes easily for each i

j(0,qi)>
3

tanhL

∫

Ii

j(0,y)dy

Summing on i, and integrating on γ it comes

∫

(

∑
i

jγ (0,qi)

cosα cosβi

− 3

tanh(L)

∫

Ii
jγ (0,y)dy

cosα

)

dµM(γ)

>

∫

(

jγ (0, ℓ)

cosα cosβ
− 3

tanh(L)

∫ ℓ
0 jγ (0,y)dy

cosα

)

dµM(γ)

=

∫

(

jγ (0, ℓ)

cosα cosβ
− 3

2tanh(L)

(

∫ ℓ
0 jγ (0,y)dy

cosα
+

∫ ℓ
0 jγ (x, ℓ)dy

cosβ

))

dµM(γ)

Using Santlò’s formula, the left-hand-side is equal to A2
M − 3/(tanhL)AMVM, and we are done.
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Now we can formulate an alternative linear programming problem involving the ad hoc inequality

(25), and the last two primal constraints. The duality principle holds as before, and the last missing

piece in the proof of Theorem 1.3 in dimension 4 is the technical Lemma 9.2 proved in the appendix,

according to which the function f defined by (20) satisfies the properties required by Lemma 3.2.

See the Section 8 for a discussion about the smallness condition.

6.2. Dimension 2

Just as when κ > 0, the 2-dimensional case tastes like the 4-dimensional one but is simpler. We

have

s−1(ℓ) = sinhℓ, s′−1(ℓ) = coshℓ, s−̂1(ℓ) = coshℓ− 1

and we look for a,b,c,d such that

d = a
coshℓ tanh2 r

tanh2(ℓ/2)
+ b

sinhℓ tanhr

tanh(ℓ/2)
+ c(coshℓ− 1) ∀ℓ

whose solutions are the multiples of

a = 0, b = 1, c =− tanhr, d = 2tanhr

The sign of c makes it necessary to adapt the method as in the case n = 4.

Lemma 6.2. If M lies in a convex manifold N with LCD(−1), then it holds

∫

(

s−̂1(ℓ)

2

(

1

cosα
+

1

cosβ

)

− tanh(r)sˆˆ−1(ℓ)

)

dµ 6 AMVm − 2π tanh(r)V 2
M

Proof. Fix a geodesic γ and define j and u as when n = 4. By symmetry of the jacobian we have

− j1(s, t)> j(s, t)
s′(t − s)

s(t − s)

from which it follows

−u1(s, t)> u(s, t)
s′(t − s)

s(t − s)

Since here s′/s = 1/ tanh > 1, we get −u1 > u. Integrating for s from 0 to t, then for t from 0 to ℓ,
using

1

2

(

1

cosα
+

1

cosβ

)

> 1 > tanhr

and finally integrating on γ against the measure µ produces the desired inequality. The case when

M is not convex is treated as in dimension 4.

7. RELATIVE VERSION

Let us turn to the proof of Theorem 1.5. It is completely similar to the previous proofs, us-

ing Lemma 3.1 for arbitrary m, as soon as we have primal and dual candidates for optimality that

achieves equality in the modified linear programming problem given in table II.

The candidate is given by the orbifold R constructed in example 1.1, starting from a ball B0

whose volume is mVM . The singularity is not a problem: the measure µR (which equals 1
m

µB0
on

[0,+∞)× [0,π/2]2) and the boundary volume AR = |∂R|= |∂B0|/m are well-defined and satisfy the

needed equalities; by construction using the same values for dual variables as above, we see that

(AR,µR) realizes the infimum of our new linear programming problem.
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A µ

a mAB − sκ (ℓ)

cos(α)cos(β )
> 0

b mVM − sκ̂ (ℓ)

2

(

1

cosα
+

1

cosβ

)

> 0

c 0 −sˆˆκ (ℓ) >−ωn−1mV 2
M

d 0 ℓ >VM

f ∈ F 0 − f (α,β ) >−AR

∫

f (α,α)δ n(α)dα

6 1 6 0

TABLE II. The linear programming problem for the strong relative case

8. COMMENTS AND QUESTIONS

It is desirable to get rid of the smallness hypothesis in Theorem 1.3. To achieve that, one coud try

to affirmatively answer the following.

Question 8.1. Is it true that the inequality

j(0, ℓ)

cosα cosβ
− 3tanh(r)

(

∫ ℓ
0 j(0,y)dy

cosα
+

∫ ℓ
0 j(x, ℓ)dx

cosβ

)

+ 9tanh2(r)

∫ ℓ

0

∫ y

0
j(x,y)dxdy >

sκ(ℓ)

cosα cosβ
− 3tanh(r)sκ̂ (ℓ)

(

1

cosα
+

1

cosβ

)

+ 9tanh2(r)sˆˆκ (ℓ)

holds whenever j(x,y) is the jacobian of the exponential map expγ(x) at the vector (y−x)γ ′(x), where

γ is a unit speed geodesic in a n-manifold of sectional curvature bounded above by κ < 0?

