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A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF ACONDITIONAL DENSITYGAËLLE CHAGNY(∗)Abstrat. We onsider the problem of estimating the onditional density π of a responsevetor Y given the preditor X (whih is assumed to be a ontinuous variable). We providean adaptive nonparametri strategy to estimate π, based on model seletion. We start with aolletion of �nite dimensional produt spaes, spanned by orthonormal bases. But instead ofexpanding diretly the target funtion π on these bases, we rather onsider the expansion of
h(x, y) = π(F−1

X (x), y), where FX is the umulative distribution funtion of the variable X. This'warping' of the bases allows us to propose a family of projetion estimators easier to omputethan estimators resulting of the minimization of a regression-type ontrast. The data-drivenseletion of the best estimator ĥ for the funtion h, is done with a model seletion devie in thespirit of Goldenshluger and Lepski (2011). The resulting estimator is π̂(x, y) = ĥ(FX(x), y) if
FX is known, or π̂(x, y) = ĥ(F̂ (x), y) otherwise, where F̂ is the empirial distribution funtion.We prove that it realizes a global squared-bias/variane ompromise, in a ontext of anisotropifuntion lasses: we establish non-asymptoti mean-squared integrated risk bounds and providealso onvergene rate for the risk. Simulation experiments illustrate the method.Keywords: Adaptive estimator. Conditional density. Model seletion. Non parametri estima-tion. Warped bases.AMS Subjet Classi�ation 2010: 62G05; 62G07-62G08.November 20111. Introdution1.1. Motivation. Assume that we observe pairs of real random variables (X,Y ) with jointunknown density f(X,Y ). The relationship between the preditor X and the response Y is las-sially desribed by regression analysis. But this an also be ahieved by estimating the entireonditional density, that is

π(x, y) =
f(X,Y )(x, y)

fX(x)
, if fX(x) > 0,where fX is the marginal density of the X, and is assumed not to vanish on the interval ofestimation.The aim of this paper is to provide a nonparametri strategy to estimate π, whih has to beboth adaptive, fast and simple to ompute. Our main ideas are to use warped bases to buildprojetion estimators and to perform model seletion in the spirit of Goldenshluger and Lepski[GL11℄.1.2. State of the art. Nonparametri onditional density estimation has beome only reentlya subjet of interest, and the adaptive strategies are still rather sare. To our knowledge, mostof the methods to estimate π are based on the priniple that it an be seen as a nonparametri
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2 GAËLLE CHAGNYweighted regression. This leads mainly to two diretions: kernel methods and projetion estima-tors built on regression-type riterions.For kernel estimation, Fan et al. [FYT96℄ generalize Rosenblatt estimator using loal polyno-mials, while Bashtannyk et al. [HBG96℄ and then Hall et al. [HWY99℄ and Hyndman and Yao[HY02℄ propose di�erent versions of reweighted Nadaraya-Watson estimator. De Gooijer and Ze-rom [DGZ03℄ ombine the better side of the last methods, to propose a funtion whih takes onlypositive values. Kanamori et al. [TNK09℄ study a pieewise linear kernel-estimator using meth-ods based on quantile regression funtions: a family of onditional quantile funtion provides afull desription of π. All these estimators involve a ratio: this means both theoretial problems,as studied in Penskaya [Pen95℄, and numerial problems, due to the denominator whih an belose to zero. This leads Faugeras [Fau09℄ to propose a kernel-type estimator based on the opulafuntion and on the estimation of the marginal umulative distribution funtions of X and Y .In a di�erent diretion, Györ� and Kohler [GK07℄ onsider a partitioning-type estimate. Theseproedures have in ommon to be studied with an asymptoti point of view: onsistene andasymptoti normality are shown. But the adaptive properties like the hoie of the bandwidthsfor kernel estimator, are studied only in Bashtannyk and Hyndman [BH01℄ and in Hyndman andYao [HY02℄.Adaptation and minimax results have reently been developed. Efromovih proposes a Fourierbasis to build a blokwise-shrinkage Efromovih-Pinsker estimator. The regression setting is �rststudied in [Efr07℄, while the general ase is the subjet of [Efr10a℄, using harateristi funtionsto rewrite π. Finally, multidimensionality is taken into aount in [Efr10b℄. Orale-inequalitiesare given.Suh adaptation results are also provided by Brunel et al. [BCL07℄. They use model seletionmethods, based on the minimization of a least-squares penalized ontrast introdued by Laour[La07℄. But this ontrast, onsidered also by Akakpo and Laour [AL11℄ to deal with dependentdata and inhomogeneous funtional lasses, does not provide expliit estimator without matrixinvertibility requirements (exept when using histogram basis). Moreover the penalty given in[BCL07℄ depends on the unknown in�nite norm of π. It an be estimated but it requires thenstrong regularity assumptions. Notie also that reent works of Cohen and Le Penne [CLP11℄fous on a penalized maximum likelihood estimator leading to risk bounds for a Kullblak-Leiblerloss funtion. In the same way of all reent papers, we provide a data driven estimator but witha new method allowing fast omputation, thanks to the fat that we avoid matrix inversion and'purify' the penalty funtion.1.3. Generality about the estimation method. The data are pairs of real random variables
(Xi, Yi)i∈{1,...,n} (with n a positive integer), independent and identially distributed (i.i.d.) withjoint density f(X,Y ), supported by a subset A1 ×A2 of R

2 (A2 a bounded interval). We assumethat the marginal density fX of the Xi does not vanish, and denote by FX the umulativedistribution funtion (.d.f.) of these variables, whih onsequently admits an inverse.Our aim is to use model seletion point of view with a ontrast leading to an expliit estimatorand a seletion rule whih is entirely omputable, while satisfying good theoretial propertiesunder weak assumptions. The �rst point is ahieved by the use of warped bases, introdued byKerkyaharian and Piard [KP04℄ to provide a wavelet thresholding estimator of a regressionfuntion. In our onditional density setting, we preisely de�ne(1) ∀(u, y) ∈ [0; 1] ×A2, h(u, y) = π
(

F−1
X (u), y

)

,



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 3and reover π by estimating both h and FX . The assumption that h is squared integrable leadsto projetion estimators of the form
∀(u, y) ∈ [0; 1] ×A2, ĥD1,D2(u, y) =

D1
∑

j1=1

D2
∑

j2=1

âj1,j2φj1 ⊗ ψj2(u, y),with φj1 ⊗ ψj2(u, y) = φj1(u)ψj2(y), for di�erent ouples (D1,D2) with (φj1 ⊗ ψj2)j1,j2 an or-thonormal family of funtions and âj1,j2 estimated oe�ients. Then, instead of estimating FXover the whole sample, we assume that we observe (X−i)i∈{1,...,n} a sample of variables with thesame distribution than the (Xi) and independent of them. Thus, we an de�ne
F̂n : x 7→ 1

n

n
∑

i=1

1X−i≤x,and propose an estimator of π given by:
∀(x, y) ∈ A1 ×A2, π̂D1,D2(x, y) = ĥD1,D2

(

F̂n(x), y
)

.We get thus a development of π̂D1,D2 in an orthonormal basis, whose �rst oordinate is warpedby F̂n:
∀(x, y) ∈ A1 ×A2, π̂D1,D2(x, y) =

D1
∑

j1=1

D2
∑

j2=1

âj1,j2φj1 ⊗ ψj2

(

F̂n(x), y
)

.The partiular ase of known .d.f. FX is also studied. In the two ases (known or estimated
FX), the proedure is partiularly simple and fast to ompute, sine the oe�ients âj1,j2 arejust empirial means (they do not involve any matrix inversion). The seletion rule of the levels
D1 and D2 used in a seond step is inspired by reent works of Goldenshluger and Lepski [GL11℄and is new in the multidimensional framework.We give both non-asymptoti results suh that orale-inequalities (proving the adaptivity ofour estimators) and asymptoti rates of onvergene for the quadrati risk if the funtion hbelongs to anisotropi funtional spaes. We show that adaptation has no prie and that the rateorresponds exatly to the best bias-variane ompromize, with assumptions stated on funtion
h instead of π. Moreover, on the pratial examples, the strategy we propose outperforms thepenalization devie of Brunel et al. [BCL07℄: it is faster and leads to smaller risks in most ases.1.4. Organization of the paper. Setion 2 presents the two warped bases estimators (the onebuilt assuming FX is known, and the one built in the general ase). The performanes of eahestimator are studied in Setion 3: the funtional spaes are desribed and global risks boundsand rates of onvergene presented. Setion 4 is devoted to numerial results. Finally, the proofsare gathered in Setion 5. 2. Estimation strategyAll the estimators de�ned in the sequel are projetion estimators. Therefore, we begin withthe desription of the approximation spaes (Setion 2.1). We proeed then in three steps toestimate the onditional density π, on A1 × A2. First, we de�ne a olletion of estimators forthe funtion h (see its de�nition (1)), by minimizing a ontrast on the models (Setion 2.2). Theseond step is then to ensure the automati seletion of the model, without any knowledge aboutthe regularity of h. This leads to a well de�ned estimator ĥ (Setion 2.3). Finally, we partiallywarp ĥ to estimate π.



4 GAËLLE CHAGNY2.1. Approximation spaes. Our estimation proedure is based on the assumption that thefuntion h belongs to L2([0; 1] ×A2), the set of square-integrable funtions on [0; 1] ×A2, whihis equiped with its usual Hilbert struture: we denote by 〈., .〉 the salar-produt and by ‖.‖ thenorm. Consequently, h an be developed in any orthonormal basis, and an be approximated byits orthogonal projetions onto the linear subspaes spanned by the �rst funtions of the basis.For the sake of simpliity, we assume A2 = [0; 1] in the sequel. The ase of any segment A2 anbe easily obtained by making a saling hange. Following the example of Efromovih [Efr99℄, wehoose the Fourier basis (ϕj1 ⊗ ϕj2)j1,j2∈N\{0} of L2([0; 1] ×A2), de�ned for u, y ∈ [0; 1] by(2) ϕ1(u) = 1, ∀k ∈ N\{0}, ϕ2k(u) =
√

2 cos(2πku), ϕ2k+1(u) =
√

2 sin(2πku),and ϕj1 ⊗ ϕj2(u, y) = ϕj1(u)ϕj2(y). For an index l = 1, 2, we also denote by Sml
the spaespanned by {ϕ1, . . . , ϕDml

}, for Dml
= 2ml + 1, and ml an element of the set of indies I(l)

n =

{1, . . . , [√n/2]− 1} ([.] is the integer part). The approximation spaes are then Sm = Sm1 ×Sm2for m = (m1,m2) ∈ Mn, with Mn = I(1)
n × I(2)

n . Thus, we have
Sm = Sm1 × Sm2 = Span {ϕj1 ⊗ ϕj2 , j1 = 1, . . . ,Dm1 j2 = 1, . . . ,Dm2} ,and the dimension of Sm is Dm = Dm1Dm2 . Notie that for all ml ∈ I(l)

n (l = 1, 2), Dml
≤ √

nand thus Dm ≤ n.Remark 1. • The basis satis�es ‖∑Dm1
j1=1

∑Dm2
j2=1(ϕj1 ⊗ ϕj2)

2‖∞ ≤ Dm, where ‖.‖∞ is thesupremum of the funtion on [0; 1] × A2. This is equivalent to the following useful linkbetween the in�nite norm and the L2 norm (see Birgé and Massart [BM98℄ for the proof):(3) ∀t ∈ L2([0; 1] ×A2), ‖t‖∞ ≤
√

Dm1Dm2‖t‖ =
√

Dm‖t‖.

