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A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A
CONDITIONAL DENSITY

GAELLE CHAGNY®™

ABsTRACT. We consider the problem of estimating the conditional density 7 of a response
vector Y given the predictor X (which is assumed to be a continuous variable). We provide
an adaptive nonparametric strategy to estimate m, based on model selection. We start with a
collection of finite dimensional product spaces, spanned by orthonormal bases. But instead of
expanding directly the target function 7 on these bases, we rather consider the expansion of
h(z,y) = n(Fx'(x),y), where Fx is the cumulative distribution function of the variable X. This
'warping’ of the bases allows us to propose a family of projection estimators easier to compute
than estimators resulting of the minimization of a regression-type contrast. The data-driven
selection of the best estimator A for the function h, is done with a model selection device in the
spirit of Goldenshluger and Lepski (2011). The resulting estimator is #(z,y) = h(Fx (z),y) if
Fx is known, or #(z,y) = h(F(z),y) otherwise, where F is the empirical distribution function.
We prove that it realizes a global squared-bias/variance compromise, in a context of anisotropic
function classes: we establish non-asymptotic mean-squared integrated risk bounds and provide
also convergence rate for the risk. Simulation experiments illustrate the method.

Keywords: Adaptive estimator. Conditional density. Model selection. Non parametric estima-
tion. Warped bases.

AMS Subject Classification 2010: 62G05; 62G07-62G08.
November 2011

1. INTRODUCTION

1.1. Motivation. Assume that we observe pairs of real random variables (X,Y) with joint
unknown density f(xy). The relationship between the predictor X and the response Y is clas-
sically described by regression analysis. But this can also be achieved by estimating the entire
conditional density, that is

n(oyy) = mfi’ig)y) i fx (o) > 0,

where fx is the marginal density of the X, and is assumed not to vanish on the interval of
estimation.

The aim of this paper is to provide a nonparametric strategy to estimate 7, which has to be
both adaptive, fast and simple to compute. Our main ideas are to use warped bases to build
projection estimators and to perform model selection in the spirit of Goldenshluger and Lepski
[GL11].

1.2. State of the art. Nonparametric conditional density estimation has become only recently
a subject of interest, and the adaptive strategies are still rather scarce. To our knowledge, most
of the methods to estimate 7 are based on the principle that it can be seen as a nonparametric
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2 GAELLE CHAGNY

weighted regression. This leads mainly to two directions: kernel methods and projection estima-
tors built on regression-type criterions.

For kernel estimation, Fan et al. |[FYT96| generalize Rosenblatt estimator using local polyno-
mials, while Bashtannyk et al. [HBG96| and then Hall et al. [HWY99| and Hyndman and Yao
[HY02] propose different versions of reweighted Nadaraya-Watson estimator. De Gooijer and Ze-
rom [DGZ03] combine the better side of the last methods, to propose a function which takes only
positive values. Kanamori et al. [TNKO09| study a piecewise linear kernel-estimator using meth-
ods based on quantile regression functions: a family of conditional quantile function provides a
full description of 7. All these estimators involve a ratio: this means both theoretical problems,
as studied in Penskaya [Pen95|, and numerical problems, due to the denominator which can be
close to zero. This leads Faugeras [Fau09] to propose a kernel-type estimator based on the copula
function and on the estimation of the marginal cumulative distribution functions of X and Y.
In a different direction, Gyorfi and Kohler [GK07] consider a partitioning-type estimate. These
procedures have in common to be studied with an asymptotic point of view: consistence and
asymptotic normality are shown. But the adaptive properties like the choice of the bandwidths
for kernel estimator, are studied only in Bashtannyk and Hyndman [BHO1] and in Hyndman and
Yao [HY02].

Adaptation and minimax results have recently been developed. Efromovich proposes a Fourier
basis to build a blockwise-shrinkage Efromovich-Pinsker estimator. The regression setting is first
studied in |Efr07|, while the general case is the subject of |[Efr10al, using characteristic functions
to rewrite 7. Finally, multidimensionality is taken into account in [Efr10b|. Oracle-inequalities
are given.

