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A canonical structure on the tangent bundle of a

pseudo- or para-Kähler manifold

Henri Anciaux∗, Pascal Romon†

Abstract

Let (M, J, g, ω) be a pseudo-Kähler or para-Kähler 2n-dimensional manifold. We prove
that the tangent bundle TM enjoys a natural pseudo-Kähler or para-Kähler structure
(J̃, g̃,Ω), where Ω is the pull-back by g of the canonical symplectic structure on T ∗

M,
and g̃ is a pseudo-Riemannian metric with neutral signature (2n, 2n). We investigate
the curvature properties of the pair (J̃, g̃): we prove that g̃ is scalar-flat, is not Einstein
unless g is flat, has nonpositive (resp. nonnegative) Ricci curvature if and only if g
has nonpositive (resp. nonnegative) Ricci curvature as well, and is locally conformally
flat if and only if n = 1 and g has constant curvature, or n > 2 and g is flat. We also
check that (i) the holomorphic sectional curvature of (J̃, g̃) is not constant unless g is
flat, and (ii) in n = 1 case, that g̃ is never anti-self-dual, unless conformally flat.

2000 MSC: 32Q15, 53D05

Introduction

It is a classical fact that given any differentiable manifold M, its cotangent
bundle T ∗M enjoys a canonical symplectic structure Ω∗.

Moreover, given a linear connection∇ on a manifoldM, (e.g. the Levi-Civita
connection of a Riemannian metric), the bundle TTM splits into a direct sum
of two subbundles HM and VM isomorphic to TM. This allows to define
an almost complex structure J by setting J(Xh, Xv) := (−Xv, Xh), where, for
X ∈ TTM = HM⊕VM, we write X ≃ (Xh, Xv) ∈ TM× TM. Analogously,
one may introduce a natural almost para-complex (or bi-Lagrangian) structure,
setting J ′(Xh, Xv) := (Xv, Xh).

It is also well known that the tangent bundle of a Riemannian manifold
(M, g) can be given a natural Riemannian structure, called Sasaki metric. A
simple way to understand this construction, which extends verbatim to the case
of a pseudo-Riemannian metric g with signature (p,m− p), is as follows: using
the splitting TTM = HM⊕ VM, we set:

G
(
(Xh, Xv), (Yh, Yv)

)
:= g(Xh, Yh) + g(Xv, Yv).
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This metric has signature (2p, 2(m− p)) and is well behaved with respect to J
in two ways: (i) G is compatible with J , i.e. G(., .) = G(J., J.), and (ii) the
symplectic form Ω := G(J., .) is nothing but the pull-back of Ω∗ by the musical
isomorphism between TM ≃g T ∗M. In other words, the triple (J,G,Ω) defines
an “almost pseudo-Kähler” structure1 on TM.

Unfortunately, this construction suffers two flaws: J is not integrable unless
∇ is flat and the metric G is somewhat “rigid”: for example, if G has constant
scalar curvature, then g is flat (see [MT]). We refer to [BV, YI] and references
therein for more detail on the Sasaki metric.

Another construction can be made in the case where M is complex (resp.
para-complex): in this case both TM and T ∗M enjoy a canonical complex
(resp. para-complex) structure which are defined as follows: given a family of
holomorphic (resp. para-holomorphic2) local charts ϕ : M → U ⊂ R

2n on
M, we define holomorphic (resp. para-holomorphic) local charts ϕ̄ : TM →
U × R

2n by ϕ̄(x, V ) = (ϕ(x), dϕx(V )), ∀(x, V ) ∈ TM for the tangent bundle,
and ϕ̄ : T ∗M → U×R

2n by ϕ̄(x, ξ) = (ϕ(x), ((dϕx)
t)−1(ξ)), ∀(x, ξ) ∈ T ∗M for

the cotangent bundle. In the first section we shall prove that these canonical
structures can also be constructed using the splitting HM⊕ VM, when M is
endowed with a linear connection.

Combining the canonical symplectic structure Ω∗ of T ∗M with the canonical
complex (resp. para-complex) structure J̃∗ just defined, it is natural to introduce
a 2-tensor g̃∗ by the formula

g̃∗ := Ω∗(., J̃∗.).

However, it turns out that Ω∗ is not compatible with J̃∗, since it turns out
that Ω∗(J̃∗., J̃∗.) = −εΩ∗ instead of the required formula Ω∗(J̃∗., J̃∗.) = εΩ∗

(here and in the following, in order to deal simultaneously with the complex
and para-complex cases, we define ε to be such that (J̃∗)2 = −εId, i.e. ε = 1
in the complex case and ε = −1 in the para-complex case). It follows that the
tensor g̃∗ is not symmetric and therefore we failed in constructing a canonical
pseudo-Riemannian structure on T ∗M.

On the other hand, the same idea works well if one considers, instead of
the cotangent bundle, the tangent bundle of a pseudo- or para-Kähler manifold
(M, J, g), thus obtaining a canonical pseudo- or para-Kähler structure. The
purpose of this note is to investigate in detail this construction and to study its
curvature properties. The results are summarized in the following:

1We might also define an “almost para-Kähler” structure on TM by introducing the para-

Sasaki metric

G′
(

(Xh,Xv), (Yh, Yv)
)

:= g(Xh, Yh)− g(Xv, Yv).

This metric has neutral signature (m,m) (m being the dimension of M), is compatible with
J ′ and verifies Ω := −G′(J ′., .).

2 The terminology split-holomorphic is sometimes used.
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Main Theorem Let (M, J, g, ω) be a pseudo- or para-Kähler manifold. Then
TM enjoys a natural pseudo- or para-Kähler structure (J̃, g̃,Ω) with the follow-
ing properties:

— J̃ is the canonical complex or para-complex structure of TM induced from
that of M;

— Ω is the pull-back of Ω∗ by the metric isomorphism TM ≃g T ∗M;

— The pseudo-Riemannian metric g̃ can be recovered from J̃ and Ω by the
equation g̃(., .) := Ω(., J̃.);

— According to the splitting TTM = HM⊕VM induced by the Levi-Civita
connection of g, the triple (J̃, g̃,Ω) takes the following expression:

J̃(Xh, Xv) := (JXh, JXv)

g̃
(
(Xh, Xv), (Yh, Yv)

)
:= g(Xv, JYh)− g(Xh, JYv)

Ω
(
(Xh, Xv), (Yh, Yv)

)
:= g(Xv, Yh)− g(Xh, Yv);

— The pseudo-Riemannian metric g̃ has the following properties:

(i) g̃ has neutral signature neutral (2n, 2n) and is scalar flat;

(ii) (M, g̃) is Einstein if and only if (M, g) is flat;

(iii) the Ricci curvature R̃ic of g̃ has the same sign as the Ricci curvature
Ric of g;

(iv) (M, g̃) is locally conformally flat if and only if n = 1 and g has
constant curvature, or n > 2 and g is flat; if n = 1, g̃ is always
self-dual, so anti-self-duality is equivalent to conformal flatness;

(v) the pair (J̃, g̃) has constant holomorphic curvature if and only if g is
flat.

Remark 1. We use in (iv) the general property that four-dimensional neutral
pseudo-Kähler or para-Kähler manifolds are self-dual if and only if their scalar
curvature vanishes. This is analogous to the case of Kähler four-dimensional
manifolds, except that self-duality is exchanged with anti-self-duality. A proof
of this statement in given in theorem A.2 in the appendix.

This result is a generalization of previous work on the tangent bundle of a
Riemannian surface (see [GK1], [GK2], [AGR]). The authors wish to thank
Brendan Guilfoyle for his valuable suggestions and comments.
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1 Almost complex and para-complex structures

on the tangent and cotangent bundles

Given a manifold M endowed with an almost complex or almost para-complex
structure J, it is only natural to ask whether its tangent or cotangent bundle
inherit such a structure. The answer is positive:

Proposition 1. Let (M, J) be an almost complex (resp. para-complex) man-
ifold. Then the tangent and cotangent bundles admit a canonical almost com-
plex (resp. para-complex) structure J̃. Furthermore, if J is complex (resp. para-
complex), then so is J̃.