• For eah ml,m
′
l ∈ I(l)

n (l = 1, 2), we have(4) Dml
≤ Dm′

l
=⇒ Sml

⊂ Sm′

l
.Notie that other lassial models, suh as models spanned by regular wavelet basis, histogrambasis or dyadi pieewise polynomial basis satisfy similar properties. We refer to Barron et al.[BBM99℄, and Brunel and Comte [BC05℄ for a preise desription. See also Remark 2 belowabout the extension of our results to these models.2.2. Estimation on a �xed model. We start with the following riterion(5) ∀t ∈ L2([0; 1] ×A2) 7→ γn(t, F̂n) := ‖t‖2 − 2

n

n
∑

i=1

t
(

F̂n(Xi), Yi

)

.This ontrast is knew and quite far from the regression and density least-squares riterion. Thenovelty omes both from the L2 norm whih stands in plae of the empirial norm used inthe lassial ontrasts (see for example the ontrast γ0
n in Brunel et al. [BCL07℄), and fromthe presene of the empirial .d.f F̂n. To justify this hoie, assume for a moment that thedistribution of the Xi is known: we an thus plug the true .d.f FX instead of its empirial



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 5ounterpart, and ompute more easily, for t ∈ L2([0; 1] ×A2),
E [γn(t, FX )] − E [γn(h, FX )] = ‖t‖2 − ‖h‖2 − 2E [(t− h) (FX(X1), Y1)] ,

= ‖t‖2 − ‖h‖2 − 2

∫

A1×A2

(t− h)(FX (x), y)π(x, y)fX (x)dxdy,

= ‖t‖2 − ‖h‖2 − 2

∫

[0;1]×A2

(t− h)(u, y)h(u, y)dudy,

= ‖t‖2 − ‖h‖2 − 2〈h, t− h〉,
= ‖t− h‖2.This quantity is minimal when t = h. This shows that γn(., FX ) in the ase of known FX (or

γn(., F̂n) otherwise) suits well for the estimation of h. We set thus, for eah model Sm,(6) ĥF̂
m = arg min

t∈Sm

γn(t, F̂n), ĥFX
m = arg min

t∈Sm

γn(t, FX),or equivalently,(7) ĥF̂
m =

Dm1
∑

j1=1

Dm2
∑

j2=1

âF̂
j1,j2ϕj1 ⊗ ϕj2, with âF̂

j1,j2 =
1

n

n
∑

i=1

ϕj1(F̂n(Xi))ϕj2(Yi),and a similar expression for estimator ĥFX
m with oe�ients aFX

j1,j2
in the ase of known .d.f. FX .Finally, we set

πF̂ ,F̂
m (x, y) = ĥF̂

m(F̂n(x), y) and π̂FX ,FX
m (x, y) = ĥFX

m (FX(x), y),denoted with two super-indexes F̂ (or FX) to underline the double dependene of the estimatoron this funtion, through both the oe�ients âF̂
j,k and the omposition of the �rst variable by FX .Notie the advantage of the ontrast we de�ne: we get an expliit formula for the estimator. Theoe�ients are empirial means easily omputable. They do not involve a matriial inversionompared to the estimator obtained via least-squares riterion (see for example Brunel et al.[BCL07℄). Moreover, in the ase of known .d.f. FX , ĥFX

m is an unbiased estimator of theorthogonal projetion of h onto Sm.2.3. Model seletion.2.3.1. Risk on a �xed model. In order to explain whih model Sm we should hoose, we �rststudy the quadrati risk of eah estimator of the olletion, in the simpler ase of known .d.f.
FX . The loss funtion naturally assoiated to our ontext is the following L2−norm,

∀v ∈ L2(A1 ×A2, fX), ‖v‖2
fX

=

∫

A1×A2

v2(x, y)fX(x)dxdy,with L2(A1 × A2, fX), the spae of squared-integrable funtions on A1 × A2 with respet tothe Lebesgue measure weighted by the density fX . We denote 〈., .〉fX
the orresponding salar-produt. Notie besides that the following links hold between this norm and the lassial normpreviously de�ned: for t, s ∈ L2([0; 1] ×A2), we ompute, using F ′

X = fX ,
‖t(FX(.), .)‖fX

= ‖t‖, 〈t(FX (.), .), s(FX (.), .)〉fX
= 〈t, s〉.The lassial L2−norm on A1 ×A2 an be reovered, under the assumption that fX is boundedfrom below by a stritly positive onstant. This assumption is standard, see for example As-sumption A2 in Brunel et al. [BCL07℄, or Assumption (HBas) in Baraud [Bar02℄.For the weighted L2−risk whih is used in the sequel, and for eah m ∈ Mn, we get



6 GAËLLE CHAGNY
E

[

∥

∥π̂FX ,FX
m − π

∥

∥

2

fX

]

=
∥

∥π − πFX
m

∥

∥

2

fX
+ E

[

∥

∥πFX
m − π̂FX ,FX

m

∥

∥

2

fX

]

,

= ‖h− hm‖2 + E

[

∥

∥

∥
hm − ĥFX

m

∥

∥

∥

2
]

,(8)where(9) πFX
m (x, y) = hm(FX(x), y) and hm is the orthogonal projetion of h onto Sm.We reover the usual squared-bias/variane deomposition of the risk. The key point is thedi�erene of behaviour of the two terms: they both depend on Dm but in opposite ways. The�rst term in the right-hand side of (8) dereases when Dm grows, sine π is better approximatedby its projetion when the approximation spae grows, while the seond term grows with Dm:

E

[

∥

∥π̂FX ,FX
m − πFX

m

∥

∥

2

fX

]

=

Dm1
∑

j1=1

Dm2
∑

j2=1

Var(âFX

j1,j2

)

,

≤ 1

n

Dm1
∑

j1=1

Dm2
∑

j2=1

E

[

(ϕj1 (FX(Xi))ϕj2(Yi))
2
]

≤ Dm1Dm2

n
,(10)using Property (3) (see Setion 2.1). The best model among the olletion is the one whihminimizes the right-hand side in (9), making a trade-o� between the squared-bias term and thevariane term. However, it is unknown sine h and hm are not observed. Therefore, an adaptiveestimator of π must make automatially this ompromise.2.3.2. Seletion rule. We propose to use a sheme proposed by Goldenshluger and Lepski [GL11℄for density estimation. The adaptive index is hosen as the value whih minimizes the followingsum:

m̂F̂ =
(

m̂F̂
1 , m̂

F̂
2

)

= arg min
m∈Mn

[

A(m, F̂n) + 2V F̂ (m)
]

,where V F̂ has the order of the variane term:(11) V F̂ : m = (m1,m2) 7→ c1
Dm1Dm2

n
,with c1 is a purely numerial onstant, adjusted in pratie. The funtion A(., F̂n) is based onthe omparison of the estimators built in the �rst stage:(12) A(m, F̂n) = max

m′∈Mn

(

∥

∥

∥ĥF̂
m′ − ĥF̂

m∧m′

∥

∥

∥

2
− V F̂ (m′)

)

+

,where x+ = max(x, 0), x ∈ R. We will prove besides that A(m, F̂n) has the order of the biasterm (see Inequality (22)). Thus we get an estimator, expliitly expressed in a warped basis,(13) π̃(x, y) = ĥF̂
mF̂

(F̂n(x), y).The L2−norm involved in the de�nition of A(., m̂) is easy to ompute, sine the funtions ĥF̂
m′ ,

m′ ∈ Mn are expressed with a development in an orthonormal basis (see Setion 4 for details).This advantage has to be notied ompared to other strategies of model seletion using theontrast funtion or to strategies involving bandwith hoie for a kernel.There are several novelties to underline. First, the warping of the basis for the variable x leads toexpliit and simple oe�ients âF̂
j1,j2

for the estimator. The use of a seletion devie inspired of



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 7Goldenshluger and Lepski [GL11℄ is original in the setting of multidimensional model seletion.Note also that the spei� fator 2 in the de�nition of m̂F̂ plays an important (but tehnial)role in the proofs. The "penalty" term V F̂ is entirely omputable with the data (with no termto estimate), up to a purely numerial onstant to alibrate. On the opposite, penalization of aregression-type ontrast in this ontext leads to a penalty whih depends on the unknown in�nitenorm of π (see Brunel et al. [BCL07℄, or Laour [La07℄).Finally, let us de�ne also an estimator in the toy ase of known .d.f. FX :(14) π̃0(x, y) = ĥFX

m̂FX
(FX (x), y),with m̂FX seleted as the argument-minimum of A(m,FX) + V FX (m), where we denote by

V FX (m) = c0Dm1Dm2/n, c0 a numerial onstant, whih an be di�erent of c1.3. Main results3.1. Anisotropi Sobolev spaes. Let us de�ne the funtional spaes we onsider furtherfor the funtion h (even if its index of regularity has not to be known). The hoie of thetrigonometri models leads us to onsider spaes of periodi funtions, that is Sobolev spaes.We de�ne them diretly via Fourier oe�ients, keeping in mind that it an also be haraterizedvia weak di�erentiability (see for example DeVore and Lorentz [DL93℄ and Härdle et al. [HKPT98℄for funtions of one variable, and Adams [Ada75℄ for funtions of several variables). Preisely,our aim is to extend to funtions of two variables the haraterization of Tsybakov (Lemma A.3,p.162, [Tsy04℄).Let t ∈ L2([0; 1]2). Then there exists a real-valued family (θj1,j2)j1,j2∈N\{0} suh that
t =

∑

j1,j2∈N\{0}

θj1,j2ϕj1 ⊗ ϕj2 .Reall that the funtions ϕj are de�ned by (2). We say that t belongs to the partial ball withradius L > 0 and regularity α = (α1, α2) (αl ∈ N, l = 1, 2, but not simultaneously equal to zero),if(15) ∑

j1,j2∈N\{0}

µ2
j1,α1

µ2
j2,α2

θ2
j1,j2 ≤ L2

π2(α1+α2)
,with µjl,αl

= jαl

l for even jl, µjl,αl
= (jl − 1)αl otherwise. We write t ∈W 2

per([0; 1]
2, L, α), in thespirit of the de�nition of Tsybakov [Tsy04℄. These spaes are anisotropi. The funtion h anthus have di�erent smoothness properties with respet to di�erent diretions.Let us �nally give a useful approximation property of this spae. We denote by tm = t(m1,m2) theorthogonal projetion of the funtion t onto the subspae Sm = S(m1,m2). We have the followingrate:

‖t− tm‖2 ≤ C(α,L)
(

D−2α1
m1

+D−2α2
m2

)

,where C(α,L) is a onstant depending on α and L. This inequality is a partiular ase of Lemma9 in Laour [La07℄, based on papers from Hohmuth [Ho02℄ and Nikol'skii [Nik75℄.3.2. Case of known .d.f. FX. We �rst fous on the simpler situation of known .d.f. FX .This allows us to derive the results with few assumptions and short proofs. The �rst theoremprovides non-asymptoti bounds for the risk of the estimator π̃0 (see its de�nition (14)). Wereall that the trigonometri models satisfy properties (3) and (4), and that the dimensions Dmlare bounded by √
n.



8 GAËLLE CHAGNYTheorem 1. We assume that the funtion h is bounded on the spae [0; 1] × A2. Then thereexists c a purely numerial onstant, and C a onstant depending on ‖h‖∞ suh that
E

[

‖π̃0 − π‖2
fX

]

≤ c min
m∈Mn

{

Dm1Dm2

n
+
∥

∥πFX
m − π

∥

∥

2

fX

}

+
C

n
,with πFX

m de�ned by (9).The basi outline of model seletion (by Goldenshluger-Lepski method in our ase) is toestimate the bias-variane sum and to selet the model whih minimizes it. Theorem 1 showsthat it is a good strategy: the right model (in the sense that it realizes the trade-o�) has beenhosen in a data-driven way and the seleted estimator performs as well as the best estimator inthe family {πFX ,FX
m , m ∈ Mn}, up to some multipliative onstants and to a negligible residualterm of order 1/n. The onstants are given in the proof, whih is deferred to Setion 5.2.Remark 2. This result still holds in a more general setting. The hoie of trigonometri modelsis not a neessary ondition. It is su�ient to assume that the models whih are used sat-isfy properties (3) and (4), and have their dimensions bounded by √

n, whih are very weakassumptions.Theorem 1 enables also us to give a rate of onvergene for the estimation of π, under regularityassumptions for funtion h. Preisely, the minimization of the left-hand-side of the inequality inthe ase of regular funtions leads to the following Corollary.Corollary 1. We assume that the funtion h belongs to the anisotropi Sobolev ball denoted by
W 2

per([0; 1]
2, L, α), for some �xed L > 0 and α = (α1, α2) (αl ∈ N, l = 1, 2, but not simultaneouslyequal to zero), with α1−α2 +2α1α2 > 0, and α2−α1 +2α1α2 > 0. Then, under the assumptionsof Theorem 1,

E

[

‖π̃0 − π‖2
fX

]

≤ C(α,L)n−
2ᾱ

2ᾱ+2 ,with C(α,L) a numerial onstant whih depends only on α and L, and ᾱ the harmoni mean of
α1 and α2.The harmoni mean of α1 and α2 is the real ᾱ suh that 2/ᾱ = 1/α1 + 1/α2. Note that theondition α1 −α2 + 2α1α2 > 0 is ensured as soon as α1 > 1/2 and α2 −α1 + 2α1α2 > 0 as soonas α2 > 1/2. As the αl are integers, this implies that they are larger than or equal to 1. In thisase, h is bounded.The orollary means that without knowing α and L (depending on the unknown h), π̃0 does aswell as the best possible estimator whih knows these quantities. It is thus an adaptive estimator.Sine Theorem 1 holds for pieewise polynomials or wavelet basis, the results an be extendedto funtions h belonging to anisotropi Besov spaes.Remark 3. We an onnet this result to the lower bound established by Laour [La07℄, overBesov funtional lasses, for the estimation of the transition density of a Markov hain. Theestimation of the onditional density is a partiular ase of that study. However, the regularityassumptions are set diretly on funtion π in [La07℄, and not on funtion h. The right frameworkto relate our result to the one of [La07℄ is to de�ne weighted regularity spaes, suh as weightedBesov spaes de�ned and studied arefully in Kerkyaharian and Piard [KP04℄. Sine the maingoal of our work is to produt non-asymptoti bounds for the risk, whih do not require suhassumptions, we do not go further in that diretion. Thus we only onjeture that the rate ofonvergene n− 2ᾱ

2ᾱ+2 is probably optimal in the minimax sense, over Besov lasses. The adaptiveminimax rate over Sobolev spaes has most likely the same order.