Such adaptation results are also provided by Brunel et al. |[BCLO7|. They use model selection
methods, based on the minimization of a least-squares penalized contrast introduced by Lacour
|Lac07]. But this contrast, considered also by Akakpo and Lacour [AL11] to deal with dependent
data and inhomogeneous functional classes, does not provide explicit estimator without matrix
invertibility requirements (except when using histogram basis). Moreover the penalty given in
|IBCLO7| depends on the unknown infinite norm of m. It can be estimated but it requires then
strong regularity assumptions. Notice also that recent works of Cohen and Le Pennec |[CLP11|
focus on a penalized maximum likelihood estimator leading to risk bounds for a Kullblack-Leibler
loss function. In the same way of all recent papers, we provide a data driven estimator but with
a new method allowing fast computation, thanks to the fact that we avoid matrix inversion and
'purify’ the penalty function.

1.3. Generality about the estimation method. The data are pairs of real random variables
(Xi,Yi)ieq1,...ny (With n a positive integer), independent and identically distributed (i.i.d.) with
joint density f(x y), supported by a subset A; x Ay of R? (A a bounded interval). We assume
that the marginal density fx of the X; does not vanish, and denote by Fx the cumulative
distribution function (c.d.f.) of these variables, which consequently admits an inverse.

Our aim is to use model selection point of view with a contrast leading to an explicit estimator
and a selection rule which is entirely computable, while satisfying good theoretical properties
under weak assumptions. The first point is achieved by the use of warped bases, introduced by
Kerkyacharian and Picard [KP04] to provide a wavelet thresholding estimator of a regression
function. In our conditional density setting, we precisely define

(1) V(u,y) € [0;1] x Ag, h(u,y) =7 (Fx'(u),y)
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and recover 7 by estimating both h and Fy. The assumption that h is squared integrable leads
to projection estimators of the form

Dy Da
V(u,y) € [0;1] x Az, hpy py(u,y) = DY gy gy © s, (1),

Jj1=1j2=1

with ¢, ® ¥, (u,y) = ¢, (w)j,(y), for different couples (D1, Dy) with (¢, ® 15,);, 4, an or-
thonormal family of functions and aj, ;, estimated coefficients. Then, instead of estimating Fx
over the whole sample, we assume that we observe (X—i)i€{17,,,,n} a sample of variables with the
same distribution than the (X;) and independent of them. Thus, we can define

1 n
Fn A d E E 1X,i§:ca
=1

and propose an estimator of 7 given by:

Y(x,y) € Ay X Ag, 7p,.p,y(2,y) = hp,.p, <Fn($)ay> .

We get thus a development of ©p, p, in an orthonormal basis, whose first coordinate is warped
by F,:

D1 Do

V(z,y) € A1 X A2, Tp, p,(2,y) = Z Z j1,j2 @1 ® Vi (Fn(x)ay> :

Ji=1j2=1
The particular case of known c.d.f. Fx is also studied. In the two cases (known or estimated
Fx), the procedure is particularly simple and fast to compute, since the coefficients a;, ;, are
just empirical means (they do not involve any matrix inversion). The selection rule of the levels
D; and Dy used in a second step is inspired by recent works of Goldenshluger and Lepski [GL11]
and is new in the multidimensional framework.
We give both non-asymptotic results such that oracle-inequalities (proving the adaptivity of
our estimators) and asymptotic rates of convergence for the quadratic risk if the function h
belongs to anisotropic functional spaces. We show that adaptation has no price and that the rate
corresponds exactly to the best bias-variance compromize, with assumptions stated on function
h instead of w. Moreover, on the practical examples, the strategy we propose outperforms the
penalization device of Brunel et al. [BCLOT]: it is faster and leads to smaller risks in most cases.