Proof. We prove the result using coordinate charts, which amounts to showing
that J̃ can be defined independently of any change of variable. Let y = ϕ(x)
be a local change of coordinates on Rn and write ξ and η respectively for the
tangent coordinates induced by the charts (i.e.

∑
i ξ

i∂/∂xi =
∑

i η
i∂/∂yi). The

change of tangent coordinates at x is ξ 7→ η = dϕ(x)ξ, in other words ϕ induces
a chart Φ on R2n, Φ : (x, ξ) 7→ (ϕ(x), dϕ(x)ξ). The tangent coordinates at (x, ξ)
(resp. (y, η)) are denoted by (X,Ξ) (resp. (Y,H)) and the change of (doubly)
tangent coordinates is

dΦ(x, ξ) : (X,Ξ) 7→ (Y,H) = (dϕ(x)X, d2ϕ(x)(X, ξ) + dϕ(x)Ξ).

Assume moreover that we have a (1, 1) tensor, which reads in the x coordinate
as the matrix J(x) and in the y coordinate as the matrix J′(y) = J′(ϕ(x)) =
dϕ(x) ◦ J(x) ◦ (dϕ(x))−1. Equivalently for any X and Y = dϕ(x)X , we have
J′(y)Y = J′(ϕ(x))dϕ(x)X = dϕ(x)J(x)X . Differentiating this equality along ξ
yields

(Ddϕ(x)ξJ
′)(ϕ(x))dϕ(x)X + J′(ϕ(x))d2ϕ(x)(X, ξ)

= dϕ(x)(DξJ)(x)X + d2ϕ(x)(J(x)X, ξ), (1)

where (DξJ)(x) denotes in this proof the directional derivative of the matrix J
at x in the direction ξ (not a covariant derivative).

We now define the (1, 1) tensor J in the (x, ξ) coordinate by

J(x, ξ) : (X,Ξ) 7→ (J(x)X, J(x)Ξ +DξJ(x)X).

Let us prove that this definition is coordinate-independent (for greater readabil-
ity we will often write J, J′ for J(x), J′(y)). Using (1) and the symmetry of the
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second order differential d2ϕ(x),

dΦ(x, ξ)(J(X,Ξ)) = dΦ(x, ξ)(JX, JΞ +DξJ(x)X)

= (dϕ(x)JX, d2ϕ(x)(JX, ξ) + dϕ(x)(JΞ +DξJ(x)X))

= (J′Y, J′dϕ(x)Ξ

+(Ddϕ(x)ξJ
′)(ϕ(x))dϕ(x)X + J′d2ϕ(x)(X, ξ))

= (J′Y, J′(dϕ(x)Ξ + d2ϕ(x)(X, ξ))

+(Ddϕ(x)ξJ
′)(ϕ(x))dϕ(x)X)

= (J′Y, J′H +DηJ
′(y)Y ) = J̃′(y, η)(Y,H),

where J̃′ denotes the map corresponding to J̃ in the (y, η) coordinates. Conse-
quently the tensor on M extends naturally to TM.

The proof for the cotangent bundle is more involved. Let us denote by (x, a)
a local coordinate on T ∗M, where a = (a1, . . . , an) corresponds to

∑
aidx

i

at x. We write again Φ for the change of variable induced by y = ϕ(x), so
that Φ(x, a) = (y, b) with b = t(dϕ(x))−1a. The change of variable induced on
TT ∗M is therefore

dΦ(x, a) : (X,A) 7→ (Y,B) = (dϕ(x)X, t(dϕ(x))−1A+Ψ(X)a)

where Ψ(X) = DX
t(dϕ(x))−1 . The matrix Ψ(X) cannot be written explicitly

but its value is obtained through duality: for all η, a, tηΨ(X)a = DX(tηt(dϕ(x))−1a),
so, dropping the a and transposing,

tΨ(X)η = DX(dϕ(x))−1η = DX(dϕ−1(ϕ(x))η) = d2ϕ−1(y)(dϕ(x)X, η).

Let J(x), J′(y) be defined as above. A consequence of dϕ exchanging J with J′

is

tΨ(jX)η = d2ϕ−1(y)(dϕ(x)JX, η) = d2ϕ−1(y)(J′dϕ(x)X, η)

= Jd2ϕ−1(y)(Y, η) +DξJX − dϕ−1(y)Dηj
′Y

where we have applied (1) to ϕ−1:

(DξJ)X + Jd2ϕ−1(y)(Y, η) = dϕ−1(y)(DηJ
′)Y + d2ϕ−1(y)(J′Y, η).

Now set
J̃∗(x, a) : (X,A) 7→ (JX, tJA+ σa)

where σ = σ(x, a,X) is the matrix such that, for all ξ

tσξ = (DXJ)(x)ξ − (DξJ)(x)X

(which exists since ξ 7→ (DξJ)(x)X is linear in ξ). We write σ′ for the corre-
sponding term in the (y, b) coordinate. We need only check that this definition
is independent of the chart. Namely that

dΦ(x, a)(J̃∗(X,A)) = (dϕ(x)JX, t(dϕ(x))−1(tJA+ σa) + Ψ(JX)a)

= (J′Y, tJ′t(dϕ(x))−1A+ t(dϕ(x))−1σa+Ψ(JX)a)

5



is equal to

J̃′∗(Y,B ) = (JX, tJB + σ′b)

= (J′Y, tJ′(t(dϕ(x))−1A+Ψ(X)a) + σ′ t(dϕ(x))−1a).

Indeed, given any vector ξ and η = dϕ(x)ξ, and transposing for greater legibility,

tσ(dϕ(x))−1η + tΨ(JX)η

= (DXJ)ξ − (DξJ)X

+ Jd2ϕ−1(y)(Y, η) + (DξJ)X − dϕ−1(y)(DηJ
′)Y

= (DXJ)ξ + Jd2ϕ−1(y)(Y, η) − dϕ−1(y)(DηJ
′)Y,

while

(dϕ(x))−1tσ′η + tΨ(X)J′η

= (dϕ(x))−1((DY J
′)η − (DηJ

′)Y ) + d2ϕ−1(y)(Y, J′η)

= (dϕ(x))−1((DY J
′)η − (DηJ

′)Y ) + d2ϕ−1(y)(J′η, Y )

= (dϕ(x))−1((DY J
′)η − (DηJ

′)Y ) + (DXJ)ξ

+ Jd2ϕ−1(y)(η, Y )− dϕ−1(y)(DY J
′)η

= (DXJ)ξ + Jd2ϕ−1(y)(η, Y )− (dϕ(x))−1((DηJ
′)Y )

= tσ(dϕ(x))−1η + tΨ(JX)η.

where again we have used twice the symmetry of d2ϕ−1(y) and (1), with Y and
η inverted.

We have so far defined a (1, 1) tensor on TM and T ∗M without extra
assumptions. Suppose now that J is an almost complex (resp. para-complex)
structure, so that J2 = −εId. Taking the derivative of this property yields
JDξJ + (DξJ) J = 0. Then

J̃2(X,Ξ) = (J2X, J(JΞ +DξJX) +DξJ(JX))

= (−εX,−εΞ+ J(dJξ)X + (dJξ)(JX) = −ε(X,Ξ)

so that J̃ is also an almost complex (resp. para-complex) structure.
Finally if J is a complex (resp. para-complex) structure then we can use

complex (resp. para-complex) coordinate charts, which amounts to saying that
J is a constant matrix. Then J̃ defined in the associated charts on TM takes a
simpler expression, and is also constant:

J̃(x, ξ) : (X,Ξ) 7→ (JX, JΞ)

and that characterizes a complex (resp. para-complex) structure.
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Remark 2. Such a result has been proven already by Lempert & Szöke [LS] for
the tangent bundle in the almost complex case (but not for the cotangent bundle).
Their construction uses the jets over M and is quite a bit more technical than
our proof. However it gives an interesting interpretation of the meaning of J̃.
We shall see below in Proposition 2 a different and simpler way of defining and
understanding J̃, provided M is a pseudo- or para-Kähler manifold.

2 The Kähler structure

Let M be a differentiable manifold. We denote by π and π∗ the canonical
projections TM → M and TM∗ → M. The subbundle ker(dπ) := VM of
TTM (it is thus a bundle over TM) will be called the vertical bundle.