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 93.3. Case of unknown .d.f. FX. Coming bak to the general ase, we set the same result asTheorem 1, with slightly stronger assumptions.Theorem 2. We assume that the funtion h belongs to the anisotropi Sobolev ball denoted by
W 2

per([0; 1]
2, L, (1, 0)), for some �xed L > 0, is bounded on [0; 1]2, and is C1 with respet to its�rst variable on [0; 1]. We also assume that, for some onstants Ca, Cb, Cc, the trigonometrimodels satisfy,(16) ∀m = (m1,m2) ∈ Mn, Dm1 ≤ Ca

(

n

ln2(n)

)1/3 and Cb ln5(n) ≤ Dm2 ≤ Cc
√
n.Then, there exists numerial onstants c and C depending on ‖ϕ′

2‖∞,[0;1], ‖ϕ′′
2‖∞,[0;1], ‖ϕ(3)

2 ‖∞,[0;1],
‖h‖, ‖∂1h‖, and L, suh that

E

[

‖π̃ − π‖2
fX

]

≤ c min
m∈Mn

{

Dm1Dm2

n
+
∥

∥

∥πF̂
m − π

∥

∥

∥

2

fX

}

+
C

n
.(17)Remark 4. • There exists atually an integer n0, depending on the funtion h, suh thatInequality (17) holds for all n ≥ n0 with a purely numerial onstant c. But the resultis nonasymptoti, sine the inequality holds also for n < n0, taking a onstant c whihdepends on quantities of the problem.

• Up to this result, the models Sm1 and Sm2 and their respetive dimension have playedthe same role. But in the theorem, the dimension onstraints (16) are not the same ineah diretion. To be totally rigorous, we should denote by S(l)
ml

the models and by D(l)
mltheir dimension, for eah l = 1, 2. For the sake of simpliity, we keep the �rst notationsas there is no possible onfusion.As in the ase of known FX , the theorem shows that the best estimator in the family

{πF̂ ,F̂
m , m ∈ Mn} is found up to some multipliative onstants for the risk, in a data-drivenway. Brunel et al. [BCL07℄ provide also the same kind of orale-inequality for their estimatorbuilt by penalization of a regression-type ontrast. The assumptions seem �rst to be slightlyless restritive: it is only assumed that Dm1 ≤ n1/2/ ln(n). However, the term V F̂ does notontain any unknown term and is then entirely omputable, ontrary to the penalty used in[BCL07℄, whih depends on ‖π‖∞. Moreover, replaing this quantity by an estimator requiresin fat muh more regularity onstraints than the one we get, and leads to a semi-asymptotiresult (see the appendix of Laour [La07℄ for an example of these onditions). Consequently,a model seletion strategy in the spirit of Goldenshluger-Lepski applied with warped bases hasthe advantage of providing an estimator easier to ompute than a regression-type estimator andwith good theoretial properties under quite weak assumptions.Reall that the bound of Inequality (17) is lose to the order of the sum of the variane termand the bias term. It implies that the obtained rate of onvergene is likely to be minimax inmost ases. More preisely, we prove the following orollary.Corollary 2. We assume that the funtion h belongs to the anisotropi Sobolev ball denotedby W 2

per([0; 1]
2, L, (1, 0)), for some �xed L > 0, and α = (α1, α2) (αl ∈ N, l = 1, 2, but notsimultaneously equal to zero) with α1 − 2α2 +2α1α2 > 0, and α2 −α1 +2α1α2 > 0. Then, underthe assumptions of Theorem 2,

E

[

‖π̃ − π‖2
fX

]

≤ C(α,L)n−
2ᾱ

2ᾱ+2 ,with C(α,L) a numerial onstant whih depends on α and L, ‖ϕ′
2‖∞,[0;1], ‖ϕ′′

2‖∞,[0;1], ‖ϕ(3)
2 ‖∞,[0;1],

‖h‖, ‖∂1h‖. The quantity ᾱ is the harmoni mean of α1 and α2.



10 GAËLLE CHAGNYEven if FX is unknown, our estimator adapts to the unknown regularity α of the funtion h.We also refer the reader to Remark 3 onerning the minimax sense of the result.4. Simulation studyThe aim of this setion is to illustrate the behaviour of the estimator π̃ and to ompare it withthe estimator of Brunel et al. [BCL07℄ denoted by π̃BCL. Thus, we investigate in the same timethe di�erene between the lassial bases and the warped bases, and the di�erene between theGoldenshluger-Lepski method and the penalization devie.4.1. Examples. We propose a simulation study based on the following examples: we generatesamples (Xi, Yi,X−i)i∈{1,...,n} suh that
• Examples 1: Yi = b(Xi) + εi, with the following possibilities. The Xi's follow a uniformdistribution on the interval [0; 1] (denoted by U[0;1]), or on the interval [−1; 1] (U[−1;1]), ora standard Gaussian distribution (N (0, 1)). The εi's are generated following the standardGaussian distribution, or the Gamma distribution (Γ(4, 1)) with parameters 4 and 1 (the

1 is the sale parameter). We denote by fε their density. The sample (εi) is independentof the (Xi). Finally, the regression funtion b is b(x) = 2x+5, b(x) = cos(x) or b(x) = x2.The onditional density π is thus given by
π(x, y) = fε(y − b(x)).

• Example 2: Xi follows a uniform distribution on [0; 1], Yi a standard Gaussian distri-bution, and Xi is independent of Yi. The onditional density is just the density of thevariable Yi.
• Example 3: Yi = b(Xi)+σ(Xi)εi, with a uniform distribution on [0; 1] forXi, the previousGamma distribution for εi (whih is independent ofXi) and σ(x) =

√

1.3 − |x|. Similarlyto Examples 1, the onditional density is
π(x, y) = fε(y − b(x)/σ(x))/σ(x).

• Example 4: The Xi follows a uniform distribution U[0;1], and given Xi = x, Yi followsthe Gaussian mixture 0.5N (8 − 4x, 1) + 0.5N (8 + 4x, 1). The funtion π is the densityof the mixture.Examples 3 and 4, and some ases of Examples 1 have also been studied by Brunel et al. [BCL07℄,while Example 2 is proposed by Efromovih [Efr07℄ (p.2526).4.2. Remarks about the implementation and results. To implement eah estimator π̃ and
π̃BCL, we use the trigonometri basis. For eah sample of data (that is for eah omputation ofthe estimators), we alibrate the set A1 over 95% of the variables Xi: we hoose to eliminate thesmallest values (2.5%), and the largest values (2.5%) of the data to avoid the side e�ets. Werepeat this method to de�ne A2 with the variables Yi.For our estimator π̃, we have to ompute the sum A(m, F̂n) + 2V (m) for eah m = (m1,m2).Notie that the quadrati norm in the de�nition of A(m, F̂n) (see (12)) is simply equal to a sumof squared-oe�ients. For example, if m ∧m′ = (m1,m

′
2),

∥

∥

∥
ĥF̂

m′ − ĥF̂
m∧m′

∥

∥

∥

2
=

Dm′

1
∑

j=Dm1+1

Dm′

2
∑

k=1

(

âF̂
j,k

)2
.A large number of simulations allows us to alibrate the onstant in the de�nition of V : c1 = 0.2.The estimator π̃BCL of Brunel et al. [BCL07℄ is de�ned as a penalized least-squares ontrast



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 11estimator. The penalty is pen(m) = K0‖π‖∞Dm1Dm2/n. We put K0 = 0.5 like in [BCL07℄ butwe do not replae ‖π‖∞ by an upper bound. To have a real data-driven proedure, we estimateit by taking the supremum of the values of a least-squares estimator on a �xed model Sm on arough grid, with m = [(ln(n) − 1)/2].Figures 1 and 2 illustrate the visual quality of the reonstrution, for a ase of Examples 1, andfor Example 4. We do not observe signi�ant di�erenes between the two estimators, whih bothbehave quite well. However, the omputation of π̃BCL requires muh more time than the oneof π̃, probably beause of the presene of a matriial inversion, onsequene of the least-squaresontrast. The warped-bases estimator an thus advantageously be used for estimation problemswith large data samples (data deriving from domain suh as physis, �uoresene, �nane...).(a) π (b) π̃ () π̃BCL
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Figure 1. Plots of true funtion versus estimators, Examples 1, with Xi i.i.d.
U[0;1], εi i.i.d. N (0, 1), and b(x) = 2x+ 5 with n = 2000 observations. First line:(a) true funtion π, (b) estimator π̃, (c) estimator π̃BCL. Seond line: plots of
y 7→ π(x, y) (full line), y 7→ π̃(x, y) (left, dashed dotted line) and y 7→ π̃BCL(x, y)(right, dashed dotted line) for a �xed x. Third line: like the seond line, foranother value of x.For sample sizes n = 200, 500 and 2000, we give in Tables 1 and 2 the estimated values of therisk E[‖π̂ − π‖2

2], with ‖.‖2 the quadrati norm on L2(A1 × A2), and π̂ = (π̃BCL)+ or (π̃)+. Itis not di�ult to see that the hoie of the positive part of both estimators an only make theirrisks derease. The estimation of the expetation is done over N = 100 repliated samples, andthe quadrati norm is approximated using subdivisions of A1 and A2 (see Brunel et al. [BCL07℄,Setion 5.1, for details about the formula).The risk of our estimator π̃ is often better than the one of the penalized least-squares estimator
π̃BCL. We indiate in those ases (in parenthesis) the perentage of improvement in the twotables: it an be quite important (up to 75%). Preisely, in Table 1, one an notie that for thesample size n = 200, there is as many ases where the risk of π̃ is better than the one of π̃BCL asthe opposite ase (risk of π̃ larger than the risk of π̃BCL). However, for the larger sample sizes
n = 500 or n = 2000, π̃ has a smaller risk in 89% of the situations of Example 1 (see Table 1).
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Figure 2. Plots of true funtion versus estimators, Example 4 with n = 2000observations. First line: (a) true funtion π, (b) estimator π̃, (c) estimator π̃BCL.Seond line: plots of y 7→ π(x, y) (full line), y 7→ π̃(x, y) (left, dashed dotted line)and y 7→ π̃BCL(x, y) (right, dashed dotted line) for a �xed x. Third line: like theseond line, for another value of x.To onlude this setion, let us stress out two main advantages of building an estimator of
π developed in warped bases, and seleted with a Goldenshluger-Lepski strategy, in pratie:�rst, its expression is expliit, fast and simple to ompute (muh faster than the least-squaresstrategy). Then, on top of its novelty and simpliity, it seems to bring risk values whih aresmaller than the least-squares method. 5. ProofsIn all the proofs, the letter C denotes a nonnegative real that may hange from line to line.We also denote by ‖t‖∞,A the in�nite norm of a funtion t over a set A, by ‖t‖A its Hilbert norm,and by 〈., 〉A the assoiated salar produt.5.1. Preliminary result. Let us start by setting a result whih is the key argument in theproofs of the two main theorems. We onsider the entered empirial proess de�ned by(18) ∀t ∈ L2([0; 1] ×A2), νn(t) =

