Warped bases for conditional density estimation - Archive ouverte HAL
Article Dans Une Revue Mathematical Methods of Statistics Année : 2013

Warped bases for conditional density estimation

Gaëlle Chagny

Résumé

We consider the problem of estimating the conditional density $\pi$ of a response vector $Y$ given the predictor $X$ (which is assumed to be a continuous variable). We provide an adaptive nonparametric strategy to estimate $\pi$, based on model selection. We start with a collection of finite dimensional product spaces, spanned by orthonormal bases. But instead of expanding directly the target function $\pi$ on these bases, we prefer to consider the expansion of $h(x,y)=\pi(F_X^{-1}(x),y)$, where $F_X$ is the cumulative distribution function of the variable $X$. This 'warping' of the bases allows us to propose a family of projection estimators easier to compute than estimators resulting from the minimization of a regression-type contrast. The data-driven selection of the best estimator $\hat{h}$ for the function $h$, is done with a model selection device in the spirit of Goldenshluger and Lepski (2011). The resulting estimator is $\hat{\pi}(x,y)=\hat{h}(\hat{F}(x),y)$ otherwise, where $\hat{F}$ is the empirical distribution function. We prove that it realises a global squared-bias/variance compromise, in a context of anisotropic function classes: we establish non-asymptotic mean-squared integrated risk bounds and also provide risk convergence rates. Simulation experiments illustrate the method.
Fichier principal
Vignette du fichier
DensCondpngRevisionHal.pdf (846.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00641560 , version 1 (16-11-2011)
hal-00641560 , version 2 (26-06-2012)

Identifiants

Citer

Gaëlle Chagny. Warped bases for conditional density estimation. Mathematical Methods of Statistics, 2013, 22 (4), pp.253-282. ⟨10.3103/S1066530713040017⟩. ⟨hal-00641560v2⟩
133 Consultations
583 Téléchargements

Altmetric

Partager

More