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Initial value problems for diffusion equations with singular
potential

Konstantinos T. Gkikas* Laurent Véron'

Laboratoire de Mathématiques et Physique Théorique
Université Francois-Rabelais, Tours, France

Abstract

Let V' be a nonnegative locally bounded function defined in Qo := R"™ X (0,00). In this
article we study under what condition on V and on a Radon measure x in R? it is possible to
have a solution to the initial value problem d:u—Au+Vu = 0 in Qo such that u(.,0) = u. We
prove the existence of a subcritical case for which any measure is admissible and a supercritical
case where capacitary conditions are needed. We prove a general representation theorem of
positive solutions when ¢tV (z,t) is bounded and we prove the existence of an initial trace in
the class of outer regular Borel measures?
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1 Introduction

In this article we study the initial value problem for the heat equation

Ou — Au+V(z,t)u=0 in Qr :=R" x (0,T) (1.1)
u(.,0)=p in R® '

where V' € L (Qr) is a nonnegative function and p a Radon measure in R™. By a (weak) solution

(1.1) of we mean a function u € L}, (Q) such that Vu € L}, (Qr), satisfying

_//T (06 + Ad) udmdt—i—//Tqubdxdt - /chu (1.2)

for every function — ¢ € CL11(Qr) which vanishes for ¢ = T. Besides the singularity of the
potential at ¢ = 0, there are two main difficulties which appear for constructing weak solutions :
the growth of the measure at infinity and the concentration of the measure near some points in
R™.
n z|?
We denote by H(z,t) = () * e~ the Gaussian kernel in R” and by H[u] the corresponding

4mt
heat potential of a measure p € 9M(R™). Thus

Hip) (2, t) = () * /e—‘zif‘z du(y), (1.3)

whenever this expression have a meaning: for example it is straightforward that if u € 9(R™)

satisfies
ly|2

lilon, == | e dul(y) < . (1.4)

then (1.3) has a meaning as long as t < T. We denote by M, (R™) the set of Radon measures in
R"™ satisfying (1.4). If G C R", let Q% be the cylinder G' x (0,7). We also denote by Bg(r) the
ball of center 2 and radius R and Br = Br(0). We prove

Theorem A Let the measure i verifies
// B, )V (. t)dwdt < My VR > 0. (1.5)
QTR

Then (1.1) admits a solution in Qr.

A measure which satisfies (1.5) is called an admissible measure and a measure for which there
exists a solution to problem (1.1) is called a good measure. Notice that even when V' = 0, uniqueness
without any restriction on w is not true, however the next uniqueness result holds:

Theorem B Let u be a weak solution of (1.1) with u= 0. If u satisfies

// (1+ V(z,t) e Mol |u(z, t)|dedt < oo (1.6)



for some A > 0 then u = 0.

We denote by &,(Qr) the set of functions u € L}, .(Qr) satisfying (1.6) for some A > 0. The
general result we have is the following

Theorem C Let u € M(R™) be an admissible measure satisfying (1.4). Then there exists a unique
solution u, € €,(Qr) to problem (1.1). Furthermore

// (o + V) ule” Tt f)dxdt</ 6_%d|,u|(y). (1.7)

We consider first the subcritical case, which means that any positive measure satisfying (1.4) is
a good measure and we prove that such is the case if for any R > 0 there exist mpr > 0 such that

// H(z — y, )V (2, t)dzdt < mpe= 4 (1.8)

BR

Moreover we prove a stability result among the measures satisfying (1.4). If V' verifies for all R > 0
sup e‘Z‘T // H(x )V (x,t)dzdt — 0 when |E| — 0, E Borel subset of Q2" (1.9)
yEeR™

then if {1} is a sequence of Radon measures bounded in M, (R™) which converges in the weak
sense of measures to y, then {(u,,, Vu,, )} converges to (u,, Vu,) in L, .(Qr).

In the supercritical case, that is when not any measure in 9. (R™) is a good measure, we develop
a capacitary framework in order to characterize the good measures. We denote by 9" (R") the
set of Radon measures such that VH[u] € L*(Qr) and ||u|gyv = |[VH[i]|| ;1 If E C Q is a Borel
set, we set

Cv (B) = sup{u(B) : i € MY (R, u(E) = 0, |l gpv < 1} (1.10)
This defines a capacity. If
Oy (B) = inf{||fl| . : H[fI(y) 21 Vy € B}, (1.11)
where

H[f](y):/ j H(m—y,t)V(x,t)f(m,t)dmdt:/O HVf|(y,)dt Wy eRe,  (112)

then C} (E) = Cy (F) for any compact set. Denote by Zy the singular set of V', that is the largest
set with zero Cy capacity. Then

Zy ={z eR": / H(x —y,t)V(y, t)daxdt = oo}, (1.13)

and the following result characterizes the good measures.

Theorem D If p is an admissible measure then u(Zy) = 0. If p € M (R™) satisfies u(Zy) = 0,
then it is a good measure. Furthermore pu is a positive good measure if and only if there exist



an increasing sequence of positive admissible measures {u} which converges to u in the weak *
topology.

Since many important applications deal with the nonlinear equation
Opu — Au+ ul?tu =0 in Qe :=R"™ x (0,00) (1.14)

where ¢ > 1 and due to the fact that any solution defined in Qo satisfies

u(z, )71 < V(x,t) € Qoo, 1.15
(O < ey Y (115)
we shall concentrate on potentials V' which satisfy
Ch

for some C7 > 0. For such potentials we prove the existence of a representation theorem for positive

solutions of
Ou — Au+V(z,t)u=0 in Qr (1.17)

If w is a positive solution of (1.1) in Qp with p € M (R™), it is the increasing limit of the
solutions u = ug of

Ou — Au+V(z,t)u=0 in Q5"
u=0 in 9By x (0,7) (1.18)
’U,(., 0) = XBrH in Bg,

thus there exists a positive fonction Hy € C(R™ x R™ x (0,T)) such that

u(z,t) = RNHv(w,y,t)du(y)- (1.19)

Furthermore we show how to construct Hy from V' and we prove the following formula
Hv(ZC,y,t) = ew(Lt)F(wayat)a (120)
where

Y(x,t) = /tT/n (m) : e_%‘/(y, s)dyds (1.21)

and I satisfies the following estimate

lz—y|?

o2
Clt_%e_’yl t S F(‘Taya t) S CQt_%e_VZ‘ ty‘ (122>

where A;, ¢; depends on T', d and V. Conversely, we first prove the following representation result

Theorem E Assume V satisfies (1.15). If u is a positive solution of (1.1) in Qr, there exists a
positive Radon measure p in R™ such that (1.19) holds.

If e M, (R™) is positive, we can define for any k > 0 the solution uy, of

in Qr :=R" x (0,7)

, 0
u(.,0)=p in R" (1.23)



where Vi (z,t) = min{k, V(z,t)}, then
ug(z,t) = ]RNHVk (z,y,t)du(y). (1.24)
Moreover { Hy, } and {vy} decrease respectively to Hy and u* and there holds
ut(z,t) = RNHv(w,y, t)du(y). (1.25)
However u* is not a solution of (1.1), but of a relaxed problem where p is replaced by a smaller
measure u* called the reduced measure associated to p. If we define the zero set of V' by
Singy = {y € RV : Hy(z,y,t) = 0}, (1.26)

we prove
Theorem F Assume V' satisfies (1.15) and p € M, (R™). Then

(i) supp(p — p*) C Singy,
(i) If u(Singy) =0, then p* = 0.
(iii) Singy C Zy.

