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Abstract

In this paper we determine the stretch factor of the L1-Delaunay and L∞-Delaunay

triangulations, and we show that this stretch is
√

4 + 2
√
2 ≈ 2.61. Between any two

points x, y of such triangulations, we construct a path whose length is no more than
√

4 + 2
√
2 times the Euclidean distance between x and y, and this bound is best possible.

This definitively improves the 25-year old bound of
√
10 by Chew (SoCG’86).

To the best of our knowledge, this is the first time the stretch factor of the well-studied
Lp-Delaunay triangulations, for any real p ≥ 1, is determined exactly.

Moreover, we show that the same short path exists in Yao∞
4

graphs, a subgraph of L∞-
Delaunay triangulations, and therefore we determine the stretch factor for these graphs
too.

Keywords: Delaunay triangulations, L1-metric, L∞-metric, stretch factor, Yao graphs

1 Introduction

Given a set of points P on the plane, the Delaunay triangulation for P is a spanning subgraph
of the Euclidean graph on P that is the dual of the Voronöı diagram of P . The Delaunay
triangulation is a fundamental structure with many applications in computational geometry
and other areas of Computer Science. In some applications (including on-line routing [BM04]),
the triangulation is used as a spanner, defined as a spanning subgraph in which the distance
between any pair of points is no more than a constant multiplicative ratio of the Euclidean
distance between the points. The constant ratio is typically referred to as the stretch factor of
the spanner. While Delaunay triangulations have been studied extensively, obtaining a tight
bound on its stretch factor has been elusive even after decades of attempts.

∗Member of the “Institut Universitaire de France”. Supported by the ANR-11-BS02-014 “DISPLEXITY”

project and the équipe-projet INRIA “CEPAGE”.
†Supported by a Fulbright Aquitaine Regional grant and a DePaul University research grant.
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Paper Graph Stretch factor

[DFS87] L2-Delaunay π(1 +
√
5)/2 ≈ 5.08

[KG92] L2-Delaunay 4π/(3
√
3) ≈ 2.42

[Xia11] L2-Delaunay 1.998

[Che89] TD-Delaunay 2

[Che86] L1-,L∞-Delaunay
√
10 ≈ 3.17

[BDD+10] Yao∞4 8
√
2 ≈ 11.32

[this paper] L1-,L∞-Delaunay and Yao∞4
√

4+ 2
√
2 ≈ 2.61

Table 1: Key stretch factor upper bounds (optimal values are bold).

In the mid-1980s, it was not known whether Delaunay triangulations were spanners at all.
In order to gain an understanding of the spanning properties of Delaunay triangulations, Chew
considered related, “easier” structures. In his seminal 1986 paper [Che86], he proved that an
L1-Delaunay triangulation — the dual of the Voronöı diagram of P based on the L1-metric
rather than the L2-metric — has a stretch factor bounded by

√
10. Chew then continued on

and showed that the a TD-Delaunay triangulation — the dual of a Voronöı diagram defined
using a Triangular Distance, a distance function not based on a circle (L2-metric) or a square
(L1-metric) but an equilateral triangle — has a stretch factor of 2 [Che89].

Finally, Dobkin et al. [DFS87] succeeded in showing that the (classical, L2-metric) Delau-
nay triangulation of P is a spanner as well. The bound on the stretch factor they obtained
was subsequently improved by Keil and Gutwin [KG92] as shown in Table 1. The bound by
Keil and Gutwin stood unchallenged for many years until very recently when Xia improved
the bound to below 2 [Xia11].

While progress has been made, none of the techniques developed so far lead to a tight
bound on the spanning ratio. There has been some progress recently on the lower bound side.
The trivial lower bound of π/2 ≈ 1.5846 has recently been improved to 1.5846 [BDL+11] and
then to 1.5932 [XZ11].

While much effort has been made on understanding the stretch factor of Delaunay tri-
angulations, little has been done on the Lp-Delaunay triangulations for p 6= 2. Lee and
Wong [LW80] show that L1-,L∞-Delaunay triangulations have applications in scheduling prob-
lems for 2-dimensional storage, and how to construct, for all real p ≥ 1, Voronöı diagrams in
the Lp-metric in O(n log n) time [Lee80]. Delaunay triangulations based on arbitrary convex
distance functions have been studied in [BCCS08], which shows that such geometric graphs
are indeed plane graphs and spanners whose stretch factor depends only on the shape of the
convex body. However, due to the general approach, the bounds on the stretch factor remain
loose. For instance the bounds they obtain for L2-Delaunay triangulations are > 24.

The general picture is that, in spite of much effort, with the exception of the triangular
distance the exact value of the stretch factor of Delaunay triangulations based on any con-
vex function is unknown. In particular, the stretch factor of Lp-Delaunay triangulations is
unknown for each p ≥ 1.
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Our contributions. We show that the exact stretch factor of L1-Delaunay triangulations

and L∞-Delaunay triangulations is
√

4 + 2
√
2 ≈ 2.61, ultimately improving the 3.17 bound

of Chew [Che86].

Technically, we use rectangular coordinates to prove the upper bound. We show that
the distance in the triangulation between any source-destination pair of points lying on the
border of a horizontal rectangle of length x and of depth y ≤ x is no more than (1+

√
2)x+y.