1.4. Organization of the paper. Section 2 presents the two warped bases estimators (the one
built assuming Fx is known, and the one built in the general case). The performances of each
estimator are studied in Section 3: the functional spaces are described and global risks bounds
and rates of convergence presented. Section 4 is devoted to numerical results. Finally, the proofs
are gathered in Section b.

2. ESTIMATION STRATEGY

All the estimators defined in the sequel are projection estimators. Therefore, we begin with
the description of the approximation spaces (Section 2.1). We proceed then in three steps to
estimate the conditional density m, on A; x As. First, we define a collection of estimators for
the function h (see its definition (1)), by minimizing a contrast on the models (Section 2.2). The
second step is then to ensure the automatic selection of the model, without any knowledge about
the regularity of h. This leads to a well defined estimator h (Section 2.3). Finally, we partially

warp h to estimate .
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2.1. Approximation spaces. Our estimation procedure is based on the assumption that the
function h belongs to L?([0;1] x As), the set of square-integrable functions on [0;1] x Ay, which
is equiped with its usual Hilbert structure: we denote by (.,.) the scalar-product and by ||.|| the
norm. Consequently, h can be developed in any orthonormal basis, and can be approximated by
its orthogonal projections onto the linear subspaces spanned by the first functions of the basis.
For the sake of simplicity, we assume As = [0; 1] in the sequel. The case of any segment Ay can
be easily obtained by making a scaling change. Following the example of Efromovich [Efr99], we
choose the Fourier basis (j, ® ©j,), j,en oy of L?([0;1] X Ayp), defined for u,y € [0;1] by

(2) o1(u) =1, Yk e N\{0}, por(u) = V2cos(2mku), pori1(u) = V2sin(2rku),

and ¢j, ® @j,(u,y) = @j, (u)ej,(y). For an index | = 1,2, we also denote by S,,, the space
) _
{1,...,[v/n/2] — 1} (].] is the integer part). The approximation spaces are then S,, = Sy, X Sp,
for m = (mq1, my) € M, with M,, = Ir(Ll) X IT(LQ). Thus, we have

spanned by {¢1,...,¢p,, }; for Dp, = 2m; + 1, and my an element of the set of indices 7

Sm: mi Xsz :Spa‘n{@ﬁ@@jza jl :17"'7Dm1 j2:17"'7Dm2}7

and the dimension of S;, is D, = D, Dp,,. Notice that for all m; € IT(LZ) (1=1,2), Dy, <+/n
and thus D, <n.

Remark 1. e The basis satisfies || Zfizll EjDzzzl(gpjl ® ©j5)*[loo < D, where ||.[oo is the

supremum of the function on [0;1] x Ag. This is equivalent to the following useful link
between the infinite norm and the L? norm (see Birgé and Massart [BM98] for the proof):

(3) Wt € L*([051] x Az), [t < v/Diny Dino It = /D[]

e For each my, m) € ¥ (I =1,2), we have
(4) Dy, <D,y = Spm, C Sy
l l

Notice that other classical models, such as models spanned by regular wavelet basis, histogram
basis or dyadic piecewise polynomial basis satisfy similar properties. We refer to Barron et al.
[IBBM99|, and Brunel and Comte [BCO05| for a precise description. See also Remark 2 below
about the extension of our results to these models.

2.2. Estimation on a fixed model. We start with the following criterion

n

(5) vt € L2([0;1] x A9) = ) 1= 12— 2 30t (Fu(X0), Vi)
i=1

This contrast is knew and quite far from the regression and density least-squares criterion. The
novelty comes both from the L? norm which stands in place of the empirical norm used in
the classical contrasts (see for example the contrast 40 in Brunel et al. [BCL07]), and from
the presence of the empirical c.d.f E,. To justify this choice, assume for a moment that the
distribution of the X; is known: we can thus plug the true c.d.f Fy instead of its empirical
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counterpart, and compute more easily, for t € L2([0; 1] x As),
E[(t, Fx)] = E[y(h, Fx)] = |t — |l = 2E[(t - h) (Fx (X1), Y1)],