1

n

n
∑

i=1

t (FX(Xi), Yi) − E [t (FX(Xi), Yi)] .The aim of the following proposition is to ontrol the deviations of the supremum of this proesson the unit sphere of Sm(19) S(m) = {t ∈ Sm, ‖t‖ = 1} .
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b(x) ε X n = 200 500 2000 Method

2x+ 5 N (0, 1) U[0;1] 3.13 2.89 1.49 π̃BCL4.12 1.74 (−4%) 0.81 (−45%) π̃
U[−1;1] 6.63 5.36 3.96 π̃BCL6.22 (−6%) 4.14 (−23%) 2.58 (−53%) π̃
N (0, 1) 26.94 23.89 22.61 π̃BCL24.05 (−11%) 20.02 (−16%) 8.40 (−63%) π̃

Γ(4, 1) U[0;1] 1.56 1.27 0.77 π̃BCL1.42 (−9%) 1.01 (−2%) 0.68 (−12%) π̃
U[−1;1] 3.63 2.98 1.93 π̃BCL5.18 2.53 (−15%) 1.90 (−2%) π̃
N (0, 1) 14.41 13.39 12.20 π̃BCL12.55 (−13%) 10.18 (−24%) 6.20 (−49%) π̃

cos(x) N (0, 1) U[0;1] 2.06 2.36 1.38 π̃BCL2.34 0.92 (−61%) 0.43 (−69%) π̃
U[−1;1] 3.61 5.18 2.43 π̃BCL5.43 1.65 (−68%) 0.81 (−69%) π̃
N (0, 1) 9.87 8.06 4.53 π̃BCL14.64 6.26 (−22%) 3.20 (−67%) π̃

Γ(4, 1) U[0;1] 1.02 0.80 0.45 π̃BCL0.69 (−32%) 0.49 (−39%) 0.32 (−29%) π̃
U[−1;1] 1.83 1.86 0.97 π̃BCL1.27 (−31%) 0.94 (−49%) 0.68 (−30%) π̃
N (0, 1) 5.48 4.92 3.10 π̃BCL4.43 (−19%) 3.53 (−28%) 2.55 (−18%) π̃

x2 N (0, 1) U[0;1] 2.49 2.48 1.36 π̃BCL2.89 1.35 (−46%) 0.60 (−56%) π̃
U[−1;1] 4.99 5.72 2.45 π̃BCL5.39 2.03 (−65%) 0.88 (−64%) π̃
N (0, 1) 13.99 9.02 4.35 π̃BCL23.21 14.92 8.72 π̃

Γ(4, 1) U[0;1] 0.98 0.98 0.57 π̃BCL0.88 (−10%) 0.60 (−38%) 0.54 (−5%) π̃
U[−1;1] 2.13 2.36 1.06 π̃BCL1.44 (−32%) 1.23 (−48%) 1.02 (−4%) π̃
N (0, 1) 7.98 6.31 3.23 π̃BCL14.13 7.53 4.61 π̃Table 1. Values of MISE ×100 averaged over 100 samples, in Examples 1 (re-gression models) for the estimators π̃ and π̃BCL, with perentage of improvement(in parenthesis) of the warped-bases method with Goldenshluger-Lepski seletion(π̃) ompared to the least-squares method (π̃BCL).Proposition 3. Under the assumptions of Theorem 1, for all δ > 0, there exists a onstant

C > 0, depending on ‖h‖∞, suh that,
E

[

max
m′∈Mn

(

sup
t∈S(m′)

ν2
n(t) − 2(1 + 2δ)

Dm′

1
Dm′

2

n

)

+

]

≤ C

n
.



14 GAËLLE CHAGNYExample n = 200 500 2000 MethodEx 2 1.94 1.97 1.07 π̃BCL2.52 0.65 (−67%) 0.27 (−75%) π̃Ex 3 1.34 1.19 0.63 π̃BCL1.48 1.04 (−13%) 0.69 π̃Ex 4 11.72 11.85 10.82 π̃BCL10.21 (−13%) 10.49 (−11%) 10.13 (−6%) π̃Table 2. Values of MISE ×100 averaged over 100 samples, in Example 2,3,4 forthe estimators π̃ and π̃BCL, with perentage of improvement (in parenthesis) ofthe warped-bases method with Goldenshluger-Lepski seletion (π̃) ompared tothe least-squares method (π̃BCL).Proof of Proposition 3. We �rst bound the maximum by a sum:
E

[

max
m′∈Mn

(

sup
t∈S(m′)

ν2
n(t) − c(δ)

Dm′

1
Dm′

2

n

)

+

]

≤
∑

m′∈Mn

E

[(

sup
t∈S(m′)

ν2
n(t) − c(δ)

Dm′

1
Dm′

2

n

)

+

]

,with the abbreviation c(δ) = 2(1 + 2δ) and we apply the following onentration inequality.Lemma 4. Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne νn(r) = 1
n

∑n
i=1 r(ξi)−E[r(ξi)],for r belonging to a ountable lass R of real-valued measurable funtions. Then, for δ > 0, thereexist three onstants cl, l = 1, 2, 3, suh that

E

[

(

sup
r∈R

(νn (r))2 − c(δ)H2

)

+

]

≤ c1

{

v

n
exp

(

−c2δ
nH2

v

)(20)
+

M2
1

C2(δ)n2
exp

(

−c3C(δ)
√
δ
nH

M1

)}

,with, C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and
sup
r∈R

‖r‖∞ ≤M1, E

[

sup
r∈R

|νn(r)|
]

≤ H, and sup
r∈R

Var (r (ξ1)) ≤ v.Inequality (20) is a lassial onsequene of Talagrand's Inequality given in Klein and Rio[KR05℄: see for example Lemma 5 (page 812) in Laour [La08℄. Using density arguments,we an apply it to the unit sphere of a �nite dimensional linear spae, that is S(m′), for ourproblem. We replae also the funtions r by rt : (x, y) 7→ t(FX(x), y), and ompute the onstants
M1, H and v. Notie �rst that ‖rt‖∞ ≤ ‖t‖∞, we dedue from Property (3) that we anset M1 =

√

Dm′

1
Dm′

2
. If t ∈ S(m′), it an be written t =

∑
Dm′

1
j=1

∑
Dm′

2
k=1 bj,kϕj ⊗ ϕk, with

∑

j,k b
2
j,k = 1. So, using the linearity of the proess, and Cauhy-Shwarz's Inequality, we get

supt∈S(m′) νn(t)2 ≤∑
Dm′

1
j=1

∑
Dm′

2
k=1 ν

2
n(ϕj ⊗ ϕk). We use anew Property (3) to de�ne H2:

E

[

sup
t∈S(m′)

ν2
n(t)

]

≤
Dm′

1
∑

j=1

Dm′

2
∑

k=1

1

n
Var (ϕj(FX(X1))ϕk(Y1)) ≤

Dm′

1
Dm′

2

n
:= H2.Finally, Var(t(FX(X1), Y1)) ≤ E[t2(FX(X1), Y1)] ≤ ‖t‖2‖h‖∞ = ‖h‖∞ := v. We just replae thequantities M1,H and v by the values derived above in Inequality (20):
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∑

m′∈Mn

E

[(

sup
t∈S(m′)

νn(t)2 − c(δ)
Dm′

1
Dm′

2

n

)

+

]

≤ c1







∑

m′∈Mn

1

n
exp

(

−c2Dm′

1
Dm′

2

)

+
∑

m′∈Mn

Dm′

1
Dm′

2

n2
exp

(

−c3
√
n
)







.It remains to remark that the �rst sum is a onstant and that∑m′∈Mn
Dm′

1
Dm′

2
≤ n2 to onludethe proof.

25.2. Proof of Theorem 1. For the sake of simpliity, we denote in this setion by m̂ the seletedindex m̂FX , by V the penalty V FX , and by A the quantity A(., FX ). Let Sm be a �xed model inthe olletion indexed by Mn.5.2.1. Main part of the proof. We deompose the loss of the estimator as follows:
‖π̃0 − π‖2

fX
=
∥

∥

∥
ĥFX

m̂ − h
∥

∥

∥

2
≤ 3

∥

∥

∥
ĥFX

m̂ − ĥFX

m∧m̂

∥

∥

∥

2
+ 3

∥

∥

∥
ĥFX

m∧m̂ − ĥFX
m

∥

∥

∥

2
+ 3

∥

∥

∥
ĥFX

m − h
∥

∥

∥

2
.By de�nition of A and m̂,

∥

∥

∥ĥ
FX

m̂ − h
∥

∥

∥

2
≤ 3 (A(m) + V (m̂)) + 3 (A(m̂) + V (m)) + 3

∥

∥

∥ĥFX
m − h

∥

∥

∥

2
,

≤ 6 (A(m) + V (m)) + 3
∥

∥

∥
ĥFX

m − h
∥

∥

∥

2
.We have already bounded the risk of the estimator on a �xed model (see Setion 2.3.1, Inequalities(8) and (10)), therefore, by de�nition of V , we get(21) E

[

∥

∥

∥
ĥFX

m̂ − h
∥

∥

∥

2
]

≤ 3E [A(m)] + (6c1 + 3)
Dm1Dm2

n
+ 3 ‖hm − h‖2 .To pursue the proof, we have to ontrol the expetation of A(m). By splitting the norm ‖ĥFX

m′ −
ĥFX

m∧m′‖2 for m,m′ ∈ Mn, and using the de�nition of A, we get
A(m) ≤ 3 max

m′∈Mn

[

∥

∥

∥ĥ
FX

m′ − hm′

∥

∥

∥

2
− V (m′)

6

]

+

+ 3 max
m′∈Mn

[

∥

∥

∥hm∧m′ − ĥFX

m∧m′

∥

∥

∥

2
− V (m′)

6

]

+

+3 max
m′∈Mn

‖hm′ − hm∧m′‖2 .The three terms of the above deomposition are studied in the following lemmas, proved justbelow.Lemma 5. Under the assumptions of Theorem 1, there exists a onstant C > 0 suh that, for
m ∈ Mn,

(a) E

[

max
m′∈Mn

(

∥

∥

∥ĥ
FX

m′ − hm′

∥

∥

∥

2
− V (m′)

6

)

+

]

≤ C

n
,

(b) E

[

max
m′∈Mn

(

∥

∥

∥
hm∧m′ − ĥFX

m∧m′

∥

∥

∥

2
− V (m′)

6

)

+

]

≤ C

n
.Lemma 6. Under the assumptions of Theorem 1, there exists a onstant C > 0 suh that,

max
m′∈Mn

‖hm′ − hm∧m′‖2 ≤ 4‖hm − h‖2.



16 GAËLLE CHAGNYThese inequalities show that(22) E[A(m)] ≤ C

n
+ 4‖hm − h‖2.Gathering this with Inequality (21) ends the proof of the Theorem.

25.2.2. Proof of Lemma 5. To simplify the notations, we denote by Tp = ‖ĥFX
p − hp‖2 for p = m′or p = m ∧m′, and by Up = (Tp − V (m′))+.Inequality (a). We ompute �rst lassially(23) ∥

∥

∥ĥ
FX

m′ − hm′

∥

∥

∥

2
=

Dm′

1
∑

j=1

Dm′

2
∑

k=1

(

âFX

j,k − aj,k

)2
=

Dm′

1
∑

j=1

Dm′

2
∑

k=1

ν2
n(ϕj ⊗ ϕk) = sup

t∈S(m′)
ν2

n(t),with νn the empirial proess de�ned by (18). Thus,
E

[

max
m′∈Mn

Um′

]

= E

[

max
m′∈Mn

(

sup
t∈S(m′)

ν2
n(t) − V (m′)

6

)

+

]

,and Inequality (a) of the lemma is proved by applying Proposition 3.Inequality (b). We have to distinguish several ases, depending on the value of m ∧m′:
maxm′∈Mn

Um∧m′

≤ max
m′∈Mn

m′

1≤m1,m′

2≤m2

Um∧m′ + max
m′∈Mn

m1≤m′

1,m2≤m′

2

Um∧m′ + max
m′∈Mn

m′

1≤m1,m2≤m′

2

Um∧m′ + max
m′∈Mn

m1≤m′

1,m′

2≤m2

Um∧m′ .