The stretch factor bound then simply follows. In our proof, we construct the route from the
source to the destination by maintaining two possible short paths, until we reach some special
point (called inductive point) where we can apply our main inductive hypothesis.

As a by-product of our analysis, we show that all the edges we use for the final path exists
also in the graph Yao∞4 , a subgraph of the L∞-Delaunay triangulation. The Yaopk-graph is
locally constructed by connecting each point in P to its closest neighbor, according to the
Lp-metric, in each 2π/k-angle (see Definition 1 for k = 4 and p = ∞). As a consequence, we
determine also the exact stretch factor of Yao∞4 , improving significantly the previous upper
bound of 11.32. In addition, by integrating our bound into the analysis of [BDD+10], the
upper bound on the stretch factor of Yao24-graph is reduced from 8

√
2 · (29 + 23

√
2) ≈ 579 to

√

4 + 2
√
2 · (29 + 23

√
2) ≈ 160.

Despite the technical aspect of our contribution, we believe that our proof techniques
may give insights into determining the stretch factor of other convex distance based Delau-
nay triangulations. For example, let Pk denote the convex distance function defined by a
regular k-gon. We observe that the stretch factor of Pk-Delaunay triangulations is known
for k = 3, 4 since P3 is the triangular distance function of [Che89], and P4 is nothing else
than the L∞-metric. Determining the stretch factor of Pk-Delaunay triangulations for larger k
would undoubtedly be an important step towards understanding the stretch factor of classical
Delaunay triangulations.

2 Preliminaries

Given a set P of points in the two-dimensional Euclidean space, the Euclidean graph E is the
complete weighted graph embedded in the plane whose nodes are identified with the points.
We assume a Cartesian coordinate system is associated with the Euclidean space and thus
every point can be specified with x and y coordinates. For every pair of nodes u and w, the
edge (u,w) represents the segment [uw] and its weight is the edge length defined in Euclidean
distance: d2(u,w) =

√

dx(u,w)2 + dy(u,w)2 where dx(u,w) (resp. dy(u,w)) is the difference
between the x (resp. y) coordinates of u and w.

We say that a subgraph H of a graph G is a t-spanner of G if for any pair of vertices
u, v of G, the distance between u and v in H is at most t times the distance between u and
v in G; the constant t is referred to as the stretch factor of H (with respect to G). H is a
t-spanner (or spanner for some t constant) if it is a t-spanner of E.

In our paper, we deal with the construction of spanners based on Delaunay triangulations.
As we saw in the introduction, the L1-Delaunay triangulation is the dual of the Voronöı
diagram based on the L1-metric d1(u,w) = dx(u,w) + dy(u,w). A property of the L1-
Delaunay triangulations, actually shared by all Lp-Delaunay triangulations, is that all their
triangles can be defined in terms of empty circumscribed convex bodies (squares for L1 or
L∞ and circles for L2). More precisely, let a square in the plane be a square whose sides
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are parallel to the x and y axis and let a tipped square be a square tipped at 45◦. For every
pair of points u, v ∈ P , (u, v) is an edge in the L1-Delaunay triangulation of P iff there is
a tipped square that has u and v on its boundary and contains no point of P in its interior
(cf. [Che89]).

If a square with sides parallel to the x and y axes, rather than a tipped square, is used
in this definition then a different triangulation is defined; it corresponds to the dual of the
Voronöı diagram based on the L∞-metric d∞(u,w) = max{dx(u,w), dy(u,w)}. We refer to
this triangulation as the L∞-Delaunay triangulation. This triangulation is nothing more
than the L1-Delaunay triangulation of the set of points P after rotating all the points by 45◦

around the origin. Therefore Chew’s bound of
√
10 on the stretch factor of the L1-Delaunay

triangulation ([Che86]) applies to L∞-Delaunay triangulations as well. In the remainder of
this paper, we will be referring to L∞-Delaunay (rather than L1) triangulations because we
will be (mostly) using the L∞-metric and squares, rather than tipped squares.

One issue with Delaunay triangulations is that there might not be a unique triangulation
of a given set of points P . To insure uniqueness and keep our arguments simple, we make
the usual assumption that the points in P are in general position, which for us means that
no four points lie on the boundary of a square and no two points share the same abscissa or
the same ordinate.

In this paper we prove a tight bound on the stretch factor of the L∞-Delaunay triangu-
lation. In fact the same bound also holds for a subgraph of the L∞-Delaunay triangulation
that is a version of the Yao graph and described by Bose et al. [BDD+10]. In order to define
this subgraph and its properties, we introduce some terminology. A cone is the region in
the plane between two rays that emanate from the same point. With every point u of P we
associate four disjoint 90◦ cones emanating from u: they are defined by the translation of the
positive and negative x-axis and y-axis from the origin to point u. We label the cones 0, 1,
2, and 3, in counter-clockwise order and starting with the cone defined by the two positive
axes. Given a cone i, the counter-clockwise next cone is cone i + 1, whereas the clockwise
next cone is cone i− 1; we assume a cyclic structure on the labels so that i+ 1 and i− 1 are
always defined. As the considered point sets are in general position, no point will ever lie on
the boundary of another point’s cone. For a point v and cone i of v, we denote by Si

v(s) the
s × s square having v as a vertex and whose two sides match the boundary of cone i of v,
and by Si

v the square Si
v(s) with the largest s that contains no points of P in is interior (see

Figure 1.)