The last section is devoted to the initial trace problem: to any positive solution u of (1.1) we
can associate an open subset R(u) C R™ which the set of points y which possesses a neighborhood
U such that

// V(z, t)u(z,t)dzdt < co. (1.27)
U
T
There exists a positive Radon measure p,, on R(u) such that
limt_,o/ w(z, t)¢(x)dx = / Cdp V¢ € Ce(R(w)). (1.28)
n Rﬂ.

The set S(u) = R™ \ R(u) is the set of points y such that for any open set U containing y, there
holds

// V(z,t)u(z, t)dzdt = . (1.29)
U
T
If V satisfies (1.17), S(u) has the property that
1imsuptﬁo/u(:c,t)dz = 0. (1.30)
U

Furthermore, if is satisfies (1.9), then S(u) = 0.

An alternative construction of the initial trace based on the sweeping method is also developed.



2 The subcritical case

1

In this section we assume that V € L;, .

the linear parabolic problem

(Qr) is nonnegative, where Qr = R™ x (0, T]. We consider

ou—Au+Vu=0 in Qr

w0 =p  in R x {0} (2.1)

Definition 2.1 We say that € M(R™) is a good measure if problem (2.1) has a weak solution u
i.e. there exists a function u € L}, .(Qr), such that Vu € L}, (Qr) which satisfies

loc
— // u(0:p + A¢p)dxdt + / Vupdzdt = o(z,0)dp Vo € X(Qr), (2.2)
T Qr R™

where

X(Qr) ={¢ € Ce(Qr), 0p+A¢ € Li5.(Qu), ¢(x,T) = 0}

Definition 2.2 Let H(x,t) be the heat kernel of heat equation in R™, we say that pu € M(R™) is
an admissible measure if

(i)
IVHIAl 1 gory = //QBR ( . H(x — y,t)d|u(y)|> V(z,t)dedt < Mg

where Mp 1 is a positive constant.

Definition 2.3 A function u(xz,t) will be said to belong to the class Ev(Qr) if there exists a positive
A such that

// e N lu(z, 1)|(1 4+ V(, 1)) dadt < .

A measure in R™ belongs to the class M, (R™) if

_ |2
Iilon, = [ 5 dlul < o,

Lemma 2.4 There exists at most one weak solution of problem (2.1) in the class Ey(Qr).

Proof. Let u; and us be two solutions in the class £y,(Qr) then w = u; — ug is a solution with
initial data 0. Choose a standard mollifier p : B(0,1) — [0, 1] and define

wj(x) = j”/ p(z —y)w(y)dy = / pi(z —y)w(y)dy.
By (z) By (2)
Then w;(.,t) is C*° and from equation satisfied by w, it holds

Oy — By + [ V(pt)pyla -ty =0,

B (x)
J

where J;wj; is taken in the weak sense.



First we consider the case A > 0 and t < min{g,7} =1T".
a2

Set ¢(x,t) = &(w,t)C(x), where £(z,t) =e 35 and ¢ € C°(R™). Given € > 0 we define

gj = Jwi +e.

Because 0:(g;¢) = \/B&(b + g;0:9,, by a straightforward calculation we have

der =

[ fweto)] / /Q | \/ww—T

-/, \/% (/B ﬁ(z)vw,t)m(zy)w@)dy) dnds
+ //tgjqbsdxds

= L+L+1;

PpAw;dxds

Using integration by parts, we deduce

|va|2

_// \/7¢dxds+// |ng|2 ; éqﬁdxds—//Q Fijv(bdxds
¢ (z,s) . 2 . :
i

/ (Vg;Védzds — / &EVg;V{dxds
Q

- / N Cg;Aédads + / /Q t 9;V(Védads.

I

IN

Vw;Vodrds = —/ Vg;Vodxds
Qt

By the upper bound on ¢, we have that {|Vg;| € LY (Qr), £g; € L' (Qr), |A&lg; € LY (Qr),

sg; € LY(Qr) and

//t \/% (/BI(I) t)Pj(xy)w(y)dy) dzds < .

The reason for which £|Vg;| € L' (Qrv), is the next inequality

[V,
|Vg,|l¢dxds = // ———¢&dxds
//QT’ ’ QT’ \% € + wj

// 4‘*”5) / [Vp(x —y)|w(y)dy | deds.
Qv By (z)

J



Since Vy € B (z), we have |z|? > (|y|* — %)2 = |y]*+ %2 72‘]‘ > yT —(C— 1) =, for some positive
J

constant C' > 0 independent on j,y,z. Thus we have

__lw?
// |Vg;jl€dads < C(j, A) // / e 8G9 |Vp;(z — y)|w(y)dydeds < oo,

since e~ Mv*w € L1(Qr). Also

 wi(z,s) o _ w?(x, s)
//t \/T_;_E /Bl(m) y,t)pj(z —y)w(y)dy | deds —j oo //t 7102(30,8) +€§V(y,t)d:cds

and

/n Wiz, 8) +e(8s + Af)drds —j 00 /n Vw?(z,s) + (& + Af)dxds.

We choose (g =1 in Br, 0 < (g <1 in Bgry1 \ Br and 0 otherwise. Letting successively j — oo,
R — oo and finally € — 0, we derive

/HW@JM@meﬁ/AJM@sHMMMB//twmﬂﬂ“%ﬂM®.

55+A§:7 1n

2gx —5)

and V > 0, we have w(x,t) =0V (x,t) € R" x (0,T7"). If T/ = T this complete the proof for A > 0,
otherwise the proof can be completed by a finite number of interations of the same argument on
R™x (T7,2T"), R" x (2T",3T"), etc. If A = 0 we set £ = 1 and the result follows by similar argument
O

Since

Theorem 2.5 If pn € M, (R™) is an admissible measure, there exist a unique u = u, € Ev(QT)
solution of (2.1). Furthermore the following estimate holds

z|2 2|2 o2
lT// |u|ei4(‘T‘*t> dzds+// |u|Vei4(‘TLf> dxds S/ 67%d|ﬂ|. (2.3)
T T RTL

Proof. First we assume that g > 0. Let pur = xppp. It is well known that the heat kernel
HBR(z,y,t) in Q = Bpg is an increasing with respect to R and H?® — H, as R — oo in L(Qr)
for any T' > 0. Thus pug is an admissible measure in Br. Then by Proposition 5.4, there exists a
unique weak solution ug of problem 5.2 on 2 = Bg. By (ii) of Proposition 5.5 we have

—// |uR|(6tq§+Aqb)dxdt+// lug|Vodzdt < | o(x,0)d|uxl,
Qr Qr Br

2
|z

If we set ¢-(x,t) = e TTFe-0; & > 0, then

n ||
Ap=——— ¢ I(TteD
R e (T



thus we have

n =2 |=|2 |2
— e WTte-ddxdt Ve 1T+e—0 dadt < AT+4: =
//T'“R'2(T+et)e : +//T'“R' ‘ : —/B oo

R

n r el r e a2
lugl|e” TTFe=0 dadt + |ug|Ve™ T@Fe=0 dadt < eIz dyp.
2T+€ 0 Br 0 Br R"

Letting € — 0, we have

_ =2 __l=l? —lz|? —lz|?
%// |lurle” 7T=H dxdt+// lug|Ve TT-0 dxdtg/ e 4T dup S/ e 4T dpu.
T Qr Rm R

Now by the maximum principle ugr is an increasing with respect to R and converge to some
function u. By the above inequality u € £,(Qr) satisfies the estimate (2.5) and u is a weak
solution of problem (2.1). By Lemma 2.4 is unique. In the general case we write g = u+ — pu~ and
the result follows by the above arguments and Lemma 2.4. In the sequel we shall denote by u,, this
unique solution. O

Definition 2.6 A potential V is called subcritical in Qr if for any R > 0 there exists mg > 0
such that

/ H(x —y,t)V(z,t)dxdt < mpbe_% Yy € R™. (2.4)
Q7"
It is called strongly subcritical if moreover
e%// H(z —y,t)V(z,t)dzdt — 0 when |E| — 0, E Borel subset of Q5F, (2.5)
E

uniformly with respect to y € R™

Theorem 2.7 AssumeV is subcritical. Then any measure in My (R™) is admissible. Furthermore,
if V is strongly subcritical and {uy} is a sequence of measures uniformly bounded in Mz (RYN) which
converges weakly to p, then the corresponding solutions {(u,,} converge to u, in L}, (Qr), and
{Vu,} converges to Vu, in Li, (Qr).