Assume now that M is equipped with a linear connection ∇. The cor-
responding horizontal bundle is defined as follows: let X̄ be a tangent vec-
tor to TM at some point (x0, V0). This implies that there exists a curve
γ(s) = (x(s), V (s)) such that (x(0), V (0)) = (x0, V0) and γ′(0) = X̄ . If
X /∈ VM (which implies x′(0) 6= 0), we define the connection map (see [Do],
[AGR]) K : TTM → TM by KX̄ = ∇x′(0)V (0), where ∇ denotes the Levi-
Civita connection of the metric g. If X is vertical, we may assume that the
curve γ stays in a fiber so that V (s) is a curve in a vector space. We then define
KX̄ to be simply V ′(0). The horizontal bundle is then Ker(K) and we have a
direct sum

TTM = HM⊕ VM ≃ TM⊕ TM
X̄ ≃ (ΠX̄,KX̄).

(2)

Here and in the following, Π is a shorthand notation for dπ.

Lemma 1. [Do] Given a vector field X on (M,∇) there exists exactly one vector
field Xh and one vector field Xv on TM such that (ΠXh,KXh) = (X, 0) and
(ΠXv,KXv) = (0, X). Moreover, given two vector fields X and Y on (M,∇),
we have, at the point (x, V ):

[Xv, Y v] = 0,

[Xh, Y v] = (∇XY )v ≃ (0,∇XY ),

[Xh, Y h] ≃ ([X,Y ],−R(X,Y )V ),

where R denotes the curvature of ∇ and we use the direct sum notation (2).

The Reader should not confuse the horizontal lift Xh, which is a vector field
on TM constructed from a vector field X ∈ X(M), with the notation X̄h = ΠX̄
denoting the horizontal part of X̄ ∈ X(TM). Similarly, the vertical lift Xv is
not the vertical projection X̄v = KX̄.

We say that a vector field X̄ on TM is projectable if it is constant on the
fibres, i.e. (ΠX̄,KX̄)(x, V ) = (ΠX̄,KX̄)(x, V ′). According to the lemma above,
it is equivalent to the fact that there exists two vector fields X1 and X2 on M
such that X̄ = (X1)

h + (X2)
v.
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Assume now that M is equipped with a pseudo-Riemannian metric g, i.e.
a non-degenerate bilinear form. By the non-degeneracy assumption, we can
identify T ∗M with TM by the following (musical) isomorphism:

ι : TM → TM∗

(x, V ) 7→ (x, ξ),

where ξ is defined by

ξ(W ) = g(V,W ), ∀W ∈ TxM.

The Liouville form α ∈ Ω1(T ∗M) is the 1-form defined by α(x,ξ)(X̄) = ξx(dπ
∗(X̄)),

where X̄ is a tangent vector at the point (x, ξ) of T ∗M. The canonical sym-
plectic form on TM∗ is defined to be Ω∗ := −dα. There is an elegant, explicit
formula for the symplectic form Ω := ι∗(Ω∗) in terms of the metric g and the
splitting induced by the Levi-Civita connection ∇ (see [An], [La]):

Lemma 2. Let X̄ and Ȳ be two tangent vectors to TM; we have

Ω(X̄, Ȳ ) = g(KX̄,ΠȲ )− g(ΠX̄,KȲ ).

Proposition 2. Let (M, J, g) be a pseudo- or para-Kähler manifold. The
canonical structure J̃ satisfies

J̃X̄ ≃ J̃(ΠX̄,KX̄) = (JΠX̄, JKX̄).

Corollary 1. Let (M, J, g) be a pseudo- or para-Kähler manifold. The 2-tensor
g̃(., .) := Ω(., J̃.) satisfies

g̃(X̄, Ȳ ) = g(KX̄, JΠȲ )− g(ΠX̄, JKȲ ).

Moreover, g̃ is symmetric and therefore defines a pseudo-Riemannian metric on
TM.

Proof of Proposition 2. Let us write the splitting of TTM in a local coordinate
x as in the proof of Proposition 1 (3). The Levi–Civita connection is expressed
through its connection form µ: ∇XY = dY (X) + µ(X)Y . Consequently, if
(X,Ξ) ∈ T(x,ξ)TM, Π(X,Ξ) = X and K(X,Ξ) = Ξ + µ(X)ξ. Thus

Π(J̃(X,Ξ)) = JX and K(J̃(X,Ξ)) = J(x)Ξ + (dJ(x)ξ)X + µ(J(x)X)ξ.

Because J is integrable, we may choose x to be a complex coordinate, so that
J is a constant endomorphism, and dJ(x)ξ vanishes. Because M is Kähler, we
know that µ(X) commutes with J. However,∇ being without torsion, µ(X)Y =
µ(Y )X , so

K(J̃(X,Ξ)) = JΞ + Jµ(X)ξ = JK(X,Ξ).

3 The Reader should be aware of the conflicting notation: the splitting of TTM ≃ R
4n as

R2n ⊕ R2n induced by the coordinate charts (e.g. X̄ ≃ ((x, ξ), (X,Ξ))) differs a priori from
the connection-induced splitting X̄ ≃ (ΠX̄,KX̄).
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Corollary 2. The symplectic form Ω is compatible with the complex or para-
complex structure J̃.

Proof. Using Lemma 2, we compute

Ω(J̃X̄, J̃Ȳ ) = g(KJ̃X̄,ΠJ̃Ȳ )− g(ΠJ̃X̄,KJ̃Ȳ )

= g(JKX̄, JΠȲ )− g(JΠX̄, JKȲ )

= εg(KX̄,ΠȲ )− εg(ΠX̄,KȲ )

= εΩ(X̄, Ȳ ).

3 The Levi-Civita connection of g̃

The following lemma describes the Levi-Civita connection ∇̃ of g̃ in terms of
the direct decomposition of TTM, the Levi-Civita connection ∇ of g and its
curvature tensor R.

Lemma 3. Let X̄ and Ȳ be two vector fields on TM and assume that Ȳ is
projectable, then at the point (x, V ) we have

(∇̃X̄ Ȳ )|V =
(
∇ΠX̄ΠȲ ,∇ΠX̄KȲ − T1(ΠX̄,ΠȲ , V )

)
,

where

T1(X,Y, V ) =
1

2

(
R(X,Y )V − εR(V, JX)JY − εR(V, JY )JX

)

Moreover, if M is a pseudo-Riemannian surface with Gaussian curvature c, we
have

T1(X,Y, V ) =

{
−2cg(V,X)Y in the Kähler case
+2cg(V, Y )X in the para-Kähler case.

Proof. We use Lemma 1 together with the Koszul formula:

2g̃(∇̃X̄ Ȳ , Z̄) = X̄g̃(Ȳ , Z̄) + Ȳ g̃(X̄, Z̄)− Z̄g̃(X̄, Ȳ ) + g̃([X̄, Ȳ ], Z̄)

−g̃([X̄, Z̄], Ȳ )− g̃([Ȳ , Z̄], X̄),

where X , Y and Z are three vector fields on TM. From the fact that [Xv, Y v]
and g̃(Xv, Y v) vanish we have:

2g̃(∇̃XvY v, Zv) = Xvg̃(Y v, Zv) + Y v g̃(Xv, Zv)− Zvg̃(Xv, Y v)

+g̃([Xv, Y v], Zv)− g̃([Xv, Zv], Y v)− g̃([Y v, Zv], Xv)

= 0.