The following defines a version of the Yao subgraph of E based on the L∞-metric proposed
by [BDD+10].

Definition 1 Every node v of E chooses in each one of its non-empty cones the shortest edge
of E out of v according to the L∞-metric. We name the resulting (undirected) graph Yao∞4
just as in [BDD+10]. (See Figure 1.)

Using our notation, (v,w) ∈ Yao∞4 iff w lies on the boundary of Si
v for some cone i.

Because there is an empty square circumscribing the endpoints of every edge of Yao∞4 , it is a
subgraph of the L∞-Delaunay triangulation T .

Lemma 2 If (u, v) is an edge in T but not in Yao∞4 and if S is any square circumscribing
u and v whose interior is devoid of points of P then u and v must lie in the interior of
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Figure 1: Definition of Si
v and the construction of Yao∞4 .

a

c2

c1

b

1− 2δ

1− δ

√
2− 2δ

√
2− 1

1− 2δ

S1

c2

q1

a

p1

p2

δ

a) b)

Figure 2: a) A L∞-Delaunay triangulation with stretch factor arbitrarily close to
√

4 + 2
√
2.

b) A closer look at the first faces of this triangulation.

opposite sides of S. Furthermore, if T1 = △(u, v, w) is a triangle of T and S1 is the square
circumscribing the vertices of T1, then (u,w) and (v,w) are in Yao∞4 and connect adjacent
sides of S1.

Proof. W.l.o.g., we assume that v is in cone 0 of u. If u and v lie on adjacent sides of a
square S devoid of points of P then either S0

u is contained in S and has v on its boundary,
or S2

v is contained in S and has u on its boundary, contradicting the assumption that
(u, v) 6∈ Yao∞4 . Therefore u and v must lie in the interior of opposite sides of the square S.
This is particularly true for S1 and thus w must lie on a side of S1 that is adjacent to the
sides of S1 containing u and v. By the above argument, (u,w) and (v,w) must be in Yao∞4 . �

We end this section by giving a lower bound on the stretch factor of L∞-Delaunay trian-
gulation.

Proposition 3 For every ǫ > 0, there exists a set of points P in the plane such that the
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L∞-Delaunay triangulation on P has stretch factor at least
√

4 + 2
√
2− ǫ.

This result, of course, applies to L1-Delaunay triangulations and Yao∞4 graphs as well.
The proof of this proposition relies on the example of Figure 2.

Proof. Given δ > 0, we define the set of points P as follows. Let point a be the origin
and let points b, c1, and c2 have coordinates (1,

√
2 − 1), (δ,

√
2 − 2δ), and (1 − δ, 1 − 2δ),

respectively. Additional k =
√
2−2δ
δ

− 1 points are placed on line segment [ac1] and another
k on line segment [c2b] in such a way that the difference in y coordinates between successive

points on a segment is δ, as shown in Figures 2 a) and b). (W.l.o.g. assume that
√
2

δ
is

an integer so that this can be done.) Let a = p0, p1, p2, p3, . . . , pk, pk+1 = c1 be the labels,
in order as they appear when moving from a to c1, of the points on segment [ac1] and let
c2 = q0, q1, q2, q3, . . . , qk+1 = b be the labels, in order as they appear when moving from c2 to
b, of the points on segment [c2b], as illustrated in Figure 2 b).

Consider the square S1 of side length 1−δ and having a and p1 on its west (left) and north
sides, respectively. Since d∞(a, c2) = dx(a, c2) = 1 − δ and d∞(p1, c2) = dy(p1, c2) = 1 − δ,
point c2 is exactly the southeast vertex of square S1 (as shown in Figure 2 b)). By symmetry,
it follows that for every i = 0, 1, 2, . . . , k, if Si is the square of side length 1 − δ with pi and
pi+1 on its west and north sides, then point qi is exactly the southeast vertex of Si. This
means that all points qj with j 6= i as well as all points pj with j 6= i, i + 1 must lie outside
Si. Therefore, for every i = 0, 1, 2, . . . , k, points pi, pi+1, and qi define a triangle in the
L∞-Delaunay triangulation T on P . A similar argument shows that the path q0, q1, . . . , qk+1

is in triangulation T as well. The triangulation T is illustrated in Figure 2 a).

Having defined the set of points P and described its L∞-Delaunay triangulation T , we
now analyze the stretch factor of T . A shortest path from a to b in T is, for example,
a, p1, p2, . . . , pk, c1, b. The length of this path is

d2(a, c1) + d2(c1, b) =
√

dx(a, c1)2 + dy(a, c1)2 +
√

dx(c1, b)2 + dy(c1, b)2

=

√

(
√
2− δ)2 + δ2 +

√

(1− δ)2 + (1− 2δ)2

which tends to 2
√
2 as δ tends to 0. The Euclidean distance between a and b is fixed as δ

goes to 0:

d2(a, b) =

√

12 + (
√
2− 1)2 =

√

4− 2
√
2 .

Therefore, it is possible to construct a L∞-Delaunay triangulation whose stretch factor is
arbirtrarily close to:

2
√
2

√

4− 2
√
2
=

√

4 + 2
√
2 .