• First term: m′
1 ≤ m1 and m′

2 ≤ m2. In this ase, m∧m′ = m′. Thus, we bound roughly
E






max

m′∈Mn

m′

1≤m1,m′

2≤m2

Um∧m′






≤ E

[

max
m′∈Mn

Um′

]

,and use Inequality (a) to onlude that this term is bounded by C/n.
• Seond term: m1 ≤ m′

1 et m2 ≤ m′
2. Here, m ∧m′ = m. Using V (m) ≤ V (m′) (beause

Dml
≤ Dm′

l
, l = 1, 2), we have,

E






max

m′∈Mn

m1≤m′

1,m2≤m′

2

Um∧m′






≤ E






max

m′∈Mn

m1≤m′

1,m2≤m′

2

(

Tm − V (m)

6

)

+






= E

[(

Tm − V (m)

6

)

+

]

,and it an be seen as a onsequene of Proposition 3 and of the beginning of the proofof Inequality (a) that this last term is bounded by C/n.
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• Third term: m′

1 ≤ m1 etm2 ≤ m′
2. Here,m∧m′ = (m′

1,m2). We use thus V ((m′
1,m2)) ≤

V (m′
1,m

′
2) to get

E






max

m′∈Mn

m′

1≤m1,m2≤m′

2

Um∧m′






≤ E






max

m′∈Mn

m′

1≤m1,m2≤m′

2

(

T(m′

1,m2) −
V ((m′

1,m2))

6

)

+






,

≤
∑

m′

1∈I
(1)
n

E

[(

T(m′

1,m2) −
V ((m′

1,m2))

6

)

+

]

.The last term is also bounded by C/n, using a slightly di�erent version of Proposition3 (take the maximum only over m′
1 ∈ I(1)

n instead of over m ∈ Mn, and replae m by
m ∧m′).

• Fourth term: m1 ≤ m′
1 et m′

2 ≤ m2. We deal with this ase by using the same argumentsas for the last ase.We onlude that E[maxm′∈Mn
Um∧m′ ] is upper-bounded by C/n.

25.2.3. Proof of Lemma 6. Following the same lines as in the proof of Lemma 5, we distinguishfour ases:
• m′

1 ≤ m1 and m′
2 ≤ m2. For suh ouples (m1,m2) and (m′

1,m
′
2), ‖hm′ − hm∧m′‖2 = 0.

• m1 ≤ m′
1 et m2 ≤ m′

2. We notie �rst that ‖hm′ − hm∧m′‖2 = ‖hm′ − hm‖2 ≤ 2‖hm′ −
h‖2 + 2‖hm − h‖2. Sine the models are nested in eah diretion (see Property (4)),we have Sm = Sm1 × Sm2 ⊂ Sm′

1
× Sm′

2
= Sm′ . Consequently, hm ∈ Sm′ , and by thede�nition of the orthogonal projetion onto Sm′ , we get ‖hm′ − h‖ ≤ ‖hm − h‖. Thisleads to ‖hm′ − hm∧m′‖2 ≤ 4‖hm − h‖2.

• m′
1 ≤ m1 et m2 ≤ m′

2. To deal with this ase, we use �rst the following remark: if
t belongs to L2([0; 1] × A2), then for all u ∈ [0; 1], y 7→ t(u, y) belongs to L2(A2) and
y ∈ A2, u 7→ t(u, y) belongs to L2([0; 1]). Moreover, denoted by G1 (respetively G2) alosed linear subspae of L2([0; 1]) (respetively of L2(A2)), and by ΠG the projetionoperator onto a subspae G, the following equality holds:

ΠG1×G2t = ΠG1×L2(A2)

(

ΠL2([0;1])×G2
t
)

.In our setting, we thus ompute
‖hm′ − hm∧m′‖2 =

∥

∥

∥ΠSm′

1
×L2(A2)

[

ΠL2([0;1])×Sm′

2

h− ΠL2([0;1])×Sm2
h
]∥

∥

∥

2
,

≤
∥

∥

∥
ΠL2([0;1])×Sm′

2

h− ΠL2([0;1])×Sm2
h
∥

∥

∥

2
,

≤ 2
∥

∥

∥ΠL2([0;1])×Sm′

2

h− h
∥

∥

∥

2
+ 2

∥

∥

∥ΠL2([0;1])×Sm2
h− h

∥

∥

∥

2
,

≤ 4
∥

∥

∥ΠL2([0;1])×Sm2
h− h

∥

∥

∥

2
≤ 4‖hm − h‖2,where the inequalities of the last line are obtained by notiing that Sm2 ⊂ Sm′

2
and that

Sm1 ⊂ L2([0; 1]), and by using the de�nition of orthogonal projetions.
• m1 ≤ m′

1 et m′
2 ≤ m2. This ase is the symmetri from the latter, and an be thushandled similarly.



18 GAËLLE CHAGNYGathering the bounds of the four ases and taking the maximum of the four upper-bounds leadto the onlusion:
max

m′∈Mn

‖hm′ − hm∧m′‖2 ≤ max
{

0, 4‖hm − h‖2
}

= 4‖hm − h‖2.

25.3. Proof of Theorem 2. To simplify the notations, we write in this setion A(m) to replae
A(m, F̂n), V for V F̂ , and m̂ instead of m̂F̂ . The main idea of the proof is to reover theframework of the proof of Theorem 1. The omputation are more tehnial, sine the estimator
π̃ = ĥF̂

m̂(F̂ (.), .) depends doubly on F̂ . We denote it by π̂F̂ ,F̂
m̂ , and oherently, we denote by π̂FX ,FX

m̂the estimator previously studied, that is π̃0. We also introdue the following intermediate:(24) ∀(x, y) ∈ A1 ×A2, π̂
F̂ ,FX (x, y) = ĥF̂

m̂(FX(x), y).These notations suit also well for a �xed index m ∈ Mn. We denote by E[.|(X−l)] the onditionalexpetation given the sample (X−l)l=1,...,n (the onditional expetation will be oherently denotedby Var(.|(X−l))). A key point is the following deomposition whih holds for any index m:
‖π̂F̂ ,F̂

m − π‖2
fX

≤ 6
∑4

l=0 T
m
l , with(25) Tm

0 = ‖π − πFX
m ‖2

fX
+ ‖πFX

m − π̂FX ,FX
m ‖2

fX
,

Tm
1 =

∥

∥

∥π̂FX ,FX
m − π̂F̂ ,FX

m − E

[

π̂FX ,FX
m − π̂F̂ ,FX

m |(X−l)l

]∥

∥

∥

2

fX

,

Tm
2 =

∥

∥

∥
π̂F̂ ,FX

m − π̂F̂ ,F̂
m − E

[

π̂F̂ ,FX
m − π̂F̂ ,F̂

m |(X−l)l

]∥

∥

∥

2

fX

,

Tm
3 =

∥

∥

∥
E

[

π̂FX ,FX
m − π̂F̂ ,FX

m |(X−l)l

]∥

∥

∥

2

fX

, Tm
4 =

∥

∥

∥
E

[

π̂F̂ ,FX
m − π̂F̂ ,F̂

m |(X−l)l

]∥

∥

∥

2

fX

.Let us remark that Tm
0 is the bias-variane deomposition for the risk of an estimator π̂FX ,FX

m ,and has already been studied (see Setion 2.3.1). The sketh of the proof is now to deomposethe loss funtion, using these intermediates and the de�nition of A and V , and then to boundeah of the terms by CDm1Dm2/n or to enter them (so as to show they are negligible).5.3.1. Main part of the proof. We begin by introduing the intermediate estimator de�ned by(24) in the loss of our estimator:
∥

∥

∥π̂
F̂ ,F̂
m̂ − π

∥

∥

∥

2

fX

≤ 3
∥

∥

∥π̂
F̂ ,F̂
m̂ − π̂F̂ ,FX

m̂ − E

[

π̂F̂ ,F̂
m̂ − π̂F̂ ,FX

m̂ |(X−l)l

]∥

∥

∥

2

fX

+3
∥

∥

∥E

[

π̂F̂ ,F̂
m̂ − π̂F̂ ,FX

m̂ |(X−l)l

]∥

∥

∥

2

fX

+ 3
∥

∥

∥π̂
F̂ ,FX

m̂ − π
∥

∥

∥

2

fX

,

= 3T m̂
2 + 3T m̂

4 + 3
∥

∥

∥
ĥF̂

m̂ − h
∥

∥

∥

2
.The last term an be itself deomposed, by onstrution of A, V , and m̂:

∥

∥

∥
ĥF̂

m̂ − h
∥

∥

∥

2
≤ 3

∥

∥

∥
ĥF̂

m̂ − ĥF̂
m∧m̂

∥

∥

∥

2
+ 3

∥

∥

∥
ĥF̂

m∧m̂ − ĥF̂
m

∥

∥

∥

2
+ 3

∥

∥

∥
ĥF̂

m − h
∥

∥

∥

2
,

≤ 3 (A(m) + V (m̂)) + 3 (A (m̂) + V (m)) + 3
∥

∥

∥ĥF̂
m − h

∥

∥

∥

2
,

= 3 (A(m) + 2V (m)) + 3 (A (m̂) + 2V (m̂)) + 3
∥

∥

∥
ĥF̂

m − h
∥

∥

∥

2
− 3V (m̂) − 3V (m) ,

≤ 6 (A(m) + 2V (m)) − 2V (m̂) + 3
∥

∥

∥ĥF̂
m − h

∥

∥

∥

2
.
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m − h‖2 = ‖π̂F̂ ,FX

m − π‖2
fX

= 3Tm
1 + 3Tm

3 + 3Tm
0 . Consequently,

∥

∥

∥π̂
F̂ ,F̂
m̂ − π

∥

∥

∥

2

fX

≤ 3T m̂
2 + 3T m̂

4 − 3 × 2V (m̂) + 3 × 6 (A(m) + 2V (m))(26)
+3 × 3 × (3Tm

1 + 3Tm
3 + 3Tm

0 ) ,where the terms Tm
l , l = 0, . . . , 4 are de�ned by (25). We split the term A, �rst in a similar wayas in Theorem 1. Let (m,m′) ∈ M2

n,
∥

∥

∥ĥF̂
m′ − ĥF̂

m∧m′

∥

∥

∥

2
≤ 3

∥

∥

∥ĥF̂
m′ − hm′

∥

∥

∥

2
+ 3 ‖hm′ − hm∧m′‖2 + 3

∥

∥

∥hm∧m′ − ĥF̂
m∧m′

∥

∥

∥

2
.But we immediatly try to reover the splitting terms de�ned by (25). Let us remark that ananalogous relation to (23) holds, for a di�erent empirial proess: for p = m or p = m ∧m′,

∥

∥

∥
hp − ĥF̂

p

∥

∥

∥
= sup

t∈S(p)
ν̃2

n(t), ν̃n(t) =
1

n

n
∑

i=1

t
(

F̂n(Xi), Yi

)

− E [t (FX(Xi), Yi)] ,for a funtion t ∈ L2([0; 1]×A2). We reover the previous empirial proess by the deomposition
ν̃2

n(t) ≤ 2ν2
n(t) + R2

n(t), with Rn(t) = (1/n)
∑n

i=1 t(F̂n(Xi), Yi) − t(FX(Xi), Yi). Moreover, if tbelongs to S(p), we have already written t =
∑Dp1

j=1

∑Dp2
k=1 θj,kϕj ⊗ϕk, with ∑Dp1

j=1

∑Dp2
k=1 θ

2
j,k = 1.Using this expression, Cauhy-Shwarz Inequality, and the de�nition of the oe�ients âFX

j,k or
âF̂

j,k yield supt∈S(p)R
2
n(t) =

∑Dp1
j=1

∑Dp2
k=1(â

F̂
j,k − âFX

j,k )2. The onditional expetation of âF̂
j,k − âFX

j,kis introdued to get supt∈S(p)R
2
n(t) ≤ 2T p

1 + 2T p
3 . Consequently,

∥

∥

∥hp − ĥF̂
p

∥

∥

∥

2
≤ 2 sup

t∈S(p)
(νn(t))2 + 4T p

1 + 4T p
3 .By substrating V (m′), taking the maximum over m′ ∈ Mn and integrating give an upper-boundfor E[A(m)]. We introdue it into (26) to obtain:

(∆) E

[

∥

∥

∥
π̂F̂ ,F̂

m̂ − π
∥

∥

∥

2

fX

]

≤ 36V (m) + 27E [Tm
0 + Tm

1 + Tm
3 ] + 3 max

m′∈Mn

‖hm∧m′ − hm′‖2

+3E

[

(

T m̂
2 − V (m̂)

)

+

]

+ 3E

[

(

T m̂
4 − V (m̂)

)

+

]

+6E

[

max
m′∈Mn

(

sup
t∈S(m′)

(νn(t))2 − V (m′)

36

)

+

]

+ 6E

[

max
m′∈Mn

(

sup
t∈S(m∧m′)

(νn(t))2 − V (m′)

36

)

+

]

+12E

[

max
m′∈Mn

(

Tm′

3 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

3 − V (m′)

72

)

+

]

+12E

[

max
m′∈Mn

(

Tm′

1 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

1 − V (m′)

72

)

+

]

.We bound eah of these terms. Some of them have already been studied: reall �rst that
E [Tm

0 ] ≤
∥

∥πFX
m − π

∥

∥

2
+
Dm1Dm2

n
,



20 GAËLLE CHAGNYusing (8) and (10). Moreover, applying twie Proposition 3 shows that
E

[

max
m′∈Mn

(

sup
t∈S(m′)

(νn(t))2 − V0(m
′)

)

+

]

≤ C

n
,

E

[

max
m′∈Mn

(

sup
t∈S(m∧m′)

(νn(t))2 − V0(m
′)

)

+

]

≤ C

n
,with V0(m

′) = 2(1 + 2δ)Dm′

1
Dm′

2
/n. Choosing c1 (see the de�nition (11)) larger than 2(1 +

2δ), these inequalities hold with V in plae of V0. Finally, we have proved in Lemma 6 that
maxm′∈Mn

‖hm′ − hm∧m′‖2 ≤ 4‖hm − h‖2. Taking into aount the previous inequality (∆) forthe risk, we get,
E

[

∥

∥

∥
π̂F̂ ,F̂

m̂ − π
∥

∥

∥

2

fX

]

≤ 36V (m) + 27
Dm1Dm2

n
+ 27E [Tm

1 + Tm
3 ] +

C

n

+3E

[

(

T m̂
2 − V (m̂)

)

+

]

+ 3E

[

(

T m̂
4 − V (m̂)

)

+

]

+ (12 + 27)‖hm − h‖2(27)
+12E

[

max
m′∈Mn

(

Tm′

3 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

3 − V (m′)

72

)

+

]

+12E

[

max
m′∈Mn

(

Tm′

1 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

1 − V (m′)

72

)

+

]

.It remains to bound the terms Tm
l , l = 1, 2, 3, 4 or their entering versions, by quantities of orderat most Dm1Dm2/n. Let us �rst notie that, for l = 2, 4,

E

[

(

T m̂
l − V (m̂)

)

+

]

≤ E

[

max
m′∈Mn

(

Tm′

l − V (m′)
)

+

]

,and then use the lemmas just below, whose proofs are deferred to the following setions.Lemma 7. Assuming that the models are trigonometri, there exists a onstant C dependingonly on ‖ϕ′
2‖∞ suh that, for m ∈ Mn,

E [Tm
1 ] ≤ C

D3
m1
Dm2

n2
.Moreover, the following inequality holds, if Dm1 = O(

√
n/ ln(n)), for pm′ = m′ or pm′ = m∧m′,and for a onstant C > 0

E

[

max
m′∈Mn

(

T
pm′ ,b
1 − V1(m

′)
)

+

]

≤ C

n
,with V1(m

′) = κ1Dm′

1
Dm′

2
/n, and κ1 a onstant depending only on ‖ϕ′

2‖∞.If Dm1 = O(n1/2) in partiular, the �rst inequality of Lemma 7 leads to E[Tm
1 ] ≤ CDm1Dm2 .Lemma 8. Assuming that the models are trigonometri, there exists a onstant C, whih dependson ‖ϕ′

2‖∞,[0;1], suh that
E

[

max
m′∈Mn

(

Tm′

2 − V2(m
′)
)

+

]

≤ C
ln(n)

n
,with V2(m

′) = κ2D
4
m′

1
Dm′

2
ln2(n)/n2, and κ2 a onstant depending also on ‖ϕ′

2‖∞,[0;1].Assuming that Dm′

1
= O(n1/3/ ln2/3(n)), we have V2(m

′) ≤ V b
2 (m′) := κ′2Dm′

1
Dm′

2
/n (κ′2 aonstant independent of h). The inequality of Lemma 8 still holds by replaing V2 by V b
2 .



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 21Lemma 9. Assuming that the models are trigonometri, and that h is C1 with respet to its�rst variable on [0; 1], there exists a onstant C depending on ‖ϕ(3)
2 ‖∞, ‖h‖ and ‖∂1h‖ (∂1 is thederivation operator with respet to the �rst variable) suh that, for m ∈ Mn,

E [Tm
3 ] ≤ C

(

1

n
+
Dm1

n
+
D4

m1

n2
+
D7

m1

n3

)

.Moreover, the following inequality holds, for pm′ = m′ or pm′ = m ∧ m′, for n ≥ n0(h), andassuming Dm1 = O(n1/3) and Dm2 ≥ c ln4(n) (for a onstant c > 0) for eah m,
E

[

max
m′∈Mn

(

T
pm′ ,b
3 − V3(m

′)
)

+

]

≤ C

n
,with V3(m

′) = κ3

Dm′

1
Dm′

2
n , κ3 a onstant independent of h, and n0(h) a nonnegative integerdepending on the funtion h.IfDm1 = O(n1/3) in partiular, the �rst inequality of Lemma 7 leads to E[Tm

3 ] ≤ CDm1Dm2/n.Lemma 10. Assuming that the models are trigonometri, that h is C1 with respet to its �rstvariable on [0; 1] and belongs to the anisotropi Sobolev ball denoted by W 2
per([0; 1]

2, L, (1, 0)), andthat for all m ∈ Mn, Dm1 = O(n1/3/ ln1/3(n) and Dm2 ≥ c ln5(n) (for a onstant c > 0), thereexists a onstant C, whih depends on ‖ϕ′
2‖∞,[0;1], ‖ϕ′′

2‖∞,[0;1], ‖ϕ(3)
2 ‖∞,[0;1], ‖h‖, ‖∂1h‖, and Lsuh that, for n ≥ n1(h),

E

[

max
m′∈Mn

(

Tm′

4 − V4(m
′)
)

+

]

≤ C
ln(n)

n
,with V4(m

′) = κ4Dm′

1
Dm′

2
/n, and κ4 independent of h, and n1(h) a nonnegative integer depend-ing on the funtion h.To onlude the proof, we hoose the onstant c1 larger than κl (l = 1, . . . , 4), to have V (m′) ≥

Vl(m) (or V b
l (m′) for l = 2): this allows to apply the inequalities of the lemmas with V and touse it in Inequality (27). We obtain then the result of Theorem 2.

25.3.2. Tehnial tools for the proof of Lemmas 7 to 10. Key arguments for the proof of thelemmas are the properties of the empirial umulative distribution funtion F̂n of the sample
(X−l)l. First, let U−i = FX(X−i) (i = 1, . . . , n). Reall that it is a uniform variable on [0; 1]. Wedenote by Ûn the empirial .d.f. assoiated to the sample (U−i)i=1,...,n. Let us keep also in mindthat for all u ∈ [0; 1], F̂n(F−1

X (u)) = Ûn(u) and that the random variable ‖F̂n − FX‖∞,A1 hasthe same distribution as ‖Ûn − id‖∞,[0;1] (with id the funtion suh that u 7→ u). In partiular,we get thus
E

[

âF̂
j,k |(X−l)l

]

=

∫

[0;1]×A2

ϕj ◦ Ûn(u)ϕk(y)h(u, y)dudy.We also reall some inequalities to ontrol the deviations of the empirial .d.f Ûn. Dvoretzky,Kiefer and Wolfowitz [DKW56℄ established the �rst one:Proposition 11. For any λ > 0, there exists a onstant K suh that
P

(

∥

∥

∥
Ûn − id

∥

∥

∥

∞,[0;1]
≥ λ

)

≤ K exp
(

−2nλ2
)

.By integration, we dedue then other bounds:



22 GAËLLE CHAGNYProposition 12. For any integer p > 0, there exists a onstant Cp > 0 suh that(28) E

[

∥

∥

∥
Ûn − id

∥

∥

∥

p

∞,[0;1]

]

≤ Cp

np/2
,For any κ > 0, for any integer p ≥ 2, there exists also a onstant C suh that(29) E

[(

∥

∥

∥Ûn − id
∥

∥

∥

p

∞,[0;1]
− κ

lnp/2(n)

np/2

)

+

]

≤ Cn−c(p,κ), with c(p, κ) = 2
2−p

p κ2/p.Moreover,(30) E

[

(

∥

∥

∥Ûn − id
∥

∥

∥

2

∞,[0;1]
− κ

ln(n)

n

)2
]

≤ Cn−2−2κ.Inequality (30) is a slightly more preise version of Inequality (29) in the ase p = 2.5.3.3. Proof of Lemma 7. The �rst part of the lemma is to bound E[Tm
1 ]. Using the de�nitionof π̂FX ,FX and π̂F̂ ,FX leads to

Tm
1 =

∥

∥

∥
ĥFX

m − ĥF̂
m − E

[

ĥFX
m − ĥF̂

m |(X−l)l

]∥

∥

∥

2
.The deompositions of the estimators in the orthonormal basis (ϕj⊗ϕk) yield Tm

1 =
∑

j,k{(âFX

j,k −
âF̂

j,k) − E[âFX

j,k − âF̂
j,k|(X−l)]}2. Thus,(31) E [Tm

1 |(X−l)l ] =
∑

j,k

Var(âFX

j,k − âF̂
j,k |(X−l)l

)

.We work out the onditional variane for any ouple (j, k):Var(âFX

j,k − âF̂
j,k |(X−l)l

)

=
1

n
Var(ϕj (FX(X1))ϕk(Y1) − ϕj

(

F̂n(X1)
)

ϕk(Y1) |(X−l)l

)

,

≤ 1

n
E

[

ϕ2
k(Y1)

{

ϕj (FX(X1)) − ϕj

(

F̂n(X1)
)}2

|(X−l)l

]

.We apply the mean value theorem, sum over the indies j and k, and remark ‖ϕ′
j‖∞,[0;1] ≤

Dm1‖ϕ′
2‖∞,[0;1] (property of the trigonometri basis):

E [Tm
1 |(X−l)l ] ≤ 1

n

∥

∥

∥

∥

∥

∥

Dm2
∑

k=1

ϕk

∥

∥

∥

∥

∥

∥

2

∞,[0;1]

Dm1
∑

j=1

‖ϕ′
j‖2

∞,[0;1]

∥

∥

∥
FX − F̂n

∥

∥

∥

2

∞,A1

,

≤ ‖ϕ′
2‖2

∞,[0;1]

D3
m1
Dm2

n

∥

∥

∥
FX − F̂n

∥

∥

∥

2

∞,A1

.It remains to use Inequality (28) of Proposition 12 with p = 2 to bound the expetation:
E [Tm

1 ] ≤ C‖ϕ′
2‖2

∞,[0;1]

D3
m1
Dm2

n2This ompletes the proof of the �rst inequality. For the seond, let us begin with V1(pm′) ≤
V1(m

′). Therefore E[maxm′∈Mn
(T

pm′

1 − V1(m
′))+] ≤ E[maxm′∈Mn

(T
pm′

1 − V1(pm′))+]. In thesequel, we simplify the notations by setting p = pm′ . Similar arguments than the ones used toget (23) lead to T p
1 = supt∈S(p) (νa

n(t))2 with
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νa

n(t) =
1

n

n
∑

i=1

(

t(FX(Xi), Yi) − t(F̂n(Xi), Yi)
)

− E

[(

t(FX(Xi), Yi) − t(F̂n(Xi), Yi)
)

|(X−l)l

]

,a proess whih is entered onditionally to the sample (X−l)l. Thus we apply Talagrand in-equality (20), as in the proof of Proposition 3, but onditionally to (X−l)l. In this setting thekey quantities are suh that
sup

t∈S(p)
‖rt‖∞ ≤M1,a, E

[

sup
t∈S(p)

|νa
n(t)| |(X−l)l

]