Moreover, taking into account that g̃(Y v, Zh) and similar quantities are constant
on the fibres, we obtain

2g̃(∇̃XvY v, Zh) = Xvg̃(Y v, Zh) + Y v g̃(Xv, Zh)− Zhg̃(Xv, Y v)

+g̃([Xv, Y v], Zh)− g̃([Xv, Zh], Y v)− g̃([Y v, Zh], Xv)

= −g̃(−(∇ZX)v, Y v)− g̃(−(∇ZY )v, Xv)

= 0.
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From these last two equations we deduce that ∇̃XvY v vanishes. Analogous
computations show that ∇̃XvY h vanishes as well. From Lemma 1 and the
formula [X̄, Ȳ ] = ∇̃X̄ Ȳ − ∇̃Ȳ X̄, we deduce that

∇̃XhY v ≃ (0,∇XY ). (3)

Finally, introducing

T1(X,Y, V ) :=
1

2

(
R(X,Y )V − εR(V, JY )JX − εR(V, JX)JY

)
,

we compute that

2g̃(∇̃XhY h, Zh) = −g(R(X,Y )V, JZ) + g(R(X,Z)V, JY ) + g(R(Y, Z)V, JX)

= −g(R(X,Y )V, JZ) + g(R(V, JY )X,Z) + g(R(V, JX)Y, Z)

= −g(R(X,Y )V, JZ) + εg(R(V, JY )JX, JZ) + εg(R(V, JX)JY, JZ)

= −g(2T1(X,Y, V ), JZ)

and
g̃(∇̃XhY h, Zv) = −g(∇XY, jZ),

from which we deduce that

∇̃XhY h(V ) = (∇XY,−T1(X,Y, V )). (4)

From (3) and (4) we deduce the required formula for ∇̃X̄ Ȳ .

If n = 1, we have R(X,Y )Z = c(g(Y, Z)X− g(X,Z)Y ), hence the tensor T1

becomes:

2T1(X,Y, V ) = R(X,Y )V + εJR(V, JX)Y + εJR(V, JY )X

= c
(
g(Y, V )X − g(X,V )Y

−εJ
(
g(JX,Y )V − g(V, Y )JX + g(JY,X)V − g(V,X)JY

))

= c
(
g(Y, V )X − g(X,V )Y

−ε
(
g(JX,Y )JV + g(V, Y )X + g(JY,X)JV + g(V,X)Y

))

= c
(
(1− ε)g(V, Y )X − (1 + ε)g(V,X)Y

)
.

Remark 3. It should be noted that covariant derivatives with respect to a pro-
jectable vertical field Xv always vanish.

Proposition 3. The structure J̃ is parallel with respect to ∇̃.

Proof. It can be seen as a trivial consequence of the fact that J̃ is complex
(resp. para-complex) and Ω is closed, but can also be checked directly, using
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the equivariance properties of J w.r.t. the connection ∇ and the curvature ten-
sor R. Using the definition of J̃ and Lemma 3, ∇̃X̄ J̃Ȳ is obvious provided
T1(X, JY, V ) = JT1(X,Y, V ). That is indeed the case since

2(T1(X, JY, V )− JT1(X,Y, V ))

=R (X, JY )V +R(V, JX)Y +R(V, Y ) JX

− R(X,Y ) JV − R(V, JX)Y − R(V, JY )X

=R(X, JY )V +R(JY, V )X + J (R (V, Y )X +R(Y,X)V )

=R (V,X) JY + JR (X,V )Y = 0,

where we have used Bianchi’s identity.

4 Curvature properties of (J̃, g̃)

4.1 The Riemannian curvature tensor of g̃

Proposition 4. The curvature tensor R̃m := −g̃(R̃., .) of g̃ at (x, V ) is given
by the formula

R̃m(X̄, Ȳ , Z̄, W̄ ) = g(T2(ΠX̄,ΠȲ ,ΠZ̄, V ), JΠW̄ )

−Rm(ΠX̄,ΠȲ ,ΠZ̄, JKW̄ )− Rm(ΠX̄,ΠȲ , JKZ̄,ΠW̄ )

−Rm(ΠX̄, JKȲ ,ΠZ̄,ΠW̄ ) + Rm(JKX̄,ΠȲ ,ΠZ̄,ΠW̄ ),

where
T2(X,Y, Z, V ) := (∇XT1)(Y, Z, V )− (∇Y T1)(X,Z, V ).

Moreover, (TM, g̃) is scalar flat and the Ricci tensor of g̃ is

R̃ic(X̄, Ȳ ) = 2Ric(ΠX̄,ΠȲ ).

Corollary 3. (TM, g̃) is Einstein if and only if (M, g) is flat. Moreover
(TM, g̃) has nonnegative (resp. nonpositive) Ricci curvature if and only if (M, g)
has nonnegative (resp. nonpositive) Ricci curvature as well.

Proof of Proposition 4. We will compute the curvature tensor for projectable
vector fields, and need only do so for the following six cases, due to the sym-
metries of R̃m. Remark 3 simplifies computations greatly, since most vertical
derivatives vanish, except when the derived vector field is not projectable. In
particular R̃(Xv, Y v) vanishes as endomorphism, hence:

R̃m(Xv, Y v, Zv,W v) = 0

R̃m(Xv, Y v, Zv,Wh) = 0

R̃m(Xv, Y v, Zh,W v) = 0

11



To obtain the last three combinations, let us first derive R̃(Xh, Y h)Zh. This is
more delicate since we have to covariantly differentiate non-projectable quanti-
ties. Indeed

R̃(Xh, Y h)Zh = ∇̃Xh∇̃Y hZh − ∇̃Y h∇̃XhZh − ∇̃[Xh,Y h]Z
h

= ∇̃Xh(∇Y Z,−T1(Y, Z, V ))− ∇̃Y h(∇XZ,−T1(X,Z, V ))

−∇̃([X,Y ],−R(X,Y )V )Z
h

= (∇X∇Y Z,−T1(X,∇Y Z, V ))−DXh(0,T1(Y, Z, V ))

−(∇Y ∇XZ,−T1(Y,∇XZ, V )) +DY h(0,T1(X,Z, V ))

−(∇[X,Y ]Z,−T1([X,Y ], Z, V ))

= (R(X,Y)Z, 0)

− (0,T1(X,∇Y Z, V )− T1(Y,∇XZ,V)− T1([X,Y],Z,V))

−∇̃Xh(0,T1(Y, Z, V )) + ∇̃Y h(0,T1(X,Z, V ))

Recalling the lemma4 in [Ko], there exists a vector field U on M such that
U(x) = V and (∇XU)(x) = 0. Then the vertical lift of T1(Y, Z, U) is seen to
agree to first order with

(x, V ) 7→ (0,T1(X(x), Z(x), V ))

thus allowing us to use the formula in Lemma 3:

∇̃Xh(0,T1(Y, Z, ·)) = ∇̃Xh(T1(Y, Z, U)v)

= (0,∇X(T1(Y, Z, U)))

=
(
0, (∇XT1)(Y, Z, U) + T1(∇XY, Z, U)

+T1(Y,∇XZ,U) + T1(Y, Z,∇XU)
)

which, evaluated at (x, V ), yields

∇̃Xh(0,T1(Y, Z, ·))|(x,V ) = (0, (∇XT1)(Y, Z, V )+T1(∇XY, Z, V )+T1(Y,∇XZ, V )).

Summing up,

R̃(Xh, Y h)Zh|(x,V ) =
(
R(X,Y)Z,

−T1(X,∇Y Z, V ) + T1(Y,∇XZ, V )

+T1([X,Y ], Z, V )− (∇XT1)(Y, Z, V )

−T1(∇XY, Z, V )− T1(Y,∇XZ, V )

+(∇Y T1)(X,Z, V ) + T1(∇Y X,Z, V )

+T1(X,∇Y Z, V )
)

=
(
R(X,Y )Z,−(∇XT1)(Y, Z, V ) + (∇Y T1)(X,Z, V )

)

=
(
R(X,Y )Z,−T2(X,Y, Z, V )

)
.

4Note that computations in [Ko] are done for the Sasaki metric, hence direct results do
not apply.
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From that we deduce directly

R̃m(Xh, Y h, Zh,W v) = −Rm(X,Y, Z, JW )

R̃m(Xh, Y h, Zh,Wh)|(x,V ) = g(T2(X,Y, Z, V ), JW ).

On the other hand, using repeatedly Remark 3,

R̃m(Xh, Y v, Zh,W v) = g̃(∇̃Xh∇̃Y vW v − ∇̃Y v∇̃XhW v − ∇̃[Xh,Y v ]W
v, Zh)

= g̃(−∇̃Y v(0,∇XW ), Zh) = g̃(0, Zh) = 0.

The claimed formula is easily deduced using the symmetries of the curvature
tensor.