�

3 Main result

In this section we obtain a tight upper bound on the stretch factor of the subgraph Yao∞4 of
an L∞-Delaunay triangulation. It follows from this key theorem:
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S1

S2
S3

b

a

h1

l1,2

h2,3

l3

Figure 3: Triangles T1 (with points a, h1, l1), T2 (with points h1, h2, and l2), and T3 (with
points l2, h3, and l3) and associated squares S1, S2, and S3. When traveling from a to b along
segment [a, b], the edge that is hit when leaving Ti is (hi, li).

Theorem 4 Let T be the L∞-Delaunay triangulation on a set of points P in the plane and
let a and b be any two points of P . If x = d∞(a, b) = max{dx(a, b), dy(a, b)} and y =
min{dx(a, b), dy(a, b)} then

dY (a, b) ≤ (1 +
√
2)x+ y,

where dY (a, b) denotes the distance between a and b in subgraph Yao∞4 of T .

Corollary 5 The stretch factor of the graph Yao∞4 , the L1-, and the L∞-Delaunay triangu-
lation on a set of points P is at most

√

4 + 2
√
2 ≈ 2.6131259 . . .

Proof. By Theorem 4, an upper-bound of the stretch factor of Yao∞4 is the maximum of the
function

(1 +
√
2)x+ y

√

x2 + y2

over values x and y such that x ≤ y. This maximum is equal to
√

4 + 2
√
2 and is reached

when x and y satisfy y
x
= 1

1+
√
2
. Since Yao∞4 is a subgraph of L∞-Delaunay triangulation,

the same result also holds for L1- and L∞-Delaunay triangulations. �

To simplify the notation and the discussion, assume that point a has coordinates (0, 0)
and point b has coordinates (x, y) with 0 < y ≤ x. The segment [ab] divides the Euclidean
plane into two half-planes; a point in the same half-plane as point (0, 1) is said to be above
segment [ab], otherwise it is below.

Let T1, T2, T3, . . . , Tk be the sequence of triangles of triangulation T that line segment
[ab] intersects when moving from a to b. Let h1 and l1 be the nodes of T1 other than a,
with h1 lying above segment [ab] and l1 and lying below. Every triangle Ti, for 1 < i < k,
intersects line segment [ab] twice; let hi and li be the endpoints of the edge of Ti that intersects
segment [ab] last, when moving on segment [ab] from a to b, with hi being above and li being
below segment [ab]. Note that either hi = hi−1 and Ti = △(hi, li, li−1) or li = li−1 and
Ti = △(hi−1, hi, li), for 1 < i < k. We also set h0 = l0 = a and hk = lk = b. For 1 ≤ i ≤ k,
we define Si to be the square whose sides pass through the three vertices of Ti (see Figure 3);
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since T is an L∞-Delaunay triangulation, the interior of Si is devoid of points of P . We will
refer to the sides of the square using the notation: N (north), E (east), S (south), and W
(west). We will also use this notation to describe the position of an edge connecting two
points lying on two sides a square: for example, a WN edge connects a point on the west and
a point on the N side. We will say that a line segment is gentle if its slope is within [−1, 1],
otherwise we will say that it is steep.

We will prove Theorem 4 by induction on the distance, using the L∞-metric, between a
and b, two points of P . Let R(a, b) be the rectangle with sides parallel to the x and y axes
and with vertices at points a and b. If there is point of P inside R(a, b), we will easily apply
induction. The case when R(a, b) does not contain points of P — and in particular the points
hi and li for 0 < i < k — is more difficult and we need to develop tools to handle it. The
following Lemma describes the structure of the triangles T1, . . . , Tk when R(a, b) is empty. We
need some additional terminology first though: we say that a point u is above (resp. below)
R(a, b) if 0 < xu < x and yu > y (resp. yu < 0).

Lemma 6 If (a, b) 6∈ T and no point of P lies inside rectangle R(a, b), then point a lies on
the W side of square S1, point b lies on the E side of square Sk, points h1, . . . , hk all lie above
R(a, b), and points l1, . . . , lk all lie below R(a, b). Furthermore, for any i such that 1 < i < k:

a) Either Ti = △(hi−1, hi, li−1 = li) and (hi−1, hi) is a WN, WE, or NE edge in Si

b) Or Ti = △(hi−1 = hi, li−1, li) and (li−1, li) is a WS, WE, or SE edge in Si.

Figure 3 illustrates these properties.

Proof. Since points of P are in general position, points a, h1, and l1 must lie on 3 different
sides of S1. Because segment [ab] intersects the interior of S1 and since a is the origin and b
is in cone 0 of a, a can only lie on the W or S side of S1. If a lies on the S side then l1 6= b
would have to lie inside R(a, b), which is a contradiction. Therefore a lies on the W side of
S1 and, similarly, b lies on the E side of Sk.

Since points hi (0 < i < k) are above segment [ab] and points li (0 < i < k) are below
segment [ab], and because all squares Si (0 < i < k) intersect [ab], points h1, . . . , hk all lie
above R(a, b), and points l1, . . . , lk all lie below R(a, b).

The three vertices of Ti can be either hi = hi−1, li−1, and li or hi−1, hi, and li−1 = li.
Because points of T are in general position, the three vertices of Ti must appear on three
different sides of Si. Finally, because hi−1 and hi are above R(a, b), they cannot lie on the S
side of Si, and because li−1 and li are below R(a, b), they cannot lie on the N side of Si.