Proof. For the first statement we can assume g > 0 and there holds

//B H(z —y,t)du(y)V (z,t)dzdt :/ (/ . H(t,x—y)V(ac,t)dxdt) du(y)

2
SmR/ e 4T du(y)
<mg || ullop, -

Thus p is admissible. For the second statement, we assume first that p; > 0. By lower semi-
continuity u € My (RY) and ||VH[/,L]||L1(QBR) < Mg, for any k. Since 0 < uy,, < Hlug] and
T



Huy] — H[p] in L}, (Qr), the sequence {u,,, } is uniformly integrable and thus relatively compact
in L}, (Qr). Furthermore 0 < Vu,, < VH[u;]. Let E C Q2" be a Borel subset, then

loc
//E VH[pg]dzdt = /n (//E VH(z— y,t)dzdt) dur(y)
_ /Rn (ef—f //E V(x)H (x —y,t)dxdt) e du(y)

< e(|B]) Nl e, -

Thus {(u,, Vuy,)} is locally compact in L}, .(Qr) and, using a diagonal sequence, there exists
u € L}, (Qr) with Vu € L}, (Qr) and a subsequence {k;} such that {(“ukj , V“ukj)} converges

loc
to (uu, Vu,) ae. and in L}, (Qr). From the integral expression (2.2) satisfied by the wu,,,, u is a
weak solution of problem (2.1). Since the w,,, satisfy (2.3), the property holds for u. So u is the
unique solution of (2.1). Thus u = u,, which ends the proof. .

As a variant of the above result which will be useful later on we have

Proposition 2.8 Assume V satisfies

2
ly|

eaT // H(x —y,t)V(z,t +7)dzdt — 0 when |E| — 0, E Borel subset of Q5" (2.6)
B

uniformly with respect to y € R™ and 7 € [0,79]. Let 7, > 0 with 7, — 0 and {ur} be a sequence
uniformly bounded in M7 (RN) which converges weakly to u. Then the solutions {try .} of

Ou—Au+Vu=0 on R"™x (1,T)

u(, i) = e on R™ x {7} (2.7)

(extended by 0 on (0,7y)) converge to u,, in L}, .(Qr), and {Vu,, } converges to Vu,, in L}, .(Qr).

Condition (2.5) may be very difficult to verify and we give below a sufficient condition for it to
hold.

Proposition 2.9 Assume V' satisfies

R A
lim e%xn/ / V(z, t)dwdt = 0 (2.8)
A0 0 B2y

uniformly with respect to y € R™, then V is strongly subcritical.

Proof. Let E C Q?R be a Borel set. For § > 0, we define the weighted heat ball of amplitude
e~ by
y 2
Ps = Ps(y,T) = {(z,t) €EQr:H(x—y,t)> 56_W} )
By an straightforward computation, one sees that

2
P5(yaT) CcB 1 lwl? (y) X [Oabn(si%e%] = R5(yaT)a

and mnednT

10



for some a,, b, > 0. We write

/ /E H(z — g, )V (x, t)dadt / [ H@ =y Vit + / /E | H( =)V (et

Then ,
// H(x —y,t)V(z,t)dzdt < (56_%// V(z,t)dzxdt,
ENPg E

and

5
/ H(z —y,t)V(z,t)dzdt < / / L Vi@, t)dS:(z, t)rdr
ENPs 0 {(I,t)GQ?R:H(zfy,t)2767 aT }

< T// L2 Vi, t)dS, (x,t)do
[ 0 {(z,t)EQ?R:H(Ify,t):aeij‘T_} =0
5 pT
—/ // L2 V(x,t)dSs (z,t)dodr
B _lyl®
0 JO J{(z,t)eQ F:H(z—y,t)=ce™ 4T }
&
Sé// V(z,t)dSy(z,t)do
0 {(m,t)GQ?R:H(zfy,t):aefj%‘Ti}

The first integration by parts is justified since V € L( ?R). Notice that

5
5/ / V(z,t)dSy(z,t)do = 6// V(z,t)dxdt
0 {(m,t)ngR;H(xfy,t):ae*%‘Ti} QErAp,

5// V(z,t)dxdt < 5// V(z,t)dxdt
Q7RNPs Q7RNRs(y.T)

< ﬂr’”/ / V(x,t)dxdt,
0 JBrNB,,2 )

for some o, 8 > 0 and if we have set 7 = 6~ . Notice also that BrNBary2(y) = Dif [y| > R+ (ar)?,
or, equivalently, if [y| > R + a2~ 7.
(i) If |y| > R+ a2, we fix § such that 1 < §, then

and

ly|2

et //EH(xfy,t)V(:c,t)dzdt < 5//EV(:E,t)d:cdt

which can be made smaller than ¢ provided |E| is small enough.
(ii) If |y| < R + o2, then

R24

2
e%// H(z — y, )V (2, t)dxdt < ™5 // H(z —y,t)V (2, t)dzdt
ENP§ ENPy

< ge A // V(z,t)dxdt
E

11




Given € > 0, we fix § = =™ such that

R2 R24at

a4 ar
eer / H(z —y,t)V(z,t)dzedt < Be” =T r‘"/ / V(x,t)dedt <
ENP; 0 JBRrRNB (42 (y)

N o

and then 7 > 0 such that |E| < n implies

R%4+

Y 2 ot
e%// H(z —y,t)V(z,t)dxdt < de™ 2T // V(x,t)dzdt < <
ENPg E 2

Therefore
1yl

ear // H(x —y,t)V(z,t)dzdt <e,
E
which is (2.5). O

Remark In Theorem 2.7 and Proposition 2.9, the assumption of uniformity with respect to y € R"
in (2.5), (2.6) and (2.8) can be replaced by uniformity with respect to y € Bp, if all the measures p,
have their support in Bg,. A extension of these assumptions, valid when the convergent measures
i have their support in a fixed compact set is to assume that V' is locally strongly subcritical,
which means that (2.5) holds uniformly with respect to y in a compact set. Similar extension holds
for (2.8).

3 The supercritical case

3.1 Capacities

All the proofs in this subsection are similar to the ones of [12] and inspired by [6]; we omit them.
We assume also that there exist a positive measure o such that H[uo]V € L*(Qr).