In order to calculate the Ricci curvature of g̃, we consider a Hermitian
pseudo-orthonormal basis (e1, ..., e2n) of TxM, i.e. g(ea, eb) = εaδab, where
εa = ±1, and en+a = Jea. In particular, εn+a = εεa.This gives a (non-
orthonormal) basis of T(x,V )TM:

ēa := (ea)h ē2n+a := (ea)
v.

A calculation using Corollary 1 shows that the expression of g̃ in this basis is:

[g̃µν ]1≤µ,ν≤4n :=




0 0 0 ∆
0 0 −∆ 0
0 −∆ 0 0
∆ 0 0 0


 ,

where ∆ = εdiag(ε1, ..., εn) = diag(εn+1, ..., ε2n). It follows that R̃ic(Xv, Y v)

and R̃ic(Xh, Y v) vanish.
Moreover, noting that g̃µν = g̃µν ,

R̃ic(Xh, Y h) =
4n∑

µ,ν=1

g̃µνR̃m(Xh, ēµ, Y
h, ēν)

=

n∑

a=1

εεa

(
R̃m(Xh, (ea)

h, Y h, (Jea)
v)− R̃m(Xh, (Jea)

h, Y h, (ea)
v)

−R̃m(Xh, (ea)
v, Y h, (Jea)

h) + R̃m(Xh, (Jea)
v, Y h, (ea)

h)
)

=
n∑

a=1

εεa

(
− Rm(X, ea, Y, J

2ea) + Rm(X, Jea, Y, Jea)

+Rm(Y, Jea, X, Jea)− Rm(Y, ea, X, J2ea)
)

= 2

n∑

a=1

(
εaRm(X, ea, Y, ea) + εa+nRm(X, ea+n, Y, ea+n)

)

= 2

2n∑

k=1

εkRm(X, ek, Y, ek) = 2Ric(X,Y ).
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We see easily that R̃ic vanishes whenever one of the vectors is along the vertical
fiber, thus the expected formula.

Finally the scalar curvature

S̃cal =
4∑

µ,ν=1

g̃µνR̃ic(ēµ, ēν) = 0,

since g̃µν vanishes as soon as both ēµ, ēν are both horizontal.

4.2 The Weyl curvature tensor of g̃

Proposition 5. The Weyl tensor W̃ at (x, V ) is given by

W̃(X̄, Ȳ , Z̄, W̄ ) = R̃m(X̄, Ȳ , Z̄, W̄ )

− 1
2n−1

(
Ric(ΠX̄,ΠZ̄)g̃(Ȳ , W̄ ) + Ric(ΠȲ ,ΠW̄ )g̃(Ȳ , W̄ )

−Ric(ΠX̄,ΠW̄ )g̃(Ȳ , Z̄)− Ric(ΠȲ ,ΠZ̄)g̃(X̄, W̄ )
)
.

In particular, if n = 1,

W̃(X̄, Ȳ , Z̄, W̄ ) = g(T2(ΠX̄,ΠȲ,ΠZ̄,V), JΠW̄).

Corollary 4. (TM, g̃) is locally conformally flat if and only if n = 1 and g has
constant curvature, or n ≥ 2 and g is flat.

Remark 4. This result has been proved in the case n = 1 and ε = 1 in [GK1].

Proof of Proposition 5. Since the scalar curvature vanishes, we have

W̃ = R̃m− 1

4n− 2
R̃ic 7 g̃,

where 7 denotes the Kulkarni–Nomizu product. Recall that R̃ic(X̄, Ȳ ) = 0 if
one of the two vectors X̄ and Ȳ is vertical. Consequently

R̃ic 7 g̃(X̄, Ȳ , Z̄, W̄ ) = 2
(
Ric(ΠX̄,ΠZ̄)g̃(Ȳ , W̄ ) + Ric(ΠȲ ,ΠW̄ )g̃(Ȳ , W̄ )

−Ric(ΠX̄,ΠW̄ )g̃(Ȳ , Z̄)− Ric(ΠȲ ,ΠZ̄)g̃(X̄, W̄ )
)
.

The expression of the Weyl tensor follows easily.
In the case n = 1 of a surface with Gaussian curvature c, we have Ric(X,Y ) =

cg(X,Y ) and Rm(X,Y, Z,W ) = c
(
g(X,Z)g(Y,W ) − g(X,W )g(Y, Z)

)
. Hence

using Proposition 4, the expression of Weyl tensor simplifies and we get the
claimed formula.

Proof of Corollary 4. We first deal with the case n = 1. Lemma 3 implies that
T1(X,Y, Z) = −2cg(Z,X)Y when ε = 1 (resp. 2cg(Z, Y )X when ε = −1).
Therefore, if ε = 1,

T2(X,Y, Z,W ) = ∇XT1(Y, Z,W )−∇Y T1(X,Z,W )

= −2(X.c)g(W,Y )Z + 2(Y.c)g(W,X)Z

= 2g
(
(Y.c)X − (X.c)Y,W

)
Z,
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which vanishes if and only if (X.c)Y = (Y.c)X for all vectors X,Y , i.e. the
curvature c is constant. Analogously, if ε = −1,

T2(X,Y, Z,W ) = ∇XT1(Y, Z,W )−∇Y T1(X,Z,W )

= 2(X.c)g(W,Z)Y − 2(Y.c)g(W,Z)X

= 2
(
(X.c)Y − (Y.c)X

)
g(W,Z),

which again vanishes if and only if the curvature c is constant.

Assume now that (TM, g̃) is conformally flat with n ≥ 2. Thus in particular

W̃(Xh, Y h, Zh,W v)

=− Rm(X,Y, Z, JW )

− 1

2n− 1

(
− Ric(X,Z)g(Y, JW ) + Ric(Y, Z)g(X, JW )

)

vanishes, so

Rm(X,Y, Z, JW ) =
1

2n− 1

(
Ric(X,Z)g(Y, JW )− Ric(Y, Z)g(X, JW )

)
.

(Observe that this equation always holds if M is a surface.) Let us apply the
symmetry property of the curvature tensor to this equation with Z = X and
JW = Y , assuming furthermore that X and Y are two non-null vectors:

0 = (2n− 1)
(
Rm(X,Y,X, Y )− Rm(Y,X, Y,X)

)

= Ric(X,X)g(Y, Y )− Ric(Y,X)g(X,Y )

−Ric(Y, Y )g(X,X) + Ric(X,Y )g(Y,X)

= Ric(X,X)g(Y, Y )− Ric(Y, Y )g(X,X).

Hence
Ric(X,X)

g(X,X)
=

Ric(Y, Y )

g(Y, Y )
·

The set of non null vectors being dense in TM, it follows by continuity that g
is Einstein. We deduce that

Rm(X,Y,X, Y ) =
1

2n− 1

(
Ric(X,X)g(Y, Y )− Ric(Y,X)g(X,Y )

)

= c
(
g(X,X)g(Y, Y )− g(X,Y )g(X,Y )

)
,

so g has constant curvature. But since M is Kähler and has dimension 2n ≥ 4,
it must be flat.

Finally, we recall the general result linking the Weyl tensor to the scalar
curvature in dimension four: for a neutral pseudo-Kähler or para-Kähler metric,
self-duality is equivalent to scalar flatness (see theorem A.2 in annex). We can
therefore conclude
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Corollary 5. In dimension four (n = 1), the metric g̃ is anti-self-dual if and
only the curvature c of g is constant.

Proof. Thanks to proposition 4, we know that g̃ is scalar flat, hence self-dual
(W− vanishes identically). In order for g̃ to be also anti-self-dual, the Weyl
tensor has to vanish completely, which amounts, following corollary 4, to having
constant (sectional) curvature c on M .

4.3 The holomorphic sectional curvature of (J̃, g̃)

Proposition 6. (J̃, g̃) has constant holomorphic sectional curvature if and only
if g is flat.

