Initial value problems for diffusion equations with singular potential - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Initial value problems for diffusion equations with singular potential

Résumé

Let $V$ be a nonnegative locally bounded function defined in $Q_\infty:=\BBR^n\times(0,\infty)$. We study under what conditions on $V$ and on a Radon measure $\gm$ in $\mathbb{R}^d$ does it exist a function which satisfies $\partial_t u-\xD u+ Vu=0$ in $Q_\infty$ and $u(.,0)=\xm$. We prove the existence of a subcritical case in which any measure is admissible and a supercritical case where capacitary conditions are needed. We obtain a general representation theorem of positive solutions when $t V(x,t)$ is bounded and we prove the existence of an initial trace in the class of outer regular Borel measures.
Fichier principal
Vignette du fichier
SingPot10.pdf (297 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00736712 , version 1 (28-09-2012)
hal-00736712 , version 2 (02-10-2012)
hal-00736712 , version 3 (12-10-2012)
hal-00736712 , version 4 (24-10-2012)
hal-00736712 , version 5 (15-11-2012)

Identifiants

Citer

Konstantinos Gkikas, Laurent Veron. Initial value problems for diffusion equations with singular potential. 2012. ⟨hal-00736712v4⟩
114 Consultations
207 Téléchargements

Altmetric

Partager

More