If Ti = △(hi−1, hi, li−1 = li), points hi−1, hi, li must lie on the sides of Si in clockwise
order. The only placements of points hi−1 and hi on the sides of Si that satisfy all these
constraints are as described in a). If Ti = △(hi−1 = hi, li−1, li), points hi, li, li−1 must lie
on the sides of Si in clockwise order. Part b) lists the placements of points li−1 and li that
satisfy the constraints. �

In the following definition, we define the points on which induction can be applied in the
proof of Theorem 4.

Definition 7 Let R(a, b) be empty and let c = hj or c = lj be a point lying on the E side of
Sj such that line segment [ljhj ] is gentle. Point c is inductive if either:
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a) (lj , hj) ∈ Yao∞4 or

b) (lj , hj) 6∈ Yao∞4 , c = hj and line segments [ljhj−1], [hj−1hj ], [lj lj+1], and [lj+1hj ] are
not steep, gentle, steep, and gentle, respectively, or

c) (lj , hj) 6∈ Yao∞4 , c = lj and line segments [hj lj−1], [lj−1lj ], [hjhj+1], and [hj+1lj] are
not steep, gentle, steep, and gentle, respectively.

The following lemma will be the key ingredient of our inductive proof of Theorem 4. We
leave the proof of Lemma 8 until later.

Lemma 8 Assume that R(a, b) is empty. If no square S1, . . . , Sk is inductive then

dY (a, b) ≤ (1 +
√
2)x+ y.

Otherwise let Sj be the first inductive square in the sequence S1, S2, . . . , Sk. If hj is the
inductive point of Sj then

dY (a, hj) + (yhj
− y) ≤ (1 +

√
2)xhj

.

If lj is the inductive point of Sj then

dY (a, lj)− ylj ≤ (1 +
√
2)xlj .

If point c is inductive, we can apply induction to bound dY (b, c) and then use Lemma 8 to
bound dY (a, b), but only if the position of point c relative to the position of point b is good,
i.e. if x− xc > |y − yc|. If that is not the case, we will use the following Lemma:

Lemma 9 Let R(a, b) be empty and let the coordinates of point c = hi or c = li satisfy
0 < x− xc < |y − yc|.

a) If c = hi, and thus 0 < x − xhi
< yhi

− y, then there exists j, with i < j ≤ k such
that all edges in path hi, hi+1, hi+2, . . . , hj are NE edges in their respective squares and
x− xhj

> yhj
− y > 0.

b) If c = li, and thus 0 < x− xli < y − yli, then there exists j, with i < j ≤ k such that
all edges in path li, li+1, li+2, . . . , lj are SE edges and x− xlj > y − ylj > 0.

Note that, since all edges in path hi, hi+1, . . . , hj are NE edges in their respective squares,
they must be in Yao∞4 . The same is true for edges in path li, li+1, . . . , lj .

Proof. We only prove the case c = hj as the case c = li follows using a symmetric argument.

We construct the path hi, hi+1, hi+2, . . . , hj iteratively. If hi = hi+1, we just continue
building the path from hi+1. Otherwise, (hi, hi+1) is an edge of Ti+1 which, by Lemma 6,
must be a WN, WE, or NE edge in square Si+1. Since the S side of square Si+1 is below
R(a, b) and because x− xhi

< yhi
− y, point hi cannot be on the W side of Si+1 (otherwise b

would be inside square Si+1). Thus (hi, hi+1) is a NE edge. If x− xhi+1
> yhi+1

− y we stop,
otherwise we continue the path construction from hi+1. �

We are now ready to prove Theorem 4.
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Proof of Theorem 4. The proof is by induction on the distance, using the L∞-metric,
between points of P (since P is finite there is only a finite number of distances to consider).

Let a and b be the two points of P that are the closest points, using the L∞-metric. We
assume w.l.o.g. that a has coordinates (0, 0) and b has coordinates (x, y) with 0 < y ≤ x.
Since a and b are the closest points using the L∞-metric, square S0

a (i.e., the largest square
having a as a southwest vertex and containing no points of P in its interior) must have b on
its E side. Therefore (a, b) is an edge in Yao∞4 and dY (a, b) = d2(a, b) ≤ x+y ≤ (1+

√
2)x+y.

For the induction step, we again assume, w.l.o.g., that a has coordinates (0, 0) and b has
coordinates (x, y) with 0 < y ≤ x.

Case 1: R(a, b) is not empty.

A
B

C
a

b

Figure 4: Partition of R(a, b) into three regions in Case 1 of the proof of Theorem 4.

We first consider the case when there is at least one point of P lying inside rectangle
R(a, b). If there is a point c inside R(a, b) such that yc ≤ xc and y− yc ≤ x− xc (i.e., c lies in
the region B shown in Figure 4) then we can apply induction to get dY (a, c) ≤ (1+

√
2)xc+yc

and dY (c, b) ≤ (1+
√
2)(x−xc)+y−yc and use these to obtain the desired bound for dY (a, b).