Proof. Define the holomorphic sectional curvature tensor of g̃ by H̃ol(X̄) :=

R̃m(X̄, J̃X̄, X̄, J̃X̄). Writing any doubly tangent vector X̄ as the sum of a

horizontal and a vertical factor, we will compute H̃ol(Xh + Y v). We deduce

from Proposition 4 that R̃m vanishes whenever two or more entries are vertical.
Hence, using the antisymmetric properties of the Riemann tensor w.r.t. the
complex or para-complex structure,

H̃ol(Xh + Y v) = R̃m(Xh, JXh, Xh, JXh)

+R̃m(Xh, JXh, Xh, JY v) + R̃m(Xh, JXh, Y v, JXh)

+R̃m(Xh, JY v, Xh, JXh) + R̃m(Y v, JXh, Xh, JXh)

= R̃m(Xh, JXh, Xh, JXh) + 4R̃m(Xh, JXh, Xh, JY v)

= g(T2(X, JX,X, V )− 4εR(X,Y )X, JX).

In particular,

H̃ol(Xv) = 0

H̃ol(Xh +Xv) = g(T2(X, JX,X, V ), JX)

H̃ol(Xh + (JX)v) = g(T2(X, JX,X, V ), JX) + 4εHol(X).

It follows from the first equation that if H̃ol is constant, it must be zero. Hence,
from the second and third equation we deduce the Hol must vanish, i.e. g is
flat.

5 Examples

The simplest examples where we may apply the construction above is where
(M, J, g, ω) is the plane R

2 equipped with the flat metric g := dq21 + εdq22 and
the complex or para-complex structure J defined by J(∂q1 , ∂q2) = (−ε∂q2 , ∂q1).
In other words, R2 is identified with the complex plane C or the para-complex
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plane D. We recall that D, called the algebra of double numbers, is the two-
dimensional real vector space R2 endowed with the commutative algebra struc-
ture whose product rule is given by

(u, v).(u′, v′) = (uu′ + vv′, uv′ + u′v).

The number (0, 1), whose square is (1, 0) and not (−1, 0), will be denoted by τ .

We claim that in the complex case ε = 1, the structure (J̃, g̃,Ω) just con-
structed on TC is equivalent to that of the standard complex pseudo-Euclidean
plane (C2, J̄, 〈., .〉2, ω1), where J̄ is the canonical complex structure, (z1 = x1 +
iy1, z2 = x2 + iy2) are the canonical coordinates and

〈., .〉2 := −dx2
1 − dx2

2 + dx2
2 + dy22

ω1 := −dx1 ∧ dy1 + dx2 ∧ dy2.

To see this, it is sufficient to consider the following complex change of coordi-
nates

z1 :=

√
2

2
((p1 + ip2) + i(q1 + iq2)),

z2 :=

√
2

2
(p1 + ip2 − i(q1 + iq2)).

which preserves the symplectic form, since we have

ω1 := −dx1 ∧ dy1 + dx2 ∧ dy2 = dq1 ∧ dp1 + dq2 ∧ dp2 = Ω,

where Ω is the canonical symplectic form of T ∗C ≃g TC. The metric of a
pseudo-Kähler structure being determined by the complex structure and the
symplectic form through the formula g̃ = Ω(., J̃.), we have the required identi-
fication.

Analogously, in the para-complex case ε = −1, the structure (J̃, g̃,Ω) con-
structed on TD is equivalent to that of the standard para-complex plane (D2, J̄, 〈., .〉∗, ω∗),
where J̄ is the canonical para-complex structure, (w1 = u1+τu1, w2 = u2+τy2)
are the canonical coordinates and

〈., .〉∗ := du2
1 − dv21 + du2

2 − dv22

ω∗ := du1 ∧ dv1 + du2 ∧ dv2.

Here we have to be careful with the identification of T ∗D with TD: since the
metric g is dq21 − dq22 , we have q1 := dp1 ≃g ∂p1

and q2 := dp2 ≃g −∂q2 . Hence
Ω∗ = dq1 ∧ dp1 + dq2 ∧ dp2 and Ω = dq1 ∧ dp1 − dq2 ∧ dp2. Introducing the
change of para-complex coordinates

w1 :=

√
2

2
((p1 + τp2)− τ(q1 + τq2)),

w2 :=

√
2

2
(τ(p1 + τp2) + (q1 + τq2)),
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we check that

ω∗ = du1 ∧ dv1 + du2 ∧ dv2 = dq1 ∧ dp1 − dq2 ∧ dp2 = Ω,

hence we obtain the identification between (TD, J̃, g̃,Ω) and (D2, J̄, 〈., .〉∗, ω∗).
Of course the metrics considered in these two examples are flat.

The next simplest examples of pseudo-Riemannian surfaces are the two-
dimensional space forms, namely the sphere S

2, the hyperbolic plane H
2 :=

{x2
1 + x2

2 − x2
3 = −1} and the de Sitter surface dS2 := {x2

1 + x2
2 − x2

3 = 1}.
Their tangent bundles enjoy a interesting geometric interpretation (see [GK1]):
the tangent bundle TS2 is canonically identified with the set of oriented lines of
Euclidean three-space:

L(R3) ∋ {V + tx| t ∈ R} ≃ (x, V − 〈V, x〉0x) ∈ TS2.

Analogously, the tangent bundle TH2 is canonically identified with the set
of oriented negative (timelike) lines of three-space endowed with the metric
〈., .〉1 := dx2

1 + dx2
2 − dx2

3:

L
3
1,− ∋ {V + tx| t ∈ R} ≃ (x, V − 〈V, x〉1x) ∈ TH2,

Finally, the tangent bundle TdS2 is canonically identified with the set of oriented
positive (spacelike) lines of three-space endowed with the metric 〈., .〉1:

L
3
1,+ ∋ {V + tx| t ∈ R} ≃ (x, V − 〈V, x〉1x) ∈ TdS2.

Observe that the metric constructed on TS2 (resp. TH2) has non-negative (resp.
non-positive) Ricci curvature.

A TheWeyl tensor in the pseudo-Kähler or para-

Kähler cases

The Riemann curvature tensor Rm of a pseudo-riemannian manifold N may
be seen as a symmetric form R on bivectors of Λ2TN (see [Be] for references).
Splitting R along the eigenspaces Λ+ ⊕ Λ− of the Hodge operator ∗ on Λ2TN ,
yields the following block decomposition

R =

(
W+ + Scal

12 I Z
Z∗ W− + Scal

12 I

)

where Z∗ denotes the adjoint w.r.t. the induced metric on Λ2TN , so that
W = W+⊕W−, the Weyl tensor seen as a 2-form on Λ2, is the traceless, Hodge-
commuting part of the Riemann curvature operator R. Hence the following
formula

W = Rm− 1

2
Ric 7 g +

Scal

12
g 7 g .

If, additionally, N is a four dimensional Kähler manifold, then
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Theorem A.1 (Prop. 2 in [De]). W+ is a multiple of the scalar curvature.

As a consequence,

Corollary 6. (N , g, J) is anti-self-dual (W+ = 0) if and only if the scalar
curvature vanishes.

The result extends to the two cases considered in this article: (1) neutral
pseudo-Kähler manifolds and (2) para-Kähler manifolds, with a slight twist:
W+ is replaced by W−. Precisely:

Theorem A.2. Let (N , g, J) be a four dimensional manifold endowed with
a pseudo-Kähler neutral metric (respectively a para-Kähler metric, necessarily
neutral). Then the Weyl tensor W commutes with the Hodge operator and N is
self-dual (W− = 0) if and only if the scalar curvature vanishes.

The result for neutral pseudo-Kähler manifolds is probably known and re-
lates to representation theory (see [Be] for introduction and references), but
since we could not find an explicit proof in the literature5, we will give a simple
one below. To our knowledge, the proof for the para-Kähler case is new (albeit
similar).

A.1 The pseudo-Kähler case

We will write explicitly the Weyl tensor in a given positively oriented orthonor-
mal frame, denoted by (e1, e1′ , e2, e2′), where e1′ = Je1, e2′ = Je2, g(e1) =
g(e1′) = −1 and g(e2) = g(e2′) = +1. (For brevity, g(X) denotes the norm
g(X,X).) The pseudo-metric g extends to bivectors, has signature (2, 4), and
will be again denoted by g: g(ea ∧ eb) = g(ea)g(eb)− g(ea, eb)

2 = g(ea)g(eb), so
that B = (e1 ∧ e1′ , e1 ∧ e2, e1 ∧ e2′ , e1′ ∧ e2, e1′ ∧ e2′ , e2 ∧ e2′) is an orthonormal
frame of Λ2, with g(ea ∧ eb) = −1, except for g(e1 ∧ e1′) = g(e2 ∧ e2′) = +1.
(Note that the other convention, taking −g does not change the induced metric
on Λ2.)

