Initial value problems for diffusion equations with singular potential - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Initial value problems for diffusion equations with singular potential

Résumé

Let $V$ be a locally bounded function defined in $Q_\infty:=\BBR^n\times(0,\infty)$. In this article study under what condition on $V$ and a Radon measure $\gm$ in $\mathbb{R}^d$ it is possible to have a solution to the initial value problem $\partial_t u-\xD u+ Vu=0$ in $Q_\infty$ such that $u(.,0)=\xm.$ We prove the existence of a subcritical case for which any measure is admissible and a supercritical case where capacitary conditions are needed.
Fichier principal
Vignette du fichier
SingPot7.pdf (284.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00736712 , version 1 (28-09-2012)
hal-00736712 , version 2 (02-10-2012)
hal-00736712 , version 3 (12-10-2012)
hal-00736712 , version 4 (24-10-2012)
hal-00736712 , version 5 (15-11-2012)

Identifiants

Citer

Konstantinos Gkikas, Laurent Veron. Initial value problems for diffusion equations with singular potential. 2012. ⟨hal-00736712v1⟩
114 Consultations
207 Téléchargements

Altmetric

Partager

More