We now assume that there is no point inside region B. If there is still a point in R(a, b)
then there must be one that is on the border of S0

a or S2
b . W.l.o.g., we assume the former

and thus there is an edge (a, c) ∈ Yao∞4 such that either yc > xc (i.e., c is inside region A
shown in Figure 4) or y − yc > x − xc (i.e., c is inside region C). Either way, dY (a, c) =
d2(a, c) ≤ xc + yc. If c is in region A, since x − xc ≥ y − yc, by induction we also have that
dY (c, b) ≤ (1 +

√
2)(x− xc) + (y − yc). Then

dY (a, b) ≤ dY (a, c) + dY (c, b)

≤ xc + yc + (1 +
√
2)(x− xc) + (y − yc) ≤ (1 +

√
2)x+ y

In the second case, since x− xc < y − yc, by induction we have that dY (c, b) ≤ (1 +
√
2)(y −

yc) + (x− xc). Then, because y < x,

dY (a, b) ≤ dY (a, c) + dY (c, b)

≤ xc + yc + (1 +
√
2)(y − yc) + (x− xc) ≤ (1 +

√
2)x+ y

Case 2: R(a, b) is empty. If no square S1, S2, . . . , Sk is inductive, dY (a, b) ≤ (1 +
√
2)x+ y

by Lemma 8. Otherwise, let Si be the first inductive square in the sequence.

Suppose that hi is the inductive point of Si. By Lemma 9, there is a j, i ≤ j ≤ k, such
that hi, hi+1, hi+2, . . . , hj is a path in Yao∞4 of length at most (xhj

− xhi
) + (yhi

− yhj
) and

such that x− xhj
> yhj

− y > 0. Since hj is closer to b, using the L∞-metric , than a is, we
can apply induction to bound dY (hj , b). Putting all this together with Lemma 8, we get:

dY (a, b) ≤ dY (a, hi) + dY (hi, hj) + dY (hj , b)

≤ (1 +
√
2)xhi

− (yhi
− y) + (xhj

− xhi
) + (yhi

− yhj
) + (1 +

√
2)(x− xhj

) + (yhj
− y)

≤ (1 +
√
2)x

10



If li is the inductive point of Si, by Lemma 9 there is a j, i ≤ j ≤ k, such that
li, li+1, li+2, . . . , lj is a path in Yao∞4 of length at most (xhj

− xhi
) + (yhj

− yhi
) and such

that x − xhj
> y − yhj

> 0. Because the position of j with respect to b is good and since
lj is closer to b, using the L∞-metric, than a is, we can apply induction to bound dY (lj , b).
Putting all this together with Lemma 8, we get:

dY (a, b) ≤ dY (a, li) + dY (li, lj) + dY (lj , b)

≤ (1 +
√
2)xli + yli + (xlj − xli) + (ylj − yli) + (1 +

√
2)(x− xlj ) + (y − ylj)

≤ (1 +
√
2)x+ y.

�

What remains to be done is to prove Lemma 8. To do this, we need to develop some
further terminology and a technical Lemma.

Definition 10 A vertex c (hi or li) of Ti is promising in Si if it lies on the E side of Si.
A square Si is promising if hi or li is promising in Si. The sequence hi, hi+1, . . . , hj (resp.,
li, li+1, . . . , lj) is a maximal high (resp., low) sequence ending at hj (resp., lj) if li+1, . . . , lj
are not promising and either i = 0 or hi (resp., li) is promising in Si.

Note that by Lemma 6, all edges on the path defined by a maximal high sequence
hi, hi+1, . . . , hj are WN edges and thus the path is in Yao∞4 and its length is bounded by
(xhj

−xhi
)+ (yhj

− yhi
). Similarly, all edges in a maximal low sequence li, li+1, . . . , lj are WS

edges, and thus in Yao∞4 , and the length of the path is at most (xlj − xli) + (yli − ylj).

Lemma 11 Let Si be a promising but not inductive square and let c (hi or li) be its promising
point. If all previous squares are not inductive then dY (a, c) ≤ (1 +

√
2)xc + |yc|.

Note that this Lemma implies that if no square S1, . . . , Sk is inductive, and since b is
promising in Sk (by Lemma 6), dY (a, b) ≤ (1 +

√
2)x+ y.

Proof. We prove Lemma 11 by induction on the number of promising squares before Si. We
thus start by assuming that Si is the first promising square and that it is not inductive. We
also assume that hi is the promising point in Si and thus Ti = △(hi−1, hi, li−1 = li). The case
when li is promising can be shown using symmetric arguments.

We consider 3 cases in the base step of the induction. In each case we construct two paths
(specific to each case) in Yao∞4 from a to hi. The first path starts with the maximal high
sequence from a to hi−1 and the second starts with the maximal low sequence from a to li.
To conclude, all we need to do is show that the sum of the lengths of these two paths is at
most 2(1 +

√
2)xhi

+ 2yhi
.