Since the volume e1 ∧ e1′ ∧ e2 ∧ e2′ is positively oriented, we construct an
orthonormal eigenbasis for the Hodge star on Λ2TN :





E±
1 =

√
2
2 (e1 ∧ e1′ ± e2 ∧ e2′)

E±
2 =

√
2
2 (e1 ∧ e2 ± e1′ ∧ e2′)

E±
3 =

√
2
2 (e1 ∧ e2′ ∓ e1′ ∧ e2)

so that Λ± is generated by E±
1 , E±

2 , E±
3 .

The Kähler condition implies

Rm(JX, JY, Z, T ) = Rm(X,Y, Z, T ) = Rm(X,Y, JZ, JT ),

5On the contrary, some authors seem to imply that scalar flatness is equivalent to anti-self-
duality, see [DW]). However this contradiction could possibly come from a different choice of
orientation, which would exchange self-dual with anti-self-dual.
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because J is isometric and parallel. The matrix of the symmetric 2-form R in
the orthonormal frame B is

e11′ e12 e12′ e1′2 e1′2′ e22′

e11′ R11′11′ R11′12 R11′12′
R11′1′2 =
−R11′12′

R11′1′2′ =
R11′12

R11′22′

e12 R1212 R1212′
R121′2 =
−R1212′

R131′2′ =
R1212

R1222′

e12′ R12′12′
R12′1′2 =
−R12′12′

R12′1′2′ =
R1212′

R12′22′

e1′2
R1′21′2 =
R12′12′

R1′21′2′ =
−R1212′

R1′222′ =
−R12′22′

e1′2′
R1′2′1′2′ =

R1212

R1′2′22′ =
R1222′

e22′ R22′22′

where eab stands for ea ∧ eb, for greater legibility. We have written the matrix
as a table for clarity and to make symmetries more obvious, and because R
is symmetric we need only write half the matrix. We have used the internal
symmetries of R, to choose among equivalent coefficients the ones lowest in the
lexicographic order of the indices.

The Weyl tensor satisfies some of the J-symmetries of R: indeed

Ric(JX, JY ) =
∑

i

g(ei)Rm(JX, ei, JY, ei) =
∑

i

g(ei)Rm(X, Jei, Y, Jei)

=
∑

i

g(Jei)Rm(X, Jei, Y, Jei) = Ric(X,Y )

because (Jei) is again an orthonormal basis. In particular, this invariance im-
plies r11′ = Ric(e1, e1′) = r1′1 = −r11′ , so r11′ vanish (and so does r22′). For
the Kulkarny–Nomizu product,

Ric 7 g(JX, Y, Z, T ) =Ric(JX,Z)g(Y, T ) + Ric(Y, T )g(JX,Z)

− Ric(JX, T )g(Y, Z)− Ric(Y, Z)g(JX, T )

=− Ric(X, JZ)g(JY, JT )− Ric(JY, JT )g(X, JZ)

+ Ric(X, JT )g(JY, JZ) + Ric(JY, JZ)g(X, JT )

=− Ric 7 g(X, JY, JZ, JT )

so

Ric 7 g(JX, JY, Z, T ) = −Ric 7 g(X, J2Y, JZ, JT ) = Ric 7 g(X,Y, JZ, JT ) .

Hence the following symmetries (fewer than for Rm) in the coefficients of Ric7g,
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g 7 g and Rm, and therefore W:

e11′ e1 ∧ e2 e12′ e1′ ∧ e2 e1′2′ e22′

e11′ W11′11′ W11′12 W11′12′
W11′1′2 =
−W11′12′

W11′1′2′

= W11′12
W11′22′

e12 W1212 W1212′ W121′2 W121′2′ W1222′

e12′ W12′12′ W12′1′2
W12′1′2′ =
−W121′2

W12′22′

e1′2
W1′21′2

= W12′12′

W1′21′2′ =
−W1212′

W1′222′ =
−W12′22′

e1′2′
W1′2′1′2′

= W1212

W1′2′22′

= W1222′

e22′ W22′22′

Expanding on the above eigenbasis of Λ+⊕Λ− (which differs from the one in the
positive definite case) yields the followingWeyl tensor coefficients, which we have
simplified using the symmetries above (up to a factor 1/2 due to normalization):

E+
1 E+

2 E+
3

E+
1 W11′11′ +W22′22′ + 2W11′22′ 2(W11′12 +W1222′) 2(W11′12′ +W12′22′)

E+
2 2(W1212 +W121′2′) 2(W1212′ −W121′2)

E+
3 2(W12′12′ −W12′1′2)

E−
1

E−
2

E−
3

E−
1 E−

2 E−
3

E+
1 W11′11′ −W22′22′ 0 0

E+
2 2(W11′12 −W1222′) 0 0

E+
3 2(W11′12′ −W12′22′) 0 0

E−
1 W11′11′ +W22′22′ − 2W11′22′ 0 0

E−
2 2(W1212 −W121′2′) 2(W1212′ +W121′2)

E−
3 2(W12′12′ +W12′1′2)

(Again only half the coefficients are written down.) Further simplifications come
from computing W, and using

Scal = −r11 − r1′1′ + r22 + r2′2′ = 2(r22 − r11)

= 2(−(−R11′11′ +R1212 +R12′12′) + (−R1212 − R1′21′2 +R22′22′))

= 2(R11′11′ − 2(R1212 +R12′12′) + R22′22′) .

First prove that the Hodge star commutes with W by considering W(Λ+,Λ−):

W11′11′ = R11′11′ +
1

2
(r11 + r1′1′) +

Scal

6
= R11′11′ + r11 +

Scal

6

= R1212 +R12′12′ +
Scal

6
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W22′22′ = R22′22′ −
1

2
(r22 + r2′2′) +

Scal

6
= R22′22′ − r22 +

Scal

6

= R1212 +R12′12′ +
Scal

6

so that W11′11′ −W22′22′ = 0. Similarly

W11′12 = R11′12 +
r1′2
2

, W1222′ = R1222′ +
r12′

2
= R1222′ −

r1′2
2

so
W11′12 −W1222′ = R11′12 − R1222′ + r1′2 = 0

W11′12′ = R11′12′ +
r1′2′

2
= R11′12′ +

r12
2

, W12′22′ = R12′22′ −
r12
2

,

W11′12′ −W12′22′ = R11′12′ − R12′22′ + r12 = 0.

That proves that W is block-diagonal.

The W− term satisfies

W11′11′ +W22′22′ − 2W11′22′ = R11′11′ + r11 +R22′22′ − r22 +
Scal

3
− 2R11′22′

= R11′11′ +R22′22′ − 2R11′22′ −
Scal

6

= R11′11′ +R22′22′ − 2(R1212 +R12′12′)−
Scal

6

=
Scal

2
− Scal

6
=

Scal

3

using the first Bianchi identity (and the invariance of Rm):

R11′22′ = −R1′212′ − R211′2′ = R12′12′ +R1212.

W1212 −W121′2′ = R1212 +
r22 − r11

2
− Scal

6
− R121′2′ =

Scal

4
− Scal

6
=

Scal

12

W12′12′ +W12′1′2 = R12′12′ +
Scal

4
− Scal

6
+ R12′1′2 =

Scal

12

W1212′ +W121′2 = R1212′ +
r22′

2
+ R121′2 −

r11′

2
=

1

2
(r22′ − r11′) = 0.

Finally,

W− = Scal




1/3
1/6

1/6


 =

Scal

6
Id +

Scal

6
E−

1 ⊗ E−
1

(and indeed this matrix is traceless w.r.t. the pseudo-metric g). One should
note that the above expression differs from the riemannian case, where

W+ = Scal




1/3
−1/6

−1/6


 = −Scal

6
Id +

Scal

3
E+

1 ⊗ E+
1 .