Definition 3.1 If u € M, (R™) and f is a nonnegative measurable function defined in Q such that
(t,5,9) = Hlul(y, OV (2,8)f (2,1) € LY (Qr x R" dadt @ dp),
we set

et = [ ([ 1= u00)) Va0 st

If we put

H[/](y) = ; H(z —y, )V (z, 1) f (2, t)dwdt,

then by Fubini’s Theorem, H[f](y) < oo, u—almost everywhere in R™ and

E(fin) = /Rn ( ; H(x —y,t)V(w,t)f(w,t)dwdt) dp(y)-

Proposition 3.2 Let f be fized. Then
(a) y — H[f](y) is lower semicontinuous in R™.
(b) w— E(f, 1) is lower semicontinuous in M4 (R™) in the weak™ topology.

12



Definition 3.3 We denote by MY (R™) the set of all measures p on R™ such that VH[|u|] €
LY(Qr). If p is such a measure, we set

ol = | ([ #a = 0i)) Vo)t = VBl o

If E C R™ is a Borel set, we put
My (E) ={peM(R") : p(E) =0} and MY (E)=mm"(R")NM,(E).
Definition 3.4 If E C R™ is any borel subset we define the set function Cy by
Cv(E) == sup{u(E) : p e MY(E), |[ullmv < 1};

this is equivalent to,
n(E)

il lamv

Cy(E) := Sup{ : ueme(E)}.

Proposition 3.5 The set function Cy satisfies

—1
Cy(F) < sup ( H(x —y,t)V(x, t)dxdt) V E C R", E Borel.
yek Qr

Furthermore equality holds if E is compact. Finally,
Cy(E1 U Ey) =sup{Cy (F1),Cv(E2)} V E; CR", E; Borel.
Definition 3.6 For any Borel E C R", we set
O (E) := nf{||f ||z~ : H[f](y) > 1Vy € E}.
Proposition 3.7 For any compact set E C R",
Cy (B) = Cy (E).

3.2 The singular set of V/

In this section we assume that V satisfies (1.16), although much weaker assumption could have
been possible. We define the singular set of V', Zy by

Zy = {x eR"™: / H(z —y,t)V(y, t)dydt = oo} . (3.1)
Qr
We note that, since H(t,z,y) < H(x — y,t) for any bounded §2 with smooth boundary, it holds
Z$¥ C Zy. Since the function z +— f(z) = H(x —y,t)V(y,t)dydt is lower semicontinuous, it
Qr

is a Borel function and Zy is a Borel set.

13



Lemma 3.8 If x € Zy then for any r > 0,
// H(x —y,t)V(y,t)dydt = oo.
QEr®)
Proof. We will prove it by contradiction, assuming that there exists r > 0, such that

/ /Q%H (x =y, )V (y,t)dy < M.
T

Replacing H by its value, we derive

[[ #a-vovenae = [[ #e-poveodds [[, @- g0V
Qr QEr= QEF@

IN

T n+2 r?
M+C(n)/ £ e Tt < oo
0

Which is clearly a contradiction. O
Lemma 3.9 If p is an admissible positive measure then p(Zy) = 0.

Proof. Let K C Zy be a compact set. In view of the above lemma there exists a R > 0 such that
K C Bpg and for each z € K, we have

Sy = oo (32)

and

//QBERH(:E g V() dy < . (3.3)

Now, uxg = xx i is an admissible measure and by Fubini theorem we have
// < H(x —vy, t)duK(y)> V(z,t)dxdt = / / H(z —y,t)V(z,t)dzdtdu(y)
T \JR" K Qr
[ [ .1~y 0Vi)dsatduty
K Q?2R
—|—/ / e H(z —y, )V (z)dzdtduy.
K QTZR
By (3.3) the second integral above is finite and by (3.2)
// H(z —y,t)V(z)dzdt = oo Yy € K.
Q?2R

It follows that p(K) = 0. This implies u(Zy) = 0 by regularity. O

Theorem 3.10 If ;n € Mp(R™), p > 0 such that u(Zy) =0, then p is a good measure.
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Proof. We set ur = xppit- By Proposition 5.8, since Z‘IER C Zv, iR is a good measure in By with
corresponding solution uf} In view of Lemma 2.5, u® satisfies

"
T R M el r Ric, — Lol L2
u; me TT-D dadt + lu, |Ve 770 dxdt < e AT dy.
0 Br 0 Br Br

Also {uﬁ} is an increasing function, thus converges to u,. By the above estimate we have that u,
belong to class £y(Qr) and is a weak solution of (2.1). O

Proposition 3.11 Let pp € M (R™). Then u(Zyv) = 0 if and only if there exists an increasing
sequence of positive admissible measures which converges to u in the weak™* topology.

Proof. The proof is similar as the one of [12, Th 3.11] and we present it for the sake of completeness.
First, we assume that u(Zy) = 0. Then we define the set

KN{SCGRn: H(xy,t)V(y)dydtSN}.

Qr

We note that Zy N Ky = 0. We set i, = xx,p then we have

/QT ( . H(z — y,t)dun(y)) V(z, t)dedt < pu(Ky).

Thus w,, is admissible, increasing with respect n. By the monotone theorem we have that u, —
Xz, j1- Since 1(Zy) = 0 the result follows in this direction.

For the other direction. Let {u,} be an increasing sequence of positive admissible measure. Then
by Lemma 3.9 we have that p,(Zy) =0, Vn > 1. Since pu,, < p, there exist an increasing functions
h, p—integrable such that p, = h,p. Since 0 = u,(Zy) — w(Zy) the result follows. O

3.3 Properties of positive solutions and representation formula

We first recall the construction of the kernel function for the operator w — 0w — Aw+ Vw in Qr,
always assuming that V satisfies (1.16). For 6 > 0 and p € My, we denote by w; the solution of

Orw — Aw + Vzw = 0, in Qr (3.4)
w(.,0) = p in R™ ‘
where Vs = Vx@,, and Qs = (§,T) x R™. Then
ws(@,t) = [ Hyy(z,y,t)dp(y) (3-5)

Rn

Lemma 3.12 The mapping 6 — Hy;(x,y,t) is increasing and converges to Hy € C(R™ x R™ x
(0,T])) when § — 0. Furthermore There exists a fonction Hy € C(R™ x R™ x (0,T])) such that
for any p € Mp(R™)

— R™

15



Proof. Without loss of generality we can assume g > 0. By the maximum principle 6 — Hy, (z,y, t)
is increasing and the result follows by the monotone convergence theorem. |

If R” is replaced by a smooth bounded domain €2, we can consider the problem

Ohw — Aw + Vsw =0 in Q¥
w=0 in 9,Q% := 00 x (0,7 (3.7)
w(.,0) = p in Q.

where V{ = Vxqg, and Q?,T = (0,T) x Q. Then

wd%ﬂiiéfﬁﬂﬁyiﬂﬂw) (3.8)

The proof of the next result is straightforward.

Lemma 3.13 The mapping 6 — H‘(}S (z,y,t) increases and converges to Hi} € C(Q x Q x (0,T))
when § — 0. Furthermore There exists a fonction Hi} € C(Q x Q x (0,T])) such that for any
1 € My(€2)

lim ws (z,t) = w(z,t) = / H (z,y,t)du(y). (3.9)
§—0 QO
Furthermore H‘K} < H‘K}/ <Hy ifQcQ.
It is important to notice that the above results do not imply that w is a weak solution of
problem (1.1). This question will be considered later on with the notion of reduced measure.