It is very tempting to believe in this inequality, but it cannot be consequence of LCD(−1) since

the jacobian of the complex hyperbolic plane, normalized to have sectional curvature between −9/4

and −9/16, does not satisfy it with κ =−1 when cosα = cosβ = 1 and r, ℓ are large enough.

Question 8.2. Does the isoperimetric conjecture hold with the assumption K 6 κ replaced by

LCD(κ) or Candle(κ) in dimension 3, or > 4?

In the κ = 0, n = 4 case Croke’s proof needs the candle condition only between boundary points,

allowing for example for some positively curved parts on the interior of M as long as they are

compensated near the boundary.

Question 8.3. Given n 6= 4, does the isoperimetric conjecture hold in dimension n for κ = 0, under

the weak hypothesis

sp(q)> s0(d(p,q)) (26)

for all p,q ∈ ∂M?

9. APPENDIX

In this appendix we prove two technical lemmas used in the paper, that are quite intricate but

completely elementary. Note that both proof are assisted by a formal computation software, used to

solve polynomial systems of degree 4.
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9.1. A technical lemma for the positive bound Theorem

Lemma 9.1. Define a function on [0,π [×[0, π
2
]× [0, π

2
] by

g(ℓ,α,β ) =
4

3
ℓ− s(ℓ)

9tan2 r cosα cosβ
− sˆ(ℓ)

3tanr

(

1

cosα
+

1

cosβ

)

− sˆˆ(ℓ)

and let

f (α,β ) = sup
ℓ

g(ℓ,α,β ).

1. For all fixed α , the maximum of g(ℓ,α,α) is realized at

ℓ= 2arctan(tanr cosα)

and only there.

2. For all α and β , we have

f (α,β )6
1

2
( f (α,α)+ f (β ,β ))

and equality occurs only for α = β .

Note that in the proof of Theorem 1.2 we have to enable ℓ to be greater than π ; by convention

s(ℓ) = 0 for ℓ > π , so that on [π ,+∞) the function sˆ is constant (with value sˆ(π) = 4/3) and sˆˆ(ℓ)
increase linearly. It follows that g extends with g(ℓ,α,β ) = g(π ,α,β ), and the above lemma still

holds with this extension.

Proof. We first perform the following change of variables: t := tan ℓ
2
, p := 1/(3tanr cosα) and

q := 1/(3tanr cosβ ). We now have to study the functions

G(t, p,q) =
8

3
arctant − pqS0(t)− (p+ q)S−1(t)− S−2(t)

where Si(t) = s(i)(2arctant), and

F(p,q) = sup
t

G(t, p,q)

Usual trigonometric formulas give

S1(t) = 12
t2(1− t2)

(1+ t2)3

S0(t) = 8
t3

(1+ t2)3

S−1(t) =
2

3
− 2

3

1− t2

1+ t2
− 4

3

t2(1− t2)

(1+ t2)3

=
4t4(3+ t2)

3(1+ t2)3

S−2(t) =
4

3
arctan(t)− 8

3

t3

(1+ t2)3
− 4

3

t

1+ t2

so that

∂tG(t, p,q) =
2

(1+ t2)4

(

12pqt4 − 8(p+ q)t3+(4− 12pq)t2+
4

3

)

The equation ∂tG(t, p, p) = 0 is in particular equivalent to

12p2t4 − 16pt3+(4− 12p2)t2 +
4

3
= 0
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and by the very construction of G, we know that t = 1/3p must be a solution. This enables us to

factorize it into

4(3pt − 1)(pt3 − t2 − pt − 1

3
) = 0

Let P(t) = pt3 − t2 − pt − 1
3
. The roots of P′ are

1

3p
±
√

1

9p2
+

1

3p

Since P(0)< 0, P has at exactly one positive zero, which is greater than 1/3p, which by a sign check

is a local maximum of G(·, p, p). It follows that the only other extremum of G(·, p, p) in [0,+∞) is

a local minimum located on the right of the only local maximum, and we are left with proving that

G(1/3p, p, p) is greater than or equal to limt→+∞ G(t, p, p) = 2π
3
− 8

3
p. The two expressions have

the same limit when p goes to 0, and we have

d

d p

(

G

(

1

3p
, p, p

)

+
8

3
p− 2π

3

)

=
216p4

(9p2 + 1)2
> 0

The first point is proved, let us turn to the second one.

We want to prove that the function defined by

H(t, p,q) = G

(

1

3p
, p, p

)

+G

(

1

3q
,q,q

)

− 2G(t, p,q)

is non-negative for all t, p,q ∈ (0,+∞) and vanishes only when p = q (and t = 1/3p of course).

First, let us show that for all sequence (tn, pn,qn) ∈ (0,+∞)3 that ultimately gets out of all compact

sets, we have

liminf
(

Hn := H(tn, pn,qn)
)

> 0

We will then only have left to study the critical points of H.

