The Stretch Factor of $L_1$- and $L_\infty$-Delaunay Triangulations - Archive ouverte HAL
Rapport Année : 2012

The Stretch Factor of $L_1$- and $L_\infty$-Delaunay Triangulations

Résumé

In this paper we determine the stretch factor of the $L_1$-Delaunay and $L_\infty$-Delaunay triangulations, and we show that this stretch is $\sqrt{4+2\sqrt{2}} \approx 2.61$. Between any two points $x,y$ of such triangulations, we construct a path whose length is no more than $\sqrt{4+2\sqrt{2}}$ times the Euclidean distance between $x$ and $y$, and this bound is best possible. This definitively improves the 25-year old bound of $\sqrt{10}$ by Chew (SoCG~'86). To the best of our knowledge, this is the first time the stretch factor of the well-studied $L_p$-Delaunay triangulations, for any real $p\ge 1$, is determined exactly.
Fichier principal
Vignette du fichier
hal.pdf (147.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00673187 , version 1 (23-02-2012)
hal-00673187 , version 2 (26-02-2012)

Identifiants

Citer

Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, Ljubomir Perkovic. The Stretch Factor of $L_1$- and $L_\infty$-Delaunay Triangulations. 2012. ⟨hal-00673187v2⟩
185 Consultations
339 Téléchargements

Altmetric

Partager

More