Lemma 3.14 Assume p € M4 (R™) is a good measure and let u be a positive weak solution of
problem (2.1). If  is a smooth bounded domain, then there exists a unique positive weak solution
v of problem

Ow— Av+ Vo =0, in Q%,
v=0 on 9,Q% (3.10)
v(.,0) = xap in Q.
Furthermore
ant) = [ HP (o) (3.11)

Proof. Let {t;}52; be a sequence decreasing to 0, such that t; < T, V j € N. We consider the
following problem

8t’UfA’U+V’U:0, in QX(tj,T],
v=0 on 00 x (t;,T] (3.12)
’U(.,tj) = U(.,tj) n Q x {tj}

Since u, Vu € L*(QZF) for any R > 0, t = u(.,t) is continuous with value in L}, (R™), therefore

u(.,t;) € L}, (R™) and there exists a unique solution v; to (3.12) (notice also that V' € L>®(QZ")).

loc
By the maximum principle 0 < v; < u and by standard parabolic estimates, we may assume
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that the sequence v; converges locally uniformly in © x (0,7] to a function v < u. Also for any
¢ € CHH1(Q) which vanishes on 0,Q%} and satisfies ¢(x,T) = 0, v; satisfies

T T
/tj /ij(at(bJrAd))dzdtJr/tj /QVUJ-¢d:cdt+/Q d)(x,Tftj)vj(z,T—tj)d:c:/Q(,b(z,())u(z,tj)dz,

where in the above equality we have taken ¢(.,. — t;) as test function. Since ¢(.,T —¢;) — 0
uniformly and (., ;) — w in the weak sense of measures, it follows by the dominated convergence

theorem that
7// gv(at¢+A¢)d:cdt+// ngdzdt/gaﬁ(yﬂ)du(y),

thus v is a weak solution of problem (3.10). Uniqueness follows as in Lemma 2.4. Finally, for
d > 0, we consider the solution ws of (3.7). Then it is expressed by (3.5). Furthermore

/é w(;(at(bJrA(b)d:cdtJr/é ‘/(sw(;(bdxdt:/(b(z,())du(x),
¥ S Q

The sequence ws is decreasing, with limit w. Since ws > v, w > v. If we assume ¢ > 0, it follows
from dominated convergence and Fatou’s lemma that

/é w(8t¢+A¢)dzdt+/é Vwedxdt < | ¢(x,0)du(x),
¢ ¢ Q

Thus w is a subsolution for problem (3.10) for which we have comparison when existence. Then
w = v and (3.11) holds. O

Lemma 3.15 Assume p € M4 (R™) is a good measure and let u be a positive weak solution of
problem (2.1). Then for any (z,t) € R™ x (0,T], we have

lim ur = u,

R—o0
where {ur} is the increasing sequence of the weak solutions of the problem (3.10) with Q@ = Bp.
Moreover, the convergence is uniform in any compact subset of R™ x (0,T] and we have the repre-
sentation formula

u(x, t) = - Hy (z,y,t)du(y).

Proof. By the maximum principle, we have ug < ug < u for any 0 < R < R'. Thus ug — w < u.
Also by standard parabolic estimates, this convergence is locally uniformly. Now by dominated
convergence theorem, we have that w is a weak solution of problem (2.1) with initial data u. Now
we set w = u — w > 0. Then w satisfies in the weak sense

’LAl}t—A’L,IJ'—f—V’L,E:O iDQT
w(z,t) >0 in Qr
w(zr,0) =0 in R™.

17



But then w satisfies in the weak sense

@t — A’LE S 0 n QT
(1) > 0 in Qr
w(z,0) =0 in R™,

which implies w = 0. Now for any function wgr we have the representation formula
uR(w,t)z/ Hy™ (2, y, )du(y).
Br

Since {H‘?R} is an increasing sequence, and limp_,~ HgR = Hy, we have using again Fatou’s
lemma as in the proof of Lemma 3.15

u(z,t) = lim uf(z,t) = lim HPR (2, y, t)duly) = | Hy(z,y,t)du(y)

R—o0 R—o0 Br R»

O

Lemma 3.16 Harnack inequality Let C; > 0 and V(z,t) be a potential satisfying (1.16) If u
is a positive solution of (1.17), then the Harnack inequality is valid:
2
— t
ulys) < ey exp (Ol 00) (225 4

— S S

#1)). Vel eQr <t
Proof. We extend V for ¢t > T by the value C1t~1. We consider the linear parabolic problem
ou— Au+Vu=0, in R"™ x [1, 00), (3.13)

It is well known that, under the assumption (1.16), every positive solution u(x,t) of (3.13) satisfies
the Harnack inequality

—_ |2 t
u(y, s) < u(z,t)exp (C’(n, Cy) (% + B + 1)) , V (z,t) € R" x [1, 00).
Set @(x,t) = u(5=§). Then @ satisfies
1 tx, . .
th-ALl-F FV(FX),U:O’ inRR X(0,00).
We note here that %V(%%) < (Cy, Vt > %, thus @ satisfies the Harnack inequality
_ . |z —y* ¢ n 1
u(y, s) < u(zx,t)exp [ C(n,Ch) t7+_+1 , V (z,t) € R" x [ﬁ,oo).
—s S
By the last inequality and the definition of & we have the desired result. O
Next, we set
Singy (R™) :=={y € R" : Hy(z,y,t) =0} (3.14)

If Hy(z,y,t) = 0 for some (z,t) € Qr, then Hy (z',y,t') = 0 for any (2/,t') € Qp, t' < t by
Harnack inequality principle. We prove the Representation formula.
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Theorem 3.17 Let u be a positive solution of (1.17). Then there exists a measure p € M4 (R™)
such that

u(z,t) = - Hy (z,y,t)du(y).

Proof. By Lemma 3.15 we have

u(z,t) = Hy (z,y,t — s)u(y, s)dy forany s <t <T.
Rn

We assume that s < % By Harnack inequality on « — Hy (z,y, %)

T
HV(Oa Y, E)U(ya S)dy < C(n) HV (07 Y, T — 5, )u(ya S)dy = C(TL)U(O, T)
R R

For any Borel set E, we define the measure pg by

pu(E) = /E Hy (0., 5 )uly, $)dy < [ v Suly, $)dy < c(n)u(T, 0).

Thus there exists a decreasing sequence {s;}22; which converges to origin, such that the measure
ps; converges in the weak™ topology to a positive Radon measure p. Also we have the estimate
p(R™) < C(n)u(0,T). Now choose (z,t) € Qr and jo large enough such that ¢t > s;,. Let € > 0,
we set for any j > jo,
Hy(x,y,t —s;
Wi(y) = (—TJ)
HV (Oa Y, E) +e
For any R > 0 and |y| > R we have
1 1 1
Wily) < ZHv(z,y,t —sj) < —H(z —y,t =) < ZC(z, R, 1 = 55),

where limp_,o C(z, R,t — s;) = 0. We have also

1
W;(y)dp; <

ly|>R €

C(z,R,t — s;)c(n)u(T,0).