Before we start, we show how we can reduce the computation of the sum to a simpler
geometric problem. Using the bounds on the lengths of a maximal high and low sequence
starting at a, we have that dY (a, hi−1) ≤ yhi−1

+ xhi−1
and dY (a, li) ≤ −yli + xli . If we define

point a′ to be the abscissa of the W side of Si, we can split the sum of dY (a, hi−1)+dY (hi−1, hi)
and dY (a, li) + dY (li, hi) into two parts: 2xa′ and

yhi−1
+ (xhi−1

− x′a) +−yli + xli − xa′ + dY (hi−1, hi) + dY (li, hi)

11



Si

hi−1

hi

li−1,i

a

yhi−1

−yli

xhi−1

xli

Si

Si+1

li−1,i

hi,i+1

hi−1

li+1

a

Si

hi−1 hi

li−1,i

a

a) b) c)

Figure 5: The 3 cases of the proof of Lemma 11. The dotted edges are edges that are in the
L∞-Delaunay triangulation but not in its Yao∞4 subgraph.

To obtain the desired bound on the sum of the lengths of the two paths from a to hi, it
is thus sufficient to bound the second part with 2(1 +

√
2)(xhi

− xa′) + 2yhi
. Note that this

reduction in analysis works as long as the sum of the first part is bounded by 2(1+
√
2)xa′ . In

order to make the computation of the second part easier, we can assume, for analysis purposes
only, that a = a′, i.e. a is on the W side of Si.

Let us now detail the three different cases.

Case 1: (hi−1, hi) ∈ Yao∞4 and [lihi] is steep.
Since [lihi] is steep and hi is promising, li must be on the S side of Si and (li, hi) is a SE edge
and thus in Yao∞4 . Note that hi−1 can be on the W or N side of Si.

The first path from a to hi we consider consists of the maximal high sequence from a to
hi−1 and the edge (hi−1, hi) (see Figure 5 a)). Considering this path we get

dY (a, hi) ≤ yhi−1
+ xhi−1

+ d2(hi−1, hi) (1)

The second path consists of the maximal low sequence from a to li−1 and edge (li−1, hi). From
this we get

dY (a, hi) ≤ xli − yli + d2(li, hi) (2)

The sum of the upper bounds in inequalities (1) and (2) is at most the perimeter of square
Si, whose side length is xhi

. Therefore the sum is bounded by 4xhi
≤ 2(1 +

√
2)xhi

+ 2yhi
,

which completes the proof for this case.

Case 2: (hi−1, hi) ∈ Yao∞4 and [lihi] is gentle.
Since hi is not inductive and [lihi] is gentle, it must mean that (li, hi) 6∈ Yao∞4 , [lihi−1],
[hi−1hi], [lili+1], and [li+1hi] are steep, gentle, steep, and gentle, respectively, and edges
(li−1 = li, hi−1), (hi−1, hi = hi+1), (li−1 = li, li+1), and (li+1, hi = hi+1) are all in Yao∞4 .
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Finally, since (li, hi) is gentle and not in Yao∞4 , hi = hi+1 must be also the promising point
of Si+1 as shown in Figure 5 b).

The first path we consider is composed of the maximal high sequence to hi−1 plus the
edge (hi−1, hi). Since [hi−1hi] is gentle, using this path we get:

dY (a, hi) ≤ yhi−1
+ xhi−1

+
√
2(xhi

− xhi−1
)

The second path is composed of the maximal low sequence to li and edges (li, li+1) and
(li+1, hi). Since [lili+1] is gentle, using this path we get:

dY (a, hi) ≤ −yli +
√
2xli+1

+ (xhi
− xli+1

) + (yhi
− yli+1

)

Because yhi−1
− yli ≤ xhi

, yhi+1
− yli+1

≤ xhi
, xhi−1

+
√
2(xhi

− xhi−1
) ≤

√
2xhi

, and

(xhi
− xli+1

) +
√
2xli+1

≤
√
2xhi

, the sum of the two bounds is at most 2(1 +
√
2)xhi

which
completes the proof for this case.

Case 3: (hi−1, hi) is not an edge of Yao∞4 . By Lemmas 2 and 6, (hi−1, hi) must be a WE
edge in Si, li lies on the S side of Si and edges (hi−1, li) and (li, hi) are in Yao∞4 . Since hi is
not inductive, line segment [lihi] must be steep. Figure 5 c) illustrates this case.

The first path we consider consists of the maximal high sequence from a to hi−1 followed
by edges (hi−1, li) and (li, hi). Using this path, we get

dY (a, hi) ≤ yhi−1
+ d2(hi−1, li) + d2(li, hi).

The bound is largest when hi−1 is the NW vertex of square Si and li is the SE vertex. The
second path uses the maximal low sequence from a to li followed by edge (li, hi). It gives us
the bound

dY (a, hi) ≤ −yli + xli + d2(li, hi).

The length of this path is largest when li is the SE vertex as well. If hi−1 and li are,
respectively, the NW and SE vertex of Si, then the minimum of yhi−1

+d2(hi−1, li) and−yli+xli
can be as high as (1 +

√
2/2)xhi

achieved when |yli | = (
√
2/2)xhi

and yhi−1 = (1−
√
2/2)xhi

.
Then dY (a, hi) ≤ (1 +

√
2)xhi

+ yhi
.

Induction step. Let Si be promising but not inductive square. Assume that the lemma
holds for the promising squares in the sequence S1, . . . , Si−1 and that this sequence is free of
inductive squares. Let hj , . . . , hi−1 be the maximal high sequence ending at hi−1 and lg, . . . , li
be the maximal low sequence ending at li−1 = li. One of j or g could be 0. By induction, or
because hj = h0 = a, dY (a, hj) ≤ (1 +

√
2)xhj

+ yhj
; similarly, dY (a, lg) ≤ (1 +

√
2)xlg − ylg .

