A fast adaptive strategy for the estimation of a conditional density - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

A fast adaptive strategy for the estimation of a conditional density

Gaëlle Chagny

Résumé

We consider the estimation of the conditional density $pi$ of a response vector $Y$ given a continuous predictor $X$. We provide an adaptive nonparametric strategy, based on model selection. Beginning with a collection of finite dimensional product spaces spanned by orthonormal bases, we consider the expansion of $h(x,y)=pi(F_X^{-1}(x),y)$, where $F_X$ is the cumulative distribution function of the variable $X$. Through this 'warping' of the bases, we propose a family of projection estimators easier to compute than estimators resulting of the minimization of a regression-type contrast. The selection of the best estimator $hat{h}$ for the function $h$, is done with a device inspired by Goldenshluger and Lepski (2011). The estimator is $hat{pi}(x,y)=hat{h}(hat{F}(x),y)$, where $hat{F}$ is the empirical distribution function. It realizes a global squared-bias/variance compromise, for anisotropic function classes: we establish non-asymptotic mean-squared integrated risk bounds and convergence rate for the risk. Simulation experiments illustrate the method.
Fichier principal
Vignette du fichier
ArticlDensCondpng.pdf (2.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00641560 , version 1 (16-11-2011)
hal-00641560 , version 2 (26-06-2012)

Identifiants

  • HAL Id : hal-00641560 , version 1

Citer

Gaëlle Chagny. A fast adaptive strategy for the estimation of a conditional density. 2011. ⟨hal-00641560v1⟩
133 Consultations
583 Téléchargements

Partager

More