Hy (%,y,t)

For any |y| < R, we have by standard parabolic estimates that W;(y) — T (T 0072

when j — oo,

uniformly with respect to y. Thus by the above estimates it follows

Hy(z,y,t
W;(y)dp; — v )

e h g,
R™ Rn Hv(o,y,%)-i-&'

For sufficiently large j we have

Hy(z,y,t = s;) Hy (z,y,t = s;) <

re Hy(0,y, L) +¢ re Hyv (0,9, L) + ¢
Hy(z,y,t—s;,)

re Hy(0,y,%)+¢

T
HY (0,0 5) 4~ ) uly.5,)d

= u(x,t)—¢ u(y, sj)dy.
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Note that we have used the identity
HV(:C, Y, t— S])U(y, Sj)dy = ’U,(LL', t)
RTL

Thus as before, we define dp; = Hy (z,y,t — s;)u(y, s;)dy and thus there exists a subsequence, say
{p;j} converges in the weak* topology to a positive Radon measure p. Thus we have

HV(:L'ayat_Sj) / HV(:Cay’t_S])
e | ——F—Luly,s;)dy = €| X(Singy ®n)) "
wn Hy (0,9, ) 4 WS E (0,4, D) +

1
- ¢ PN —; /,
/n M S (T 0y e

u(s;j,y)dy

Combining all above, we have

HV('Taya t)
R HV(Oa Y, %) +e

Now, we have

1
dp. (3.15)

dp = u(x,t —6/ X(Singy (R?))* —————7——
(1) Rn (Singv (B7)) Hy(0,y,2)+¢
lim ; < =0
EHOX(SmgV(Rn))4HV(%vO,y)+5 ’

and by Harnack inequality on the function  — Hy (x,y,t)

HV('Taya t)

VB <o, T,
HV(an7%)+€ - ( )

thus by dominated convergence theorem, we can let £ tend to 0 in (3.15) and obtain

HV(:C7y; t)

dp = u(x,t).
R™ HV(Oa Y, %)

And the result follows if we set
1

— — _dp.
HV(Oa Y, %)

dp = X(Singy (Rn)"

O
In the next result we give a construction of Hy, with some estimates and a different proof of
the existence of an initial measure for positive solutions of (1.16).

Theorem 3.18 Assume V satisfies (1.16), then

Hy (z,y,t) = " (x,y,t,0) (3.16)
where
T _le—yl?
t):/ / £ 7 vy, s)dyds (3.17)
1/1(:1"’ " ” 47T(t7 S) y’ y M
and ) )
e~ ‘Isiyt‘ _r t § o ‘Isiyt‘ i1
01(15—73)%_ (‘Taya ’S)_CQW ( 18)

for some positive constants ¢; and v;, i = 1, 2.
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Proof. Assuming that u is a positive solution of (1.17), we set u(z,t) = e?@y(x,t). Then
v — Av — 2Vp. Vo — |Vop|>0 + (9 — Ay + Vv = 0. (3.19)
We choose 9 solution of problem

—Gtw—Aw—i-Vw:O in QT

(3.20)
(., T)=0 in R™.
Then ¢ is expressed by (3.17). Furthermore, by standard computations,
(1) 0<(x,t)<clnL
k . (3.21)
(i) IV (z, t)] < er(T) + co(T) In 5
The function v satisfies
v — Av — 2Vp. Vv — [V |*v = 0. (3.22)
Then, by (3.21),
(1) 0< / sup{|¢(z,s)|? : x € R"}ds < My
" (3.23)
(i4) 0< / sup{|V¢(z, )7 : x € R"}ds < My
RTL

for any 1 < ¢ < oo for some M; € Ry. This is the condition H in [2] with Ry = oo and p = oo.
Therefore there exists a kernel function I' € C(R"™ x R™ x (0,T) x (0, 7)) which satisfies (3.18) and
there exists a positive Radon measure p in R™ such that

owt) = [ Tyt 0)duty). (3.24)

Finally u verifies
(e, t) = 0 [Ty, t,0)duly). (3.25)
O

3.4 Reduced measures

In this section we assume that V is nonnegative, but not necessarily satisfies (1.16), therefore
we can construct Hy [u] for p € Mp(R™). Furthermore, if p is nonnegative we can consider the
solution uy of the problem

Ou — Au + VFu =0, in Qr

u(.,0)=p in R", (3.26)

where V¥ = min{V, k}. Then there holds

’U,k(:C, t) - an Hyx (ta €T, y)dﬂ(y) = Hy [,LL] (:C, t)a
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and .
ug + / H(t — s,2,y)V*urdyds = Hip).
o Jr»

Since k — Hy . is decreasing and converges to Hy, we derive

lim up =u = Hy (t,z,y)du(y).

k— o0 R™

By Fatou’s lemma

k— o0

¢ t
/ H(t — s,x,y)Vudyds < lim inf/ H(t — s,2,y)V*urdyds.
0 JRm» 0o Jrn»
It follows

t
U(.’L‘,t) +/ H(t—s,x,y)Vudyds < Hv(t,x,y)du(y), V(ZC,t) € QT
0 JRm» Rn

Now since Vu € L}, .(Qr) and
Ou—Au+Vu=0, in Qr,
the function

t
u(x,t) + / H(t — s,z,y)Vudyds
o Jrn

is nonnegative and satisfies the heat equation in Q7. Therefore it admits an initial trace pu* €
M (R™) and actually p* € My (R™). Furthermore, we have

t
u(x,t) + / H(t— s,z,y)Vudyds = H(x —y,t)du*(y), ¥(z,t) € Qr.,
0 Rn R»

or equivalently, u is a positive weak solution of the problem

ou—Au+Vu=0 in Qr
u(.,0) = p* in R™.

Note that p* < p and the mapping p — p* is nondecreasing.
Definition 3.19 The measure u* is the reduced measure associated to
The proofs of the next results are similar to the ones of [12, Section 5].

Proposition 3.20 There holds Hy [u] = Hy [u*]. Furthermore the reduced measure p* is the largest
measure for which the following problem

Ov—Av+Vo=0 in Qr
AeML(R™), A< p (3.27)
v(,,0) = A in R™,

admits a solution.
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Proposition 3.21 Let Wy be an increasing sequence of nonnegative bounded measurable functions
converging to V a.e. in Q. Then the solution uy of

0o —Av+Wirv=0 in Qr
v(.,0) = p in R™,

converges to tyx.
We recall that Singy (R™) := {y € R™: Hy(x,y,t) = 0}.

Proposition 3.22 Let p be a nonnegative measure in My (R™). Then

(i) (= ") ((Singv (R™))") = 0
(ii) If p ((Singy (R™))) = 0, then pu* = 0.
(iii) There always holds Singy (R™) C Zy .

4 Initial trace

4.1 The direct method

The initial trace that we developed in this section is an adaptation to the parabolic case of the
notion of boundary trace for elliptic equations (see [9], [10], [12]).

Proposition 4.1 Let u € C*1(Qr) be a positive solution (1.17) Assume that, for some x € R",
there exists an open bounded meighborhood U of x such that

// u(y, )V (y, t)dedt < co (4.28)
U

T

Then w € LY(U x (0,T)) and there exists a unique positive Radon measure p in U such that

lim [ wu(y,t)o(x)dx = /Uqb(ac)d,u, Vo € C3°(U).

t—=0 Jir

Proof. Since Vu € L*(U x (0,T)) the following problem has a weak solution v (see [9]).

ov—Av = Vu, in U x (0,7,
v(z,t) = 0 on OU x (0,T]
v(z,0) = 0 in U.

Thus the function w = u+ v satisfies the heat equation. Thus there exists a unique Radon measure
1 such that

lim [ w(y,t)¢(z)dx = /Uqﬁ(x)du, Vo € Cg°(U).