≤ Ha,and sup
t∈S(p)

1

n

n
∑

i=1

Var (rt(Xi, Yi) |(X−l)l ) ≤ va.We ompute
M1,a = ‖ϕ′

2‖∞,[0;1]D
3/2
p1 D

1/2
p2

∥

∥

∥F̂n − FX

∥

∥

∥

∞,A1

,

H2
a,p = 1

n ‖ϕ′
2‖2

∞,[0;1]D
3
p1
Dp2

∥

∥

∥F̂n − FX

∥

∥

∥

2

∞,A1

, va = nH2
a,p,and obtain thus for δ > 0, E

[(

sup
t∈S(p)

(νa
n(t))2 − 2(1 + 2δ)H2

a,p

)

+

|(X−l)l

]

≤ C0

{

H2
a,p exp (−Cδ) +

H2
a,p

C2(δ)n
exp

(

−C
√
δ
√
n
)

}

.Here, C0 is a random onstant, whih depends on ‖FX − F̂n‖∞,A1 , and C is purely numer-ial. But C0 an be also bounded by a �xed quantity, sine the in�nite norm is smallerthan 1. Thus we write anew C in the sequel. We hoose δ = κ ln(n) (κ > 0), so that
C(δ) = 1. We put now p = m′ (The ase p = m ∧ m′ an be handled similarly). We havethus E

[

max
m′∈Mn

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+
|(X−l)l

]

≤
∑

m′∈Mn

E

[

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+
|(X−l)l

]

,

≤ C







n−Cκ
∑

m′∈Mn

D3
m′

1
Dm′

2

n
+ exp

(

−C√
n
)

∑

m′∈Mn

D3
m′

1
Dm′

2

n2







,

≤ C
{

n1−Cκ + n exp
(

−C√
n
)}

,by using just that Dml
= O(

√
n) (l = 1, 2), and that the ardinal of Mn is smaller than n. Thelast bound is itself smaller than Cn−1, if we hoose κ large enough. We then notie that, for any

αn > 0

2(1 + 2κ ln(n))H2
a,m′ ≤ 6κ

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]

D3
m′

1
Dm′

2
ln(n)

n

∥

∥

∥
F̂n − FX

∥

∥

∥

2

∞,A1

,

≤ 6κ
∥

∥ϕ′
2

∥

∥

2

∞,[0;1]

D3
m′

1
Dm′

2
ln(n)

n

(

α2
n + 1‖F̂n−FX‖∞,A1

≥αn

)

.



24 GAËLLE CHAGNYChoosing αn =
√

3 ln(n)/n, and using Dm′

1
= O(

√
n/ ln(n)),

2(1 + 2κ ln(n))H2
a,m′ ≤ 12κ

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]

Dm′

1
Dm′

2

n
+ C1‖F̂n−FX‖∞,A1

≥αn
,

= V1(m
′) + C1‖F̂n−FX‖2

∞,A1
≥αn

,Besides,
E

[

(

Tm′

1 − V1(m
′)
)

+

]

≤ E

[

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+

]

+ E

[

C1‖F̂n−FX‖∞,A1
≥αn

]

,

≤ E

[

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+

]

+ Cn−3,with the inequality of Proposition 11. To onlude, ∑m′∈Mn
E[(Tm′

1 − V1(m
′))+] ≤ C/n.

25.3.4. Proof of Lemma 8. For onveniene, the onstant κ2 in the de�nition of V2 is splittedinto two parts, that is κ2 = κκ′. The �rst step is to write E[maxm′∈Mn
(Tm′

2 − V2(m
′))+] ≤

∑

m′∈Mn
E[(Tm′

2 − V2(m
′))+]. Then it is enough to bound this quantity for eah index m′. Wewrite in a shortened form the sum "∑Dm′

1
j=1 ": "∑j" (and the analogous for∑Dm′

2
k=1 ). We ompute

Tm′

2

=

∫

A1×A2

(

ĥF̂
m′ (FX(x), y) − ĥF̂

m′

(

F̂n(x), y
)

−E

[

ĥF̂
m′ (FX(x), y) − ĥF̂

m′

(

F̂n(x), y
)

|(X−l)l

])2
fX(x)dxdy,

=

∫

A1

∑

j,j′

∑

k,k′

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

]) (

âF̂
j′,k′ − E

[

âF̂
j′,k′ |(X−l)l

])

×
(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)(

ϕj′ ◦ FX(x) − ϕj′ ◦ F̂n(x)
)

∫

A2

ϕk(y)ϕk′(y)dyfX(x)dx,

=

∫

[0;1]

Dm′

2
∑

k=1











Dm′

1
∑

j=1

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

]) (

ϕj(u) − ϕj ◦ Ûn(u)
)











2

du,By Cauhy-Shwarz Inequality, and the mean value theorem,
Tm′

2 ≤
∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
D3

m′

1

∥

∥

∥
Ûn − id

∥

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1

Dm′

1
∑

j=1

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2
.Thus, E[(Tm′

2 − V2(m
′))+] ≤ Tm′

2,a + Tm′

2,b , with
Tm′

2,a = D3
m′

1

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
E





∑

j,k

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2
(

∥

∥

∥Ûn − id
∥

∥

∥

2

∞,[0;1]
− κ′

ln(n)

n

)

+



 ,

Tm′

2,b = D3
m′

1

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
κ′

ln(n)

n
E









∑

j,k

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2
− κ

‖ϕ′
2‖2

∞,[0;1]

Dm′

1
Dm′

2

n
ln(n)





+



 .
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F̂
j,k − E[âF̂

j,k(X−l)l])
2 leads to

Tm′

2,a ≤ 2D4
m′

1
Dm′

2

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
E

[(

∥

∥

∥Ûn − id
∥

∥

∥

2

∞,[0;1]
− κ′

ln(n)

n

)

+

]

.Inequality (30) and the assumptions Dml
≤ √

n (l = 1, 2) allow to onlude that Tm′

2,a ≤
Cn3/2−2κ′ , and thus, hoosing κ′ ≥ 7/4, ∑m′∈Mn

Tm′

2,a ≤ C/n. For the seond term Tm′

2,b , wenotie �rst that ∑j,k(â
F̂
j,k − E[âF̂

j,k|(X−l)l])
2 = supt∈S(m′)(ν

b
n)2(t), with

νb
n(t) =

1

n

n
∑

i=1

t
(

F̂n(Xi), Yi

)

− E

[

t
(

F̂n(Xi), Yi

)

|(X−l)l

]

.We now bound the deviations of this empirial proess, entered onditonally to (X−l), exatlyas we bound νa
n in the proof of Lemma 7: they are ontroled by Talagrand Inequality (20). Weobtain �nally ∑m′∈Mn T

m′

2,b ≤ C ln(n)/n, whih ends the proof, by gathering this bound withthe one of ∑m′∈Mn T
m′

2,a .
25.3.5. Proof of Lemma 9. To ompute a bound for E[Tm

3 ], let us begin with the de�nition ofthe estimators and their oe�ients, to get Tm
3 =

∑Dm1
j=1

∑Dm2
k=1 {〈ϕk,Λj(y)〉A2}2 with Λj(y) =

∫

A1
(ϕj(F̂n(x)) − ϕj(FX(x)))f(X,Y )(x, y)dx. Thus we an write Tm

3 =
∑Dm1

j=1 ‖ΠSm2
Λj‖2

A2
≤

∑Dm1
j=1 ‖Λj‖2

A2
, whih an be developed as

Tm
3 =

Dm1
∑

j=1

∫

A2

(

∫

[0;1]
(ϕj(Ûn(u)) − ϕj(u))h(u, y)du

)2

dy :=

∫

A2

T
′m
3 (y)dy.We apply Taylor formula with Lagrange form for the remainder rest: there exists a randomnumber depending on j, α̂j,n,u, suh that the following splitting holds:

E

[

T
′m
3 (y)

]

≤ 3E
[

Tm
3,1(y)

]

+ 3E
[

Tm
3,2(y)

]

+ 3E
[

Tm
3,3(y)

]

,with notations
Tm

3,1(y) =

Dm1
∑

j=1

{
∫ 1

0
h(u, y)

(

Ûn(u) − u
)

ϕ′
j(u)du

}2

,

Tm
3,2(y) = (1/4)

Dm1
∑

j=1

{∫ 1

0
h(u, y)

(

Ûn(u) − u
)2
ϕ′′

j (u)du

}2

,

Tm
3,3(y) = (1/6)

Dm1
∑

j=1

{
∫ 1

0
h(u, y)

(

Ûn(u) − u
)3
ϕ

(3)
j (α̂j,n,u)du

}2

.Writing the de�nition of Ûn(u), and noting that u = E[1Ui≤u] (i = 1, . . . , n), we get for the �rstterm
E
[

Tm
3,1(y)

]

= E





Dm1
∑

j=1

(

1

n

n
∑

i=1

Ai,j(y) − E[Ai,j(y)]

)2


 , with Ai,j(y) =

∫ 1

Ui

h(u, y)ϕ′
j(u)du.



26 GAËLLE CHAGNYWe integrate by parts in Ai,j (h is assumed to be C1 with respet to its �rst variable). This leadsto another splitting, for eah y ∈ A2:
E
[

Tm
3,1(y)

]

≤ 2E
[

Tm
3,1,1(y)

]

+ 2E
[

Tm
3,1,2(y)

]

,where(32) Tm
3,1,1(y) =

Dm1
∑

j=1

{

1

n

n
∑

i=1

h(Ui, y)ϕj(Ui) − E [h(Ui, y)ϕj(Ui)]

}2

,

Tm
3,1,2(y) =

Dm1
∑

j=1

{
∫ 1

0
∂1h(u, y)

(

Ûn(u) − u
)

ϕj(u)du

}2

.In the spirit of the bound given for Tm
1 , the �rst term is ontrolled as follows:

E
[

Tm
3,1,1(y)

]

≤ 1

n

Dm1
∑

j=1

E

[

(h(U1, y)ϕj(U1))
2
]

≤ Dm1

n

∫ 1

0
h(u, y)2du.Thus, ∫A2

E[Tm
3,1,1(y)]dy ≤ ‖h‖2Dm1/n. Then, by de�nition and properties of the orthogonalprojetion on Sm,

E
[

Tm
3,1,2(y)

]

= E





Dm1
∑

j=1

(

〈∂1h(., y)(Ûn − id), ϕj〉[0;1]
)2



 ≤ E

[

∥

∥

∥
∂1h(., y)(Ûn − id)

∥

∥

∥

2

[0;1]

]

.Finally, Tm
3,1,2(y) ≤ C‖∂1h(., y)‖2

[0;1]/n by Inequality (28), and thus, by gathering the bounds for
Tm

3,1,1(y) and Tm
3,1,2(y),

∫

A2

E
[

Tm
3,1(y)

]

dy ≤ C

(

1

n
+
Dm1

n

)

.As regards Tm
3,2(y), we remark �rst that for j ≥ 2, ϕ′′

j = −(πµj)
2ϕj , with µj = j for even j, and

µj = j − 1 otherwise, so that µj is bounded by Dm1 . Hene,
E
[

Tm
3,2(y)

]

≤ (π4/4)D4
m1

E





Dm1
∑

j=2

{∫ 1

0
h(u, y)

(

Ûn(u) − u
)2
ϕj(u)du

}2


 ,

≤ (π4/4)D4
m1

E

[

∥

∥

∥

∥

h(., y)
(

Ûn − id
)2
∥

∥

∥

∥

2

[0;1]

]

≤ C

∫

[0;1]
h2(u, y)du

D4
m1

n2
,by proeeding with the previous arguments (properties of orthogonal projetion and Inequality(28)). So we prove ∫A2

E[Tm
3,2(y)]dy ≤ CD4

m1
/n2. The omputations for the last term are lesstehnial:

E
[

Tm
3,3(y)

]

≤ (1/6)

Dm1
∑

j=1

∥

∥

∥
ϕ

(3)
j

∥

∥

∥

2

∞,[0;1]
‖h(., y)‖2

[0;1]E

[

∥

∥

∥
Ûn − id

∥

∥

∥

6

∞,[0;1]

]

, ,thus ∫A2
E[Tm

3,3(y)]dy ≤ CD7
m1
/n3. This ompletes the proof of the �rst inequality of Lemma 9.With regard to the seond inequality, it is enough to bound E[maxm′∈Mn