Using the bound on the length of a maximal high sequence path, we get
dY (a, hi−1) ≤ (1 +

√
2)xhj

+ (xhi−1
− xhj

) + yhi−1
and a similar sum for dY (a, li). By

again splitting the analysis just as in the three induction cases, we can assume that a
lies on the W side of Si and that dY (a, hi−1) ≤ xhi−1

+ yhi−1
. The bound for the path

using the maximal low sequence is similarly obtained: dY (a, li) ≤ −yli + xli . The analy-
sis of the three cases thus reduces to the same geometric arguments as in the induction step. �

We can finally prove Lemma 8.

Proof of Lemma 8. As already noted, Lemma 11 implies that if no square S1, . . . , Sk is
inductive dY (a, b) ≤ (1 +

√
2)x + y. Let Sj be the first inductive square and let hj be the
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Sj

lj−1,j

hj

hj−1

45o

Figure 6: If P1 = d2(lj , hj−1)+ d2(hj−1, hj) and P2 =
√
2(xhj

−xlj)+ (xhj
−xlj)− (yhj

− ylj),
the difference P2 −P1 is minimized when lj is (essentially) the SW vertex of Sj. In that case,
P2 is exactly the length of the shown dashed path. By the triangular inequality, P1 ≤ P2.

inductive point in Sj; the proof when lj is the inductive point is similar. The definition of
inductive point leads us to consider two cases.

Case 1: (lj , hj) ∈ Yao∞4 . Since [ljhj ] has a gentle slope, it follows that d2(lj , hj) ≤
√
2(xhj

−
xlj ). Let li, li+1, . . . , lj−1 = lj be the maximal low path ending at lj. Note that dY (li, lj) ≤
(xlj − xli) + (yli − ylj). Either li = l0 = a or li is a promising point in promising square Si;

by Lemma 11 we have that dY (a, li) ≤ (1 +
√
2)xli − yli . Putting all this together, we get

dY (a, hj) + (yhj
− y) ≤ dY (a, li) + dY (li, lj) + d2(lj , hj) + yhj

≤ (1 +
√
2)xli − yli + (xlj − xli) + (yli − ylj) +

√
2(xhj

− xlj) + yhj

≤
√
2xhj

+ xlj + yhj
− ylj ≤ (1 +

√
2)xhj

where the last inequality follows xlj + yhj
− ylj ≤ xhj

, i.e. from the assumption that segment
[ljhj ] has a gentle slope.

Case 2: (lj , hj) 6∈ Yao∞4 . Then, by Lemma 2, edges (lj−1 = lj, hj−1), (hj−1, hj = hj+1),
(lj−1 = lj , lj+1), and (lj+1, hj = hj+1) must exist. Furthermore, by definition of inductive
point, either [ljhj−1] and [hj−1hj ] are both gentle, or [lj lj+1] and [lj+1hj ] are both gentle, or
[hj−1hj ] is steep, or [lj+1hj ] is steep. In the first two cases, dY (lj , hj) ≤

√
2(xhj

− xlj ) and
the Case 1 argument applies. Of the last two cases, we assume the former as the last case
can be handled using a symmetric argument.

As Figure 6 illustrates, because [hj−1hj ] is steep,

d2(lj , hj−1) + d2(hj−1, hj) ≤
√
2(xhj

− xlj) + (xhj
− xlj)− (yhj

− ylj).

We can now repeat the argument from Case 1, except that we use path lj, hj−1, hj and the
above bound on its length instead of edge (lj , hj) and its length bound

√
2(xhj

− xlj ). �

4 Conclusion and perspectives

In this paper we determine the stretch factor of L1-, and L∞-Delaunay triangulations, and
also of the Yao∞4 -graph. We believe that techniques developped in this paper will help provide

14



tighter bounds for Delaunay triangulations defined by other regular polygons and, ultimately,
tighter bounds for classical Delaunay triangulations.

From routing perspectives, it is interesting to construct routes in geometric graphs that
can be determined locally from neighbor’s coordinates only [BCD09]. Unfortunately, the route
that appears implicitly in our proof is built using non-local decisions. It will be interesting
to know whether in the L1-Delaunay triangulation or in the Yao∞4 -graph a route with stretch
√

4 + 2
√
2 can be constructed using a local routing algorithm. For TD-Delaunay triangula-

tions, [BFvRV12] showed that there is no local routing algorithm that achieves a stretch that
is less than 5/

√
3 ≈ 2.88, whereas the stretch factor is actually 2. We leave open the questions

regarding the gap between the stretch factor of L1-Delaunay triangulations and Yao∞4 -graphs
and the stretch that is possible using local routing.
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dimensional storage applications. SIAM Journal on Computing, 9(1):200–211,
February 1980.

[Xia11] Ge Xia. Improved upper bound on the stretch factor of delaunay triangulations.
In 27th Annual ACM Symposium on Computational Geometry (SoCG), pages
264–273, June 2011.

[XZ11] Ge Xia and Liang Zhang. Toward the tight bound of the stretch factor of De-
launay triangulations. In 23rd Canadian Conference on Computational Geometry
(CCCG), August 2011.

16