=0 Jur

And the result follows since the initial data of v is zero. O
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We set

R(u) = {y € R™ : 3 bounded neighborhood U of y, // u(y, t)V(y, t)dedt < oo} . (4.29)
Q7

Then R(u) is open and there exists a unique positive Radon measure p on R(u) such that

lim | w(y,t)é(z)dx :/R¢(z)du, Vo € C5°(R). (4.30)

t-50 |

Proposition 4.2 Let u € C*Y(R" x (0,T)) be a positive solution of (1.17). Assume that, for some
x € R™, there holds

// Uu(y,t)V(y,t)dydt =00 (4.31)

for any bounded open neighborhood U of x. Then

limsup/ u(y, t)dy = oo. (4.32)
U

t—0

Proof. We will prove it by contradiction. We assume that there exists an open neighborhood of =
such that

/ u(y,t)dy <M <oco  Vte (0,T).
U

Then ||u||L1(Q¥) < MT. Let B,(z) CC U for some r > 0, and ¢ € C§°(B,(z)), such that ( =1 in
Bz (r), ¢ =0 in Bf(z) and 0 < { < 1. Then since u is a positive solution we have

/atqux—/uACdx—i—/ Vuldx =0 = Vudxg/atug“dac—/uACdm:
U U U U U

Py
/ OruCdx f/ uAldx Jr/ Vulde = 0= Vudr < f/ Orudzr + M ||AC|| oo -
U U U By U

Integrating the above inequality form on (s,7T'), we get

T
/ Vudzdr < —/ u(x, T)dx —|—/ u(z, s)dx + H“HLl(Qg) |AC]| o0 - (4.33)
s Bg U U

Letting s — 0, we reach to a contradiction. 0

Remark. It is not clear wether there holds

h?igglf/Uu(y,t)dy = 0. (4.34)
However, it follows from (4.33) that if u € L1(QY), the above equality holds.
Definition 4.3 Ifu is a positive solution of (1.17), we set S(u) = R"\R(u). The couple (S(u), u)

is called the initial trace of u, denoted by trg~(u). The sets R(u) and S(u) are respectively the
regular and the singular sets of trg= (u) and p is its reqular part.
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Example Take V (z,t) = ct™!, ¢ > 0. If u satisfies
Ou — Au + %u =0 (4.35)

then v(x,t) = t“u(x,t) satisfies the heat equation. Thus, if u > 0, there exists p € M (R™) such
that
u(z,t) = t7Hu|(z,t). (4.36)

This is a representation formula. Notice that Vu(z,t) = ct=¢"'H][u](z,t) therefore the regular set
of trg~ (u) may be empty.

Proposition 4.4 Assume V satisfies (1.16) and let u € C**(Qr) be a positive solution of (1.17)
with initial trace (S(u), py). Then u >, .

Proof. We assume S(u) # R™ otherwise the result is proved. Let G and E be open bounded
domains such that G CC E CC R(u). Let 0 < § = inf{|lz —y|: z € G, y € E°}. Choose R > 0
such that E CC Bg. Let {t; }‘;’;1 be a decreasing sequence converging to 0. We denote by u; the
weak solution of the problem

8,5va1)+sz0 in BRX(tj,T]
v(z,t) =0 on 0Bg x (t;,T)
v(.,t5) = xau(.,t;) in Br x{t;},

where x is the characteristic function on G. Let UJR, be the solution

ov—Av =0 in R™ x (¢;, 00]
v(.,t5) = xeul., ;) in R™ x {t,}.

Then by maximum principle we have uf < u and uf < w; for any j € N in Bg x (t;,T]. By

standard parabolic estimates, we may assume that the sequence uf converges locally uniformly

in Q?R to a function uf* < u. Moreover, since Xgpu(.,tj) = Xahy in the weak* topology, we
derive from the representation formula that v; — H[ygp,]. Furthermore u < v, which implies

X, myuf = u in LY(QE7). There also holds

T T T
/ / ulVdrdt = / / ulVdadt + / / ulVdadt,
t; JBgr t; JE t; JBR\E

and, by the choice of F and dominated convergence theorem,

T T T T
/ / ulVdadt < / / uVdzdt < oo = lim / / ultVdzdt = / / u"'Vdudt.
t; JE 0o JE J=0 Jt; JE 0o JE

Furthermore, for any = € By \ E,

t LV t;)dy < LY t;)d
w00 = () fo e (g ) [

Next, since V(z,t) < Ct~! and uf' < v;, we obtain

25



T T
lim / / ulVdrdt = / / ufVdzdt, (4.37)
1= Jt; JBR\E 0 JBgr\E

by using the previous estimate and the fact that xgp.(z,t;) = Xcpw in the weak* topology. It
follows X(tj,T)VUf — Vuf in LY( ?R). There holds also uZ < u; by the maximum principle, the
mapping R — ug is increasing and bounded from above by u. In view of Lemma 3.15,

lim ug =ug < u,

R—o0
and ug is a positive weak solution of
ov—Av+Vo=0 in Qr
v(.,0) = xGlu in R™

Consider an increasing sequence {G;}5°, of bounded open subsets, G; CC R(u), with the property
that (J;o; G; = R(u). In view of Lemma 3.15 the sequence {u; = ug,}2; is increasing and
converges to u < u. Also we have

ui(x,t) + /Ot A H(t —s,z,y)Vu;dyds = A H(x —y,t)du;, V(z,t) € Qr,
where u; = xq, - Now since p; — py, by the monotone convergence theorem we have
a(z,t) + /t A H(t —s,z,y)Vudyds = A H(x —y,t)du,, V(z,t) € Qr,
0o JRn n
and @ < u. this implies % = u,,,,, which ends the proof. O

Remark. Assumption (1.17) is much too strong and has only been used in (4.37). It could have
been replaced by the following much weaker one: for any R > 0 there exists a positive increasing
function eg such that lim; o €(t) = 0 satisfying

Vi, t) <et r®  (xt) € QFR. (4.38)

We end this section with a result which shows that the stability of the initial value problem with
respect to convergence the initial data in the weak* topology implies that the initial of positive
solution has no singular part.

Theorem 4.5 Assume V' satisfies, for some 19 > 0,

|éi|m0 // H(x —y,t)V(x,t + 7)dxdt = 0, E Borel subset of Q" (4.39)
- E

for any R > 0, uniformly with respect to y is a compact set and 7 € [0,79]. If u is a positive

solution of (1.17), then R(u) = R"
Proof. We assume that S(u) # 0 and if z € S(u) there holds

//B()Vudzdt:oo Vr > 0.
Q7"
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In view of Proposition 4.1, there exist two sequences {7y} and {t¢;} decreasing to 0 such that

lim u(z,t;)der = oo Vk € N.

J—00 Brk (Z)

For k € N and m > 0 fixed, there exists j(k) such that
/ u(z,tj)de >m Vi > j(k) €N,
By, (2)
and there exists £, > 0 such that
/ min{u(z,t;)), bk fdr =m
Brk (z)

Furthermore j(k) — oo when k — oo. Let R > max{r; : j = 1,2,...} and uy be the solution of
Ov—Av+Vu=0 in R™ x (tj(x), 7]
’U(.,tj) = XB,, () min{u(.,t]—(k)),ﬂk} in R" x {tj(k)}a

Then x5, (2 min{u(.,t; ), fk} — md, in the weak sense of measures. By Proposition 5.5 we
obtain that u > uy on Br(2) X (tju),T]. Applying Proposition 2.8, and the remark here after,

. =T . . .
we conclude that ug(. + tj) — umd, = mus, in L}, (Qr) This implies v > mus_, and as m is
arbitrary, u = co, contradiction. ]

4.2 The sweeping method

In this subsection we adapt the sweeping method developed in [12] for constructing the boundary
trace of solutions of stationnary Shrodinger equations to solutions of (1.17). If A C R™ is a Borel
set, we denote by

Mr 1 (A) = {p €M (R") : u(A°) =0, /Ae‘%du«w}-

We recall that p* denotes the reduced measure associated to p.

