Initial value problems for diffusion equations with singular potential - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Initial value problems for diffusion equations with singular potential

Résumé

Let $V$ be a nonnegative locally bounded function defined in $Q_\infty:=\BBR^n\times(0,\infty)$. In this article we study under what condition on $V$ and on a Radon measure $\gm$ in $\mathbb{R}^d$ it is possible to have a solution to the initial value problem $\partial_t u-\xD u+ Vu=0$ in $Q_\infty$ such that $u(.,0)=\xm.$ We prove the existence of a subcritical case for which any measure is admissible and a supercritical case where capacitary conditions are needed. We prove a general representation theorem of positive solutions when $t V(x,t)$ is bounded and we prove the existence of an initial trace in the class of outer regular Borel measures?
Fichier principal
Vignette du fichier
SingPot8.pdf (286.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00736712 , version 1 (28-09-2012)
hal-00736712 , version 2 (02-10-2012)
hal-00736712 , version 3 (12-10-2012)
hal-00736712 , version 4 (24-10-2012)
hal-00736712 , version 5 (15-11-2012)

Identifiants

Citer

Konstantinos Gkikas, Laurent Veron. Initial value problems for diffusion equations with singular potential. 2012. ⟨hal-00736712v2⟩
114 Consultations
207 Téléchargements

Altmetric

Partager

More