We let the Reader check that in the neutral case, the W+ part is not a multiple
of the scalar curvature, which completes the proof of theorem A.2.
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A.2 The para-Kähler case

The computations are almost identical, but the results differ from the pseudo-
Kähler setup, because the para-complex structure J is now an anti-isometry:
R(JX, JY )Z = −R(X,Y )Z. We pick an orthonormal basis (e1, e1′ , e2, e2′) with
e1′ = Je1, e2′ = Je2, and g(e1) = g(e2) = +1, g(e1′) = g(e2′) = −1. The frame
B = (e1∧e1′ , e1∧e2, e1∧e2′ , e1′∧e2, e1′∧e2′ , e2∧e2′) of Λ2TN is also orthonormal
w.r.t. the induced metric on Λ2, again denoted by g, which has signature (2, 4):
g(ea ∧ eb) = g(ea)g(eb) = −1, except for g(e1 ∧ e2) = g(e1′ ∧ e2′) = +1.

An orthonormal eigenbasis for the Hodge operator is the following:





E±
1 =

√
2
2 (e1 ∧ e1′ ∓ e2 ∧ e2′)

E±
2 =

√
2
2 (e1 ∧ e2 ∓ e1′ ∧ e2′)

E±
3 =

√
2
2 (e1 ∧ e2′ ∓ e1′ ∧ e2)

where the E+
a (resp. E−

a ) span Λ+ (resp. Λ−). (Note the sign differences w.r.t.
the pseudo-Kähler case.)

Since J is anti-isometric and parallel,

Rm(JX, JY, Z, T ) = −Rm(X,Y, Z, T ) = Rm(X,Y, JZ, JT ) .

Hence the following symmetries of the riemannian curvature operator R, ex-
pressed in the frame B (for symmetry reasons and greater legibility, lower left
coefficients are not written in this and the subsequent matrices):

e11′ e12 e12′ e1′ ∧ e2 e1′2′ e22′

e11′ R11′11′ R11′12 R11′12′
R11′1′2

= −R11′12′

R11′1′2′

= −R11′12
R11′22′

e12 R1212 R1212′
R121′2

= −R1212′

R121′2′

= −R1212
R1222′

e12′ R12′12′
R12′1′2

= −R12′12′

R12′1′2′

= −R1212′
R12′22′

e1′2
R1′21′2

= R12′12′

R1′21′2′

= R1212′

R1′222′

= −R12′22′

e1′2′
R1′2′1′2′

= R1212

R1′2′22′

= −R1222′

e22′ R22′22′

(Note again the similarity with the pseudo-Kähler case: only a few signs change.)

The Weyl tensor satisfies some of the J-symmetries of Rm since

Ric(JX, JY ) =
∑

i

〈ei, ei〉Rm(JX, ei, JY, ei) =
∑

i

g(ei)Rm(X, Jei, Y, Jei)

= −
∑

i

g(Jei)Rm(X, Jei, Y, Jei) = −Ric(X,Y )
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since (Jei) is also an orthonormal basis. In particular this invariance implies
r1′1 = r11′ = −r1′1, so r11′ vanishes (and so does r22′). Finally,

Scal

2
= r11 + r22 = −R11′11′ + 2(R1212 − R12′12′)− R22′22′ .

The Kulkarny–Nomizu product Ric 7 g satisfies

Ric 7 g(JX, Y, Z, T ) = Ric(JX,Z)g(Y, T ) + Ric(Y, T )g(JX,Z)

−Ric(JX, T )g(Y, Z)− Ric(Y, Z)g(JX, T )

= Ric(X, JZ)g(JY, JT ) + Ric(JY, JT )g(X, JZ)

−Ric(X, JT )g(JY, JZ)− Ric(JY, JZ)g(X, JT )

= Ric 7 g(X, JY, JZ, JT )

so

Ric 7 g(JX, JY, Z, T ) = Ric 7 g(X, J2Y, JZ, JT ) = Ric 7 g(X,Y, JZ, JT )

and the same property holds for g 7 g. Hence the following symmetries (fewer
than for Rm) in the coefficients of Ric 7 g, g 7 g and Rm, and therefore W:

e11′ e12 e12′ e1′2 e1′2′ e22′

e11′ W11′11′ W11′12 W11′12′
W11′1′2 =
−W11′12′

W11′1′2′

= −W11′12
W11′22′

e12 W1212 W1212′ W121′2 W121′2′ W1222′

e12′ W12′12′ W12′1′2
W12′1′2′

= W121′2
W12′22′

e1′2
W1′21′2

= W12′12′

W1′21′2′

= W1212′

W1′222′

= −W12′22′

e1′2′
W1′2′1′2′

= W1212

W1′2′22′

= −W1222′

e22′ W22′22′

Let us now express W in the Hodge basis defined earlier, using the above sym-
metries (up to a factor 1/2 due to normalization).

E+
1 E+

2 E+
3

E+
1 W11′11′ +W22′22′ − 2W11′22′ 2(W11′12 −W1222′) 2(W11′12′ −W12′22′)

E+
2 2(W1212 −W121′2′) 2(W1212′ −W121′2)

E+
3 2(W12′12′ −W12′1′2)

E−
1

E−
2

E−
3
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E−
1 E−

2 E−
3

E+
1 W11′11′ −W22′22′ 0 0

E+
2 2(W11′12 +W1222′) 0 0

E+
3 2(W11′12′ +W12′22′) 0 0

E−
1

W11′11′ +W22′22′

+2W11′22′
0 0

E−
2 2(W1212 +W121′2′) 2(W1212′ +W121′2)

E−
3 2(W12′12′ +W12′1′2)

Only three terms in the off-block-diagonal part are not obviously zero.

W11′11′ = R11′11′ −
1

2
(−r11 + r1′1′)−

Scal

6
= R11′11′ + r11 −

Scal

6

W22′22′ = R22′22′ −
1

2
(−r22 + r2′2′)−

Scal

6
= R22′22′ + r22 −

Scal

6

but r11 = −R11′11′ + R1212 − R12′12′ and r22 = R2121 − R21′21′ − R22′22′ =
R1212 − R12′12′ − R22′22′ so that

W11′11′ −W22′22′ = R11′11′ − R22′22′ + r11 − r22 = 0.

Similarly

W11′12 +W1222′ = R11′12 −
r1′2
2

+ R1222′ +
r12′

2
= R11′12 +R1222′ − r1′2 = 0

W11′12′ +W12′22′ = R11′12′ −
r1′2′

2
+R12′22′ +

r12
2

= R11′12′ +R12′22′ + r12 = 0

which proves that W is block-diagonal, i.e. commutes with the Hodge operator.

Let us now look more closely at the W− term




W11′11′ +W22′22′ + 2W11′22′ 0 0
2(W1212 +W121′2′) 2(W1212′ +W121′2)

2(W12′12′ +W12′1′2)




W11′11′ +W22′22′ + 2W11′22′

= R11′11′ + r11 −
Scal

6
+ R22′22′ + r22 −

Scal

6
+ 2R11′22′

= R11′11′ +R22′22′ + 2R11′22′ +
Scal

2
− Scal

3

= R11′11′ +R22′22′ + 2(−R1212 +R12′12′) +
Scal

6
= −Scal

3

where we have used the first Bianchi identity (and the invariance of Rm)

R11′22′ = −R1′212′ − R211′2′ = R12′12′ − R1212.
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W1212 +W121′2′ = R1212 −
r22 + r11

2
+

Scal

6
+ R121′2′

= R1212 −
Scal

4
+

Scal

6
+ R121′2′ = −Scal

12

W12′12′ +W12′1′2 = R12′12′ +
Scal

4
− Scal

6
+ R12′1′2 =

Scal

12

W1212′ +W121′2 = R1212′ −
r22′

2
+ R121′2 −

r11′

2
= 0.

Finally,

W− = Scal




−1/3
−1/6

1/6




vanishes if and only if Scal = 0. (The Reader will check that this matrix is
indeed traceless w.r.t. the pseudo-metric g.)
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481–490.

[Ko] O. Kowalski, Curvature of the induced Riemannian metric on the
tangent bundle, J. Reine Angew. Math. 250 (1971) 124–129.

[La] J. Lafontaine, Some relevant Riemannian geometry, in Holomorphic
curves in symplectic geometry, J. Lafontaine and M. Audin Eds.,
Birkhäuser (1994).
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