Proposition 4.6 Let u € C*(Qr) be a positive solution of (1.17) with singular set S(u) G R™.
If pe My (S(u)), set v, = inf{u,u,-}. Then

Oy — Avy, +Vu, >0 in Qr,

and v, admits a boundary trace v, (p) € M (S(u)). The mapping pu — yu(p) is nondecreasing and
Yu(p) < pe

Proof. Tt is classical that v, := inf{u,u,~} is a supersolution of (1.17) and v, € &,(Qr) as it holds
with u,~ . The function

(z,t) = w(z,t) = /0 - H(t—s,z,y)V(y, s)vu(y, s)dyds
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satisfies
Ow—Aw—Vw=0 in Qr
w(.,,0) =0 in R™ x {0}.

Thus v, + w is a nonnegative supersolution of the heat equation in Q. It admits an initial trace
in My 4 (S(u)) that we denote by v, (u). Clearly v, (p) < p* < p since v, < uy+ and v, (p) is
nondecreasing with respect to p as it is the case with p — u,~ is. Finally, since v, is a positive
supersolution, it is larger that the solution of 2.1 where the initial data p is replaced by v, (u),
that is u., ) < vp- O

The proofs of the next four propositions are mere adaptations to the parabolic case of similar
results dealing with elliptic equations and proved in [12] and we omit them.

Proposition 4.7 Let
vs(u) :=sup{vu(p) : p € My 4 (S(u))}-

Then vs(u) is a Borel measure on S(u).
Definition 4.8 The Borel measure v(u) defined by

v(u)(A) :=vs(u)(ANS(u)) + pu(ANR(w)), vV A CR", ABorel,
is called the extended boundary trace of u, denoted by Tre(u).
Proposition 4.9 If A C S(u) is a Borel set, then

vs(A) = sup{yu(n)(4) : 1 € My 4(A)}.

Proposition 4.10 There always holds v(Singy (R™)) = 0, where Singy (R™) is defined in (3.14).
Proposition 4.11 Assume V satisfies condition (4.39). If u is a positive solution of (1.17), then

trrn (u) = fy, € My 4 (R™).

5 Appendix: the case of a bounded domain

5.1 The subcritical case

Let Q be a bounded domain with a C? boundary. We denote by 9(Q) the space of Radon measures
in Q, by 2, () its positive cone and by M,(12) the space of Radon measures in  which satisfy

[l < <. (5.1)

for some weight function p : Q — Ry. As an important particular case p(x) = d*(z), where
d(z) = dist (z,0Q) and o > 0. We consider the linear parabolic problem

O — Au+Vu =0, in Q% =0Qx(0,7]
u=0 on 9,Q% =099 x (0,T] (5.2)
u(.,0)=p in Q.
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Definition 5.1 We say that p € 9M4(Q) is a good measure if the above problem has a weak solution
u, i.e. there exists a function u € LY(QS}), such that Vu € LL(QS) which satisfies

—/()T/Qu(atﬂﬁ-f-Aﬂﬁ)dxdt-l—/OT/QVU(bdxdt:/Qﬂﬁ(xao)dlh (5-3)

Vo € Cl’l?l(Q_g) which vanishes on 0,Q% and satisfies ¢p(x, T) = 0.

Definition 5.2 Let H(x,y,t) be the heat kernel in Q. Then we say that p € Mq(Q) is a admissible
measure if

el = [ (] 49 = 0iw)]) Vi oot < oo
T
The next a proposition is direct consequence of [9, Lemma 2.4].

Proposition 5.3 Assume p € My(Q) and let u be a weak solution of problem (?7), then the
following inequalities are valid

(i)
lulzs o)+ Vallzyag) < Cn9) [ ddul
(ii)
T T
—/ /|u|(8tq§+Aqb)dxdt+/ /|u|V¢dmdt§/q§(m,0)d|u|,
0 Q 0 Q Q
Vo € CLEL(QP), ¢ > 0.

i
h Ao /OT /gl($)u+d$dt + /OT /Q VuTpdadt < /sz(x)d/ﬁ-,

where 1 is the solution of
Ay =1, in Q

b =0 on 9. (5-4)

Proof. For (ii), in Lemma 2.4 page 1456 above from the relation (2.39), we can take ¢ =~(u)
for some 0 < ¢ € CLEH(QF), since u = 0 on §,Q%. For (iii) we consider (as in [9, Remark 2.5])
¢(z,t) = ty(x). The inequality holds by the same type of calculations as in [12]. O

Proposition 5.4 The problem (5.2) admits at most one solution. Furthermore, if p is admissible,
then there exists a unique solution; we denote it u,.

Similarly as Theorem 2.7 and Proposition 2.7, we have the following stability results

Proposition 5.5 (i) Assume that V' satisfies the stability condition

lim // HYz,y, )V (y, t)d(z)dydt =0, VE C Q%, E Borel. (5.5)
|E|—0 E
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uniformly with respect toy € Q. If {ux} is a bounded sequence in My() converging to p in the dual

sense of Ma(Q), then (uy,, Vu,,) converges to (uy, Vuy,) in LY(QE) x LY(QS). (i) Purthermore

if

lim // HY(z,y,t +7,)V(y,t)d(z)dydt =0, VE C Q%}, F Borel. (5.6)
E

|E|—0

uniformly with respect to y € Q and 1, € [0, 79] converges to 0 and {ux} is in (i), then the solutions
Ur, .y, Of the shifted problem

Oou—Au+Vu=0 on QX (1%, T)
u=0 on O x (13, T) (5.7)
u(, ) = pr on Qx {m}

(extended by 0 on (0,7x)) converge to u, in LY(Q%), and {Vu,,} converges to Vu, in LL(QF).

Proof. We can easily see that the measure p,, is admissible and uniqueness holds; furthermore any
admissible measure is a good measure is a good measure as in Theorem 2.5, and

T T
/ / Uy, drds +/ / Uy, Vipdrds < C/ dp, < C.
0 Q 0 Q Q

The remaining of the proof is similar to the one of Theorem 2.7. U

5.2 The Supercritical case

Lemma 5.6 Let {1, }22, be an increasing sequence of good measures converging to some measure
1 in the weak™ topology, then p is good.

Proof. Let u,, be the weak solution of (5.2) with initial data p,. Then by Proposition 5.5 -(iii),
{u,,} is an increasing sequence. By 5.5 -(i) the sequence {u,, } is bounded in L*(Q%). Thus
uy, — u € LY(QF). Also by (iii) of Proposition 5.5, we have that Vu,, — Vu in L}, (Q%). Thus
we can easily prove that u is a weak solution of (5.2) with u as initial data. O

Let

Z={req; /Q CHO (2, )V (y)(y)dy = oo}

By the same arguments as in Veron-Yarur we can prove the following results

Proposition 5.7 Let u be an admissible positive measure. Then ,u(Z‘g/l) =0

Proposition 5.8 Let u € My (Q) such that u(Z{) =0,
then p is good.

Proposition 5.9 Let u € My (Q) be a good measure. Then the following assertions are equiva-
lent:

(i) n(Zy}) = 0.

(ii) There exists an increasing sequence of admissible measures {p,} which converges to p in the
weak *-topology
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