= g -2 / (t - ) (Fx (2), y)m(z,y) fx (2)ddy,
1 X Ao

= [l — ) -2 /[0 b R Gy,
L X Ag

= [tll* = Ial* = 2(h,t = h),

=t —nl*.
This quantity is minimal when ¢t = h. This shows that ~,(., Fx) in the case of known Fx (or
Y (., F,) otherwise) suits well for the estimation of h. We set thus, for each model S,,,

F _ : 7 1 Fx :
(6) hi, = arg min V(b Fn), bt = arg min Y (t, Fx),

or equivalently,
B Dy Dy A Lo
(7) b = D D 5 Pin ® Pins With g, g = = 05 (Fa(X0)) 0 (Y1),
j1=1ja=1 i=1

Fx

and a similar expression for estimator AZX with coefficients a;’s,
9

Finally, we set

in the case of known c.d.f. Fx.

rbF(x,y) = hE (Fu(x),y) and #lXFx (2,y) = hEX (Fx(2),y),

denoted with two super-indexes F (or Fx) to underline the double dependence of the estimator

on this function, through both the coefficients df . and the composition of the first variable by F'x.
Notice the advantage of the contrast we define: we get an explicit formula for the estimator. The
coefficients are empirical means easily computable. They do not involve a matricial inversion
compared to the estimator obtained via least-squares criterion (see for example Brunel et al.
[BCLO7]). Moreover, in the case of known c.d.f. Fy, hlX is an unbiased estimator of the
orthogonal projection of h onto S,,.

2.3. Model selection.

2.3.1. Risk on a fized model. In order to explain which model §,, we should choose, we first
study the quadratic risk of each estimator of the collection, in the simpler case of known c.d.f.
Fx. The loss function naturally associated to our context is the following L?—norm,

Vo € L* (A1 x Aa, fx), [vl3, =/ v*(z,y) fx (z)dzdy,
A1 xAg
with L2(A; x As, fx), the space of squared-integrable functions on A; x As with respect to
the Lebesgue measure weighted by the density fx. We denote (.,.), the corresponding scalar-
product. Notice besides that the following links hold between this norm and the classical norm
previously defined: for t,s € L?([0;1] x As), we compute, using F& = fx,

[EEx (), s = Ml (EFx (), -), s(Fx (), ) = (£, 5)-
The classical L?—norm on A; x Ay can be recovered, under the assumption that fx is bounded
from below by a strictly positive constant. This assumption is standard, see for example As-
sumption As in Brunel et al. [BCLO7]|, or Assumption (Hpgs) in Baraud [Bar02].
For the weighted L?—risk which is used in the sequel, and for each m € M,,, we get
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2 2 . 2
B([[f5em = allf, | = Nl —mhs |, +B |k = alo ™ 5]
®) = Il = hw|* +E [Hhm—hixuz],
where
(9) 7% (2,y) = hp(Fx (2),y) and hy, is the orthogonal projection of h onto S,,

We recover the usual squared-bias/variance decomposition of the risk. The key point is the
difference of behaviour of the two terms: they both depend on D,, but in opposite ways. The
first term in the right-hand side of (8) decreases when D,,, grows, since 7 is better approximated
by its projection when the approximation space grows, while the second term grows with D,

Diny Dy
~Fx,Fx _ _Fx|? _ E § : ~Fx
E“ Tm Tm HfX T  : 1Var Uiz )

Ji=17J2=
| Dy D

1o < 3 SB[l (Fx (X)) g (v)?] < Pralre

n
J1 1j2=1

using Property (3) (see Section 2.1). The best model among the collection is the one which
minimizes the right-hand side in (9), making a trade-off between the squared-bias term and the
variance term. However, it is unknown since h and h,, are not observed. Therefore, an adaptive
estimator of m must make automatically this compromise.