(T p
1 −V1(p))+], like forthe seond part of Lemma 7 (p = m′ or p = m ∧m′). As previously, we get the splitting(33) T p

3 ≤ 6

∫

A2

T p
3,1,1(y)dy + 6

∫

A2

T p
3,1,2(y)dy + 3

∫

A2

T p
3,2(y)dy + 3

∫

A2

T p
3,3(y)dy,



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 27and
E

[

max
m′∈Mn

(

T p,b
3 − V3(p)

)

+

]

≤ E

[

max
m′∈Mn

(

6

∫

A2

T p
3,1,1(y)dy − V3(p)/3

)

+

]

+E

[

max
m′∈Mn

6

∫

A2

T p
3,1,2(y)dy

]

+E

[

max
m′∈Mn

(

3

∫

A2

T p
3,2(y)dy − V3(p)/3

)

+

]

+E

[

max
m′∈Mn

(

3

∫

A2

T p
3,3(y)dy − V3(p)/3

)

+

]

.The term whih is not entered is direly negligible : denoting by mmax the largest ouple ofindex (maximum is taken term by term) in the olletion Mn, we remark that T p
3,1,2 ≤ Tmmax

3,1,2(by (32)). Hene, E[maxm′∈Mn
6
∫

A2
T p

3,1,2(y)dy] ≤ C/n. Let us brie�y study eah of the otherterms: �rst T p
3,1,1(y) = sups∈Sp1 ,‖s‖[0;1]=1 ν

2
n,y(s), with

νn,y(s) =
1

n

n
∑

i=1

π(Xi, y)s ◦ FX(Xi) − E [π(Xi, y)s ◦ FX(Xi)] .Using one more time Talagrand Inequality (20) leads to(34) E

[

max
m′∈Mn

(

6

∫

A2

T p
3,1,1(y)dy − V3,1,1(p)

)

+

]

≤ C

n
,with V3,1,1(p) = 6 × 2(1 + 2δ)‖h‖2

∞Dp1/n, (δ > 0). Besides, for n ≥ n0 = exp(‖h‖2
∞),

V3,1,1(p) ≤ 12(1 + 2δ) ln(n)
Dp1

n
≤ C

Dp1Dp2

n
:= V b

3,1,1(p),sine Dp2 ≥ c ln(n) (c > 0). Inequality (34) holds with V b
3,1,1. The two last terms, involving

Tm
3,2(y) and Tm

3,3(y) an be ompute with the same strategy: use the proof of the �rst inequalityof Lemma 9 to bound ∫A2
Tm

3,l(y)dy (l = 2, 3) by quantity of the form C‖Ûn − id‖k
∞, and thenapply Inequality (29). The onlusion is that(35) E

[

max
m′∈Mn

(

3

∫

A2

T p
3,l(y)dy − V3,l(p)

)

+

]

≤ C
ln(n)

n
,for l = 2, 3, with V3,2(p) = CD4

p1
ln2(n)/n2, and V3,3(p) = CD7

p1
ln3(n)/n3. Assuming both

n ≥ n1 = exp(‖h‖2), and Dp1 = O(n1/3), Dp2 ≥ c ln3(n), we have
V3,2(p) ≤ C

Dp1Dp2

n
:= V b

3,2(p).With the more restritive low bound Dp2 ≥ c ln4(n), we get also V3,3(p) ≤ CDp1Dp2/n := V b
3,3(p).As usual, Inequalities (35) still hold with V b

3,l instead of V3,l. The proof is omplete if we gather allthese bounds and if we hoose the onstant κ3 suh that V3 ≥ 3V b
3,1,1, V3 ≥ 3V b

3,2, et V3 ≥ 3V b
3,3.
2



28 GAËLLE CHAGNY5.3.6. Proof of Lemma 10. Let us �rst split the term Tm′

4 in several parts. Similarly to the boundobtained for Tm
3 , we use the de�nitions of the estimators and their oe�ients, and the fat thatthe basis (ϕk)k is orthonormal: hene,

Tm′

4 ≤
∫

A1

E







Dm′

2
∑

k=1







Dm′

1
∑

j=1

âF̂
j,k

(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)







2

|(X−l)l






fX(x)dx.We write it Tm′

4 ≤ 2Tm′

4,1 + 2Tm′

4,2 , with
Tm′

4,1 =

∫

A1

E







Dm′

2
∑

k=1







Dm′

1
∑

j=1

(

âF̂
j,k − aj,k

)(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)







2

|(X−l)l






fX(x)dx,

Tm′

4,2 =

∫

A1

E







Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,k

(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)







2

|(X−l)l






fX(x)dx,where we denote by aj,k = 〈h, ϕj ⊗ ϕk〉, the Fourier's oe�ients of the funtion h. Then wehave also Tm′

4,1 ≤ 2Tm′

4,1,1 + 2Tm′

4,1,2 with the notations
Tm′

4,1,1 =

∫

[0;1]
E







Dm′

2
∑

k=1











Dm′

1
∑

j=1

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2





















Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2











|(X−l)l






du,

Tm′

4,1,2 =

∫

[0;1]
E







Dm′

2
∑

k=1











Dm′

1
∑

j=1

(

E

[

âF̂
j,k |(X−l)l

]

− aj,k

)2





















Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2











|(X−l)l






du.As

E

[

Tm′

4,2

]

= E







Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0

(

ϕj(u) − ϕj ◦ Ûn(u)
)(

ϕj′(u) − ϕj′ ◦ Ûn(u)
)

du






,a Taylor formula yields E[Tm′

4,2 ] ≤ E[Tm′

4,2,1 + Tm′

4,2,2 + Tm′

4,2,3], where
Tm′

4,2,1 =

Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0
(u− Ûn(u))2ϕ′

j(u)ϕ
′
j′(u)du,

Tm′

4,2,2 = (1/4)

Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0
(u− Ûn(u))4ϕ′′

j (α̂j,n,u)ϕ′′
j′(α̂j′,n,u)du,

Tm′

4,2,3 =

Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0
(u− Ûn(u))3ϕ′′

j (α̂j,n,u)ϕ′
j′(u)du.
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4 ≤ 4Tm′

4,1,1 +4Tm′

4,1,2+2Tm′

4,2,1 +2Tm′

4,2,2+2Tm′

4,2,3,and onsequently
E

[

max
m′∈Mn

(

Tm′

4 − V4(m
′)
)

+

]

≤ E

[

max
m′∈Mn

(

4Tm′

4,1,1 − V4(m
′)/3

)

+

]

+E

[

max
m′∈Mn

(

4Tm′

4,1,2 − V4(m
′)/3

)

+

]

+E

[

max
m′∈Mn

(

2Tm′

4,2,3 − V4(m
′)/3

)

+

]

+E

[

max
m′∈Mn

2Tm′

4,2,1

]

+ E

[

max
m′∈Mn

2Tm′

4,2,2

]

.The methods use to bound eah of these terms have already been detailed for other terms: withregard to the two qunatities whih are not entered, we bound it to show that they are negligible(that is of order at most C/n). For the others, we �rst bound eah Tm′

4,l by a quantity of theform C‖Ûn − id‖∞,[0;1], and we apply �nally Inequality (29), as we have already done for Tm
2,afor example. That is why we only give the bounds for eah Tm′

4,l . To begin, the term Tm′

4,1,1 anbe written(36) Tm′

4,1,1 =

Dm′

2
∑

k=1

Dm′

1
∑

j=1

Var(âF̂
j,k|(X−l)l

)

∫

[0;1]

Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2
du.The onditional variane isVar(âF̂

j,k|(X−l)l

)

= Var{ 1

n

n
∑

i=1

ϕk(Yi)ϕj ◦ F̂n(Xi)|(X−l)l

}

,

≤ 1

n
E

[

ϕk(Y1)
2
(

ϕj ◦ F̂n(X1)
)2

|(X−l)l

]

.By Property (3) applied to the sum over j, k of the last quantity, ∑j,k Var(âF̂
j,k|(X−l)l) ≤

Dm′

1
Dm′

2
/n. Besides, we use the mean value theorem to bound the integral of (36) so that(37) Tm′

4,1,1 ≤
Dm′

1
Dm′

2

n
×D3

m′

1
‖ϕ′

2‖2
∞,[0;1]

∥

∥

∥
Ûn − id

∥

∥

∥

2

∞,[0;1]
,whih allows us to ontrol E[maxm′∈Mn

(4Tm′

4,1,1 − V4(m
′)/3)+] as explained previously. Further-more,

Tm′

4,1,2 = Tm′

3

∫

[0;1]

Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2
du,whih leads to Tm′

4,1,2 ≤ Tm′

3 D3
m′

1
‖ϕ′

2‖2
∞,[0;1]‖Ûn − id‖2

∞,[0;1]. The term Tm′

3 is replaed by itsdetailed upper-bound (33), and as a result, Tm′

4,1,2 ≤ ∑4
l=1 T

m′

4,1,2,l. Roughly speaking, we get
Tm′

4,1,2,l ≤ C‖Ûn − id‖∞,[0;1] and apply the previous strategy for eah l = 1, . . . , 4. Let us onsidernow the terms Tm′

4,2,1 and Tm′

4,2,2 whih do not require to be entered. It is usefull to remark thatthe Fourier's oe�ients of h an be written
aj,k = 〈ξk, ϕj〉[0;1] =

∫

[0;1]
ξk(u)ϕj(u)du, with ξk(u) =

∫

A2

h(u, y)ϕk(y)dy.



30 GAËLLE CHAGNYSine the term Tm′

4,2,1 involves the derivative of the projetion of ξk onto Sm′

1
, we use a spei�property of the trigonometri basis: ∑Dm′

1
j=1 aj,kϕ

′
j =

(

ΠSm′

1
(ξk)

)′
= ΠSm′

1
(ξ′k), so

Tm′

4,2,1 ≤
∥

∥

∥
Ûn − id

∥

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1

∥

∥ξ′k
∥

∥

2

[0;1]
.Let us ompute then the derivative of ξk to bound roughly

Dm′

2
∑

k=1

∥

∥ξ′k
∥

∥

2

[0;1]
=

Dm′

2
∑

k=1

∫

[0;1]

(
∫

A2

∂1h(u, y)ϕk(y)dy

)2

du ≤
∫

[0;1]
‖∂1h(u, .)‖2

A2
du = ‖∂1h‖2 .We have thus E[maxm′∈Mn

Tm′

4,2,1] ≤ ‖∂1h‖2
E[‖Ûn−id‖2

∞,[0;1]] ≤ C/n with Inequality (28). Reallnow that
Tm′

4,2,2 = (1/4)

Dm′

2
∑

k=1

∫ 1

0
(u− Ûn(u))4







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)







2

du.We introdue µj = j for even j and µj = j−1 for odd j. Sine h belongs toW 2
per([0; 1]

2, L, (1, 0))and aording to (15),
Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)







2

≤
∥

∥ϕ′′
2

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kµ
2
j







2

,

≤
∥

∥ϕ′′
2

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1

Dm′

1
∑

j=1

a2
j,kµ

2
j

Dm′

1
∑

j=1

µ2
j ,

≤
∥

∥ϕ′′
2

∥

∥

2

∞,[0;1]

L2

π2
D3

m′

1
≤ CD3

m1,max
.Hene, E[maxm′∈Mn

Tm′

4,2,2] ≤ E[‖Ûn − id‖4
∞,[0;1]]CD

3
m1,max

≤ CD3
m1,max

/n2 ≤ C/n as soon as
Dm1,max ≤ n1/3 (we denote by Dm1,max the largest index on the olletion (Dm1)). Following thesame sketh for the last term, we write

Tm′

4,2,3 =

∫

[0;1]
(u− Ûn)3

Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)













Dm′

1
∑

j=1

aj,kϕ
′
j(u)






.and ompute as in the term Tm′

4,2,2:
Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)







2

≤ ‖ϕ′′
2‖2

∞,[0;1]

L2

π2
D3

m′

1
,

Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′
j(u)







2

≤ ‖ϕ′
2‖2

∞,[0;1]

L2

π2
Dm′

1
.This leads to

Tm′

4,2,3 ≤ ‖ϕ′
2‖∞,[0;1]‖ϕ′′

2‖∞,[0;1]
L2

π2
Dm′

1

∥

∥

∥Ûn − id
∥

∥

∥

3

∞,[0;1]
,and we apply tools already used to omplete the proof.
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