Up to taking subsequences, we can assume that (tn),(pn),(qn) have limits in [0,+∞]. If tn → 0,

then

liminfHn > inf
p

G

(

1

3p
, p, p

)

+ inf
q

G

(

1

3q
,q,q

)

= 0

Otherwise, if one of pn or qn goes to +∞, Hn also goes to +∞. If tn →+∞, we have

liminfHn > inf
p,q

(

G

(

1

3p
, p, p

)

+G

(

1

3q
,q,q

)

+
8

3
(p+ q)− 4π

3

)

and the right-hand-side is 0, as proved in the first point. Let us finally assume pn → 0 ; then

liminfHn > inf
t,q

(

2π

3
+F

(

1

3q
,q,q

)

− 2

(

8

3
arctant − qS−1(t)− S−2(t)

))

Let J(t,q) be the minimized term in the right-hand-side (this is not a Jacobian!); we have

dJ

dt
=

16

3

6qt3 − 3t2 − 1

(1+ t2)4

so that, q being fixed, inft J(t,q) = J(t0,q) where t0 is the positive real characterized by q = (3t2 +
1)/(6t3). it follows that

inf
t,q

J(t,q) = inf
t

J

(

t,
3t2 + 1

6t3

)

the minimized function in the right-hand-side is decreasing and has limit 0 in +∞, so that it is

positive, and we are done proving liminfHn > 0.
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The derivatives of H are given by

∂H

∂ t
(t, p,q) =−16

3

9pqt4 − 6(p+ q)t3+(3− 9pq)t2+ 1

(1+ t2)4

∂H

∂ p
(t, p,q) =

8

3(9p2 + 1)2(1+ t2)3

(

81p4t6 + 243p4t4 +

(486qp4 + 108qp2+ 6q)t3+(−54p2− 3)t2 − 18p2− 1
)

and of course the q derivative is symmetric to the p derivative. The critical points of H are therefore

given by a system of three polynomial equations in t, p,q, of partial degrees at most 4 in p and q.

This system can be solved explicitely, and (using maple !) its only solution in positive coordinates

are the points of the curve (p = q,3pt = 1), where H vanishes. This shows that outside this critical

curve H is positive, and concludes the proof.

9.2. A technical lemma for the negative bound Theorem

Lemma 9.2. Define a function on [0,+∞)× [0, π
2
]× [0, π

2
] by

g(ℓ,α,β ) =
4

3
ℓ− s(ℓ)

9tanh2(r)cosα cosβ
+

sˆ(ℓ)

3tanhr

(

1

cosα
+

1

cosβ

)

− sˆˆ(ℓ)

and let

f (α,β ) = sup
ℓ

g(ℓ,α,β ).

1. For all fixed α , the maximum of g(ℓ,α,α) is realized at

ℓ= 2arctanh(tanhr cosα)

and only there.

2. For all α and β , we have

f (α,β )6
1

2
( f (α,α)+ f (β ,β ))

and equality occurs only for α = β .

Proof. As in Lemma 9.1, let us first introduce the variables

t = arctanh(ℓ/2) ∈ [0,1)

p = 1/(3tanh(r)cosα) ∈ [1/3,+∞)

q = 1/(3tanh(r)cosβ ) ∈ [1/3,+∞)

We thus consider the functions defined by

G(t, p,q) =
8

3
arctanh(t)− pqS0(t)+ (p+ q)S−1(t)− S−2(t)

and

F(p,q) = sup
t

G(t, p,q)

where Si(t) = s(i)(ℓ), that is

S0(t) =
8t3

(1− t2)3

S−1(t) =
4

3

t4(t2 − 3)

(t2 − 1)3

S−2(t) =
4

3
arctanh(t)+

8

9

t3

(1− t2)3
− 4

3

t

1− t2
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The sign of ∂tG(t, p, p) is then the same as the sign of (1−3pt)P(t)where P(t) = pt3−t2+ pt+1/3.

If p > 1/
√

3, then P′ has no positive root and P(t) is positive for all t > 0. If p 6 1/
√

3, then P

attains its only local minimum at the second root of P′, which is

1+
√

1− 3p2

3p
> 1

Since P(1)> 0, we deduce that P is positive on [0,1]. In all cases, G(·, p, p) has its only maximum

on [0,1] at t = 1/3p as claimed.

Let us turn to the second point. We have to prove that the function defined by

H(t, p,q) = G

(

1

3p
, p, p

)

+G

(

1

3q
,q,q

)

− 2G(t, p,q)

is non-negative for all t, p,q ∈ (0,+∞) and vanishes only when p = q. It can be checked that if

(tn, pn,qn) escapes every compact of the domain (0,1)× (1/3,+∞)2, then liminfH(tn, pn,qn) > 0.

Then, using Maple we can solve the system dH(t, p,q) = 0 with t > 0 and p > 1/3 to see that only

p = q = 1/3t is a solution. Since H vanishes along this curve, it is equal to the set of minimums of

H on the domain (0,1)× (1/3,+∞)2, and the lemma is proved.
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