A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold

Résumé

Let $(M,J,g,\omega)$ be a pseudo-Kähler or para-Kähler $2n$-dimensional manifold. We prove that the tangent bundle $TM$ enjoys a natural pseudo-Kähler or para-Kähler structure $(\tilde{J},\tilde{g},\Omega)$, where $\Omega$ is the pull-back by $g$ of the canonical symplectic structure on $T^*M$, and $\tilde{g}$ is a pseudo-Riemannian metric with neutral signature $(2n,2n)$. We investigate the curvature properties of the pair $(\tilde{J},\tilde{g})$: we prove that $\tilde{g}$ is scalar-flat, is not Einstein unless $g$ is flat, has nonpositive (resp.\ nonnegative) Ricci curvature if and only if $g$ has nonpositive (resp.\ nonnegative) Ricci curvature as well, and is locally conformally flat if and only if $n=1$ and $g$ has constant curvature, or $n>2$ and $g$ is flat. We also prove that (i) the holomorphic sectional curvature of $(\tilde{J},\tilde{g})$ is not constant unless $g$ is flat, and (ii) in $n=1$ case, that $\tilde{g}$ is never anti-self-dual, unless conformally flat.
Fichier principal
Vignette du fichier
TSigma1.pdf (258.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00778411 , version 1 (20-01-2013)
hal-00778411 , version 2 (27-03-2013)
hal-00778411 , version 3 (02-09-2013)

Identifiants

Citer

Henri Anciaux, Pascal Romon. A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold. 2013. ⟨hal-00778411v1⟩
309 Consultations
426 Téléchargements

Altmetric

Partager

More