2.3.2. Selection rule. We propose to use a scheme proposed by Goldenshluger and Lepski [GL11]
for density estimation. The adaptive index is chosen as the value which minimizes the following
sum:

il = (mf,mg) = arg min [A(m, )+ 2Vﬁ(m) ,

meMy,

where VF has the order of the variance term:
a D,,.D
(11) VEim = (m1,mg) — o =22
n

with ¢1 is a purely numerical constant, adjusted in practice. The function A(., Fn) is based on
the comparison of the estimators built in the first stage:

% 7 F 2 Foo1
(12) A(m, F,,) = max (Hh —h - V& (m )) ,
mIEMn —+
where 2, = max(z,0), z € R. We will prove besides that A(m, F},) has the order of the bias
term (see Inequality (22)). Thus we get an estimator, explicitly expressed in a warped basis,

(13) #(@,y) = AL L (Fu(a), ).

The L?—norm involved in the definition of A(.,7) is easy to compute, since the functions ﬁﬂ,,
m’ € M,, are expressed with a development in an orthonormal basis (see Section 4 for details).
This advantage has to be noticed compared to other strategies of model selection using the
contrast function or to strategies involving bandwith choice for a kernel.

There are several novelties to underline. First, the warping of the basis for the variable x leads to

explicit and simple coefficients dfl j, for the estimator. The use of a selection device inspired of
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Goldenshluger and Lepski [GL11] is original in the setting of multidimensional model selection.
Note also that the specific factor 2 in the definition of /! plays an important (but technical)

role in the proofs. The "penalty" term V' is entirely computable with the data (with no term
to estimate), up to a purely numerical constant to calibrate. On the opposite, penalization of a
regression-type contrast in this context leads to a penalty which depends on the unknown infinite
norm of 7 (see Brunel et al. [BCL07|, or Lacour [Lac07]).

Finally, let us define also an estimator in the toy case of known c.d.f. Fx:

(14) 7~TO(‘rvy) = }AlFm)I(FX (FX(x),y),

with X selected as the argument-minimum of A(m, Fx) + VIX(m), where we denote by
VEx(m) = coDyy Diny /7, co a numerical constant, which can be different of c;.

3. MAIN RESULTS

3.1. Anisotropic Sobolev spaces. Let us define the functional spaces we consider further
for the function h (even if its index of regularity has not to be known). The choice of the
trigonometric models leads us to consider spaces of periodic functions, that is Sobolev spaces.
We define them directly via Fourier coefficients, keeping in mind that it can also be characterized
via weak differentiability (see for example DeVore and Lorentz [DL93| and Hérdle et al. [HKPT98|
for functions of one variable, and Adams [Ada75| for functions of several variables). Precisely,
our aim is to extend to functions of two variables the characterization of Tsybakov (Lemma A.3,
p.162, [Tsy04)).

Let ¢t € L*([0;1]%). Then there exists a real-valued family (0}, j,);, j,em fo} such that

t= Y. 0ipPi ® @
j1,J2€N\{0}

Recall that the functions ¢; are defined by (2). We say that ¢ belongs to the partial ball with
radius L > 0 and regularity o = (aq, a2) (o € N, [ = 1,2, but not simultaneously equal to zero),
if
2 2 2 L
(15) Z 'ujl,mujzazejhjz < M’
J1,52€N\{0}

with g1, o, = g for even ji, p1j, o, = (j1 — 1)* otherwise. We write ¢ € Wger([(); 1]2,L, ), in the
spirit of the definition of Tsybakov [Tsy04]. These spaces are anisotropic. The function h can
thus have different smoothness properties with respect to different directions.
Let us finally give a useful approximation property of this space. We denote by &, = (5, 1m,) the
orthogonal projection of the function ¢ onto the subspace Sy, = Sy, m,)- We have the following
rate:

It = tml* < Cla, L) (D33 + D3*)

where C'(«, L) is a constant depending on o and L. This inequality is a particular case of Lemma
9 in Lacour [Lac07|, based on papers from Hochmuth [Hoc02| and Nikol’skii [Nik75].

