A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold - Archive ouverte HAL
Article Dans Une Revue Monatshefte für Mathematik Année : 2014

A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold

Résumé

It is a classical fact that the cotangent bundle $T^* M$ of a differentiable manifold $M$ enjoys a canonical symplectic form $\Omega^*$. If $(M,j,g,\omega)$ is a pseudo-Kähler or para-Kähler $2n$-dimensional manifold, we prove that the tangent bundle $T M$ also enjoys a natural pseudo-Kähler or para-Kähler structure $(J,G,\Omega)$, where $\Omega$ is the pull-back by $g$ of $\Omega^*$ and $G$ is a pseudo-Riemannian metric with neutral signature $(2n,2n)$. We investigate the curvature properties of the pair $(J,G)$ and prove that: $G$ is scalar-flat, is not Einstein unless $g$ is flat, has nonpositive (resp.\ nonnegative) Ricci curvature if and only if $g$ has nonpositive (resp.\ nonnegative) Ricci curvature as well, and is locally conformally flat if and only if $n=1$ and $g$ has constant curvature, or $n>2$ and $g$ is flat. We also check that (i) the holomorphic sectional curvature of $(J,G)$ is not constant unless $g$ is flat, and (ii) in $n=1$ case, that $G$ is never anti-self-dual, unless conformally flat.
Fichier principal
Vignette du fichier
TSigma1.pdf (267.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00778411 , version 1 (20-01-2013)
hal-00778411 , version 2 (27-03-2013)
hal-00778411 , version 3 (02-09-2013)

Licence

Identifiants

Citer

Henri Anciaux, Pascal Romon. A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold. Monatshefte für Mathematik, 2014, 174 (3), pp.329-355. ⟨10.1007/s00605-014-0630-6⟩. ⟨hal-00778411v3⟩
309 Consultations
426 Téléchargements

Altmetric

Partager

More