The Stretch Factor of $L_1$- and $L_\infty$-Delaunay Triangulations - Archive ouverte HAL
Rapport Année : 2012

The Stretch Factor of $L_1$- and $L_\infty$-Delaunay Triangulations

Résumé

In this paper we determine the stretch factor of the $L_1$-Delaunay and $L_\infty$-Delaunay triangulations, and we show that this stretch is $\sqrt{4+2\sqrt{2}} \approx 2.61$. Between any two points $x,y$ of such triangulations, we construct a path whose length is no more than $\sqrt{4+2\sqrt{2}}$ times the Euclidean distance between $x$ and $y$, and this bound is best possible. This definitively improves the 25-year old bound of $\sqrt{10}$ by Chew (SoCG'86). To the best of our knowledge, this is the first time the stretch factor of the well-studied $L_p$-Delaunay triangulations, for any real $p\ge 1$, is determined exactly. Moreover, we show that the same short path exists in \Y4 graphs, a subgraph of $L_\infty$-Delaunay triangulations, and therefore we determine the stretch factor for these graphs too.
Fichier principal
Vignette du fichier
hal.pdf (175.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00673187 , version 1 (23-02-2012)
hal-00673187 , version 2 (26-02-2012)

Identifiants

Citer

Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, Ljubomir Perkovic. The Stretch Factor of $L_1$- and $L_\infty$-Delaunay Triangulations. 2012. ⟨hal-00673187v1⟩
185 Consultations
339 Téléchargements

Altmetric

Partager

More