3.2. Case of known c.d.f. Fx. We first focus on the simpler situation of known c.d.f. Fx.
This allows us to derive the results with few assumptions and short proofs. The first theorem
provides non-asymptotic bounds for the risk of the estimator 7y (see its definition (14)). We
recall that the trigonometric models satisfy properties (3) and (4), and that the dimensions D,
are bounded by /n.
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Theorem 1. We assume that the function h is bounded on the space [0;1] x Ag. Then there
exists ¢ a purely numerical constant, and C' a constant depending on ||h||s such that

- . Dy D 2 C
Efiro- i < e {En2 ot <} S

with wEx defined by (9).

The basic outline of model selection (by Goldenshluger-Lepski method in our case) is to
estimate the bias-variance sum and to select the model which minimizes it. Theorem 1 shows
that it is a good strategy: the right model (in the sense that it realizes the trade-off) has been
chosen in a data-driven way and the selected estimator performs as well as the best estimator in
the family {71}}; Fix , m € My}, up to some multiplicative constants and to a negligible residual
term of order 1/n. The constants are given in the proof, which is deferred to Section 5.2.

Remark 2. This result still holds in a more general setting. The choice of trigonometric models
is not a necessary condition. It is sufficient to assume that the models which are used sat-
isfy properties (3) and (4), and have their dimensions bounded by /n, which are very weak
assumptions.

Theorem 1 enables also us to give a rate of convergence for the estimation of 7, under regularity
assumptions for function h. Precisely, the minimization of the left-hand-side of the inequality in
the case of regular functions leads to the following Corollary.

Corollary 1. We assume that the function h belongs to the anisotropic Sobolev ball denoted by
W2 ([0;1]2, L, ), for some fized L > 0 and a = (a1, az) (0 € N, 1 = 1,2, but not simultaneously
equal to zero), with a; —ag +2a1an > 0, and ag — o +2a1a9 > 0. Then, under the assumptions

of Theorem 1,
2a
E [|I7o - 7l | < Cla, Dn =%,

with C(a, L) a numerical constant which depends only on « and L, and & the harmonic mean of
a1 and 9.

The harmonic mean of ay and «ay is the real & such that 2/& = 1/a3 + 1/ay. Note that the

condition ay — ag + 2a3a9 > 0 is ensured as soon as o > 1/2 and as — a1 + 239 > 0 as soon
as ag > 1/2. As the aq are integers, this implies that they are larger than or equal to 1. In this
case, h is bounded.
The corollary means that without knowing « and L (depending on the unknown h), 7y does as
well as the best possible estimator which knows these quantities. It is thus an adaptive estimator.
Since Theorem 1 holds for piecewise polynomials or wavelet basis, the results can be extended
to functions h belonging to anisotropic Besov spaces.

Remark 3. We can connect this result to the lower bound established by Lacour |Lac07]|, over
Besov functional classes, for the estimation of the transition density of a Markov chain. The
estimation of the conditional density is a particular case of that study. However, the regularity
assumptions are set directly on function 7 in [Lac07], and not on function h. The right framework
to relate our result to the one of |[Lac07] is to define weighted regularity spaces, such as weighted
Besov spaces defined and studied carefully in Kerkyacharian and Picard [KP04|. Since the main
goal of our work is to product non-asymptotic bounds for the risk, which do not require such
assumptions, we do not go further in that direction. Thus we only conjecture that the rate of

__2a_ . . .. .
convergence n 2a+2 is probably optimal in the minimax sense, over Besov classes. The adaptive
minimax rate over Sobolev spaces has most likely the same order.
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3.3. Case of unknown c.d.f. Fx. Coming back to the general case, we set the same result as
Theorem 1, with slightly stronger assumptions.

Theorem 2. We assume that the function h belongs to the anisotropic Sobolev ball denoted by
W2..([0;1]2, L, (1,0)), for some fized L > 0, is bounded on [0;1]*, and is C' with respect to its
first variable on [0;1]. We also assume that, for some constants Cy,Cy, C., the trigonometric
models satisfy,

W\ 1/
(16) Vm = (m1,ma) € My, Dp, <C, <W> and Cyln®(n) < Dy, < Cov/n.
Then, there exists numerical constants c and C depending on ||5]| oo [0:1], 1195 [loo,[0:1]5 ||<,0§3) ll oo, 0515
|k, l|Ovh||, and L, such that

Dy, D 2 2 C

~ 2 . F

(17) E[l7-nlf,] < ¢ min {7”“” e WHfX} -

Remark 4. e There exists actually an integer ng, depending on the function h, such that

Inequality (17) holds for all » > ny with a purely numerical constant ¢. But the result
is nonasymptotic, since the inequality holds also for n < ng, taking a constant ¢ which
depends on quantities of the problem.

e Up to this result, the models S,,, and S,,, and their respective dimension have played
the same role. But in the theorem, the dimension constraints (16) are not the same in
each direction. To be totally rigorous, we should denote by Sﬁ,?l the models and by Dﬁ,l@)l
their dimension, for each [ = 1,2. For the sake of simplicity, we keep the first notations
as there is no possible confusion.

As in the case of known Fly, the theorem shows that the best estimator in the family

7T71;—11’F, m € My} is found up to some multiplicative constants for the risk, in a data-driven

way. Brunel et al. [BCLO7]| provide also the same kind of oracle-inequality for their estimator
built by penalization of a regression-type contrast. The assumptions seem first to be slightly
less restrictive: it is only assumed that D,,, < n'/?/In(n). However, the term V! does not
contain any unknown term and is then entirely computable, contrary to the penalty used in
[BCLOT7], which depends on ||7||«. Moreover, replacing this quantity by an estimator requires
in fact much more regularity constraints than the one we get, and leads to a semi-asymptotic
result (see the appendix of Lacour |Lac07] for an example of these conditions). Consequently,
a model selection strategy in the spirit of Goldenshluger-Lepski applied with warped bases has
the advantage of providing an estimator easier to compute than a regression-type estimator and
with good theoretical properties under quite weak assumptions.

Recall that the bound of Inequality (17) is close to the order of the sum of the variance term
and the bias term. It implies that the obtained rate of convergence is likely to be minimax in
most cases. More precisely, we prove the following corollary.

Corollary 2. We assume that the function h belongs to the anisotropic Sobolev ball denoted
by W2,([0;1]%, L, (1,0)), for some fized L > 0, and o = (a1, a2) (y € N, I = 1,2, but not
simultaneously equal to zero) with ay — 2an + 2c19 > 0, and s — g +2aqa0 > 0. Then, under
the assumptions of Theorem 2,

E[IF - ml, ] < Cle, Lyn=2%,

with C(a, L) a numerical constant which depends on o and L, |05 ||, 10:1]5 1193 lloe,0:1] H(pég) ll oo, (0:1]
B, [[01h|l. The quantity & is the harmonic mean of oy and as.
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Even if F'x is unknown, our estimator adapts to the unknown regularity « of the function h.
We also refer the reader to Remark 3 concerning the minimax sense of the result.

4. SIMULATION STUDY

The aim of this section is to illustrate the behaviour of the estimator © and to compare it with
the estimator of Brunel et al. [BCLO7| denoted by 7pcr. Thus, we investigate in the same time
the difference between the classical bases and the warped bases, and the difference between the
Goldenshluger-Lepski method and the penalization device.

4.1. Examples. We propose a simulation study based on the following examples: we generate
samples (X;,Yi, X_i)ief1,....n) such that
e Examples 1: Y; = b(X;) + &;, with the following possibilities. The X;’s follow a uniform
distribution on the interval [0; 1] (denoted by Ujg,1}), or on the interval [—1; 1] (U[_1,y)), or
a standard Gaussian distribution (AMV(0,1)). The g;’s are generated following the standard
Gaussian distribution, or the Gamma distribution (I'(4,1)) with parameters 4 and 1 (the
1 is the scale parameter). We denote by f. their density. The sample (g;) is independent
of the (X;). Finally, the regression function b is b(x) = 2245, b(x) = cos(x) or b(z) = 2.
The conditional density = is thus given by

m(z,y) = fe(y — b(x)).

e Example 2: X; follows a uniform distribution on [0;1], Y; a standard Gaussian distri-
bution, and X; is independent of Y;. The conditional density is just the density of the
variable Y;.

e Example 3: Y; = b(X;)+0(X;)e;, with a uniform distribution on [ ; 1] for X, the previous
Gamma distribution for €; (which is independent of X;) and o(x) = /1.3 — |z|. Similarly
to Examples 1, the conditional density is

m(z,y) = fely — b(x)/o(z))/0().
e Example 4: The X; follows a uniform distribution Uy}, and given X; = z, Y; follows
the Gaussian mixture 0.5N (8 — 4z, 1) + 0.5N (8 4+ 4x,1). The function 7 is the density
of the mixture.

Examples 3 and 4, and some cases of Examples 1 have also been studied by Brunel et al. [BCLOT7],
while Example 2 is proposed by Efromovich [Efr07] (p.2526).

4.2. Remarks about the implementation and results. To implement each estimator 7 and
7oL, we use the trigonometric basis. For each sample of data (that is for each computation of
the estimators), we calibrate the set A; over 95% of the variables X;: we choose to eliminate the
smallest values (2.5%), and the largest values (2.5%) of the data to avoid the side effects. We
repeat this method to define Ay with the variables Y;.

For our estimator 7, we have to compute the sum A(m, Fy,) + 2V (m) for each m = (my, my).
Notice that the quadratic norm in the definition of A(m, E},) (see (12)) is simply equal to a sum
of squared-coefficients. For example, if m A m' = (mq, m}),

. D,; Dy N
Wy b = 30 30 (a)”

J=Dm; +1 k=1

A large number of simulations allows us to calibrate the constant in the definition of V: ¢; = 0.2.
The estimator 7pcr of Brunel et al. [BCLO7] is defined as a penalized least-squares contrast
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estimator. The penalty is pen(m) = Ko||7||oo Dy Dy /1. We put Ko = 0.5 like in [BCLO7] but
we do not replace |||/« by an upper bound. To have a real data-driven procedure, we estimate
it by taking the supremum of the values of a least-squares estimator on a fixed model S,, on a
rough grid, with m = [(In(n) — 1)/2].

Figures 1 and 2 illustrate the visual quality of the reconstruction, for a case of Examples 1, and
for Example 4. We do not observe significant differences between the two estimators, which both
behave quite well. However, the computation of Tpcr requires much more time than the one
of 7, probably because of the presence of a matricial inversion, consequence of the least-squares
contrast. The warped-bases estimator can thus advantageously be used for estimation problems
with large data samples (data deriving from domain such as physics, fluorescence, finance...).

(a) m (b) 7 (¢) TBCL

7

T TBCL

FIGURE 1. Plots of true function versus estimators, Examples 1, with X; i.i.d.
Upo,1y, €i 1.i.d. N(0,1), and b(x) = 22 + 5 with n = 2000 observations. First line:
(a) true function m, (b) estimator 7, (¢) estimator 7pcr. Second line: plots of
y+— 7(x,y) (full line), y — 7(x,y) (left, dashed dotted line) and y — 7oL (z,y)
(right, dashed dotted line) for a fixed x. Third line: like the second line, for
another value of z.

For sample sizes n = 200, 500 and 2000, we give in Tables 1 and 2 the estimated values of the
risk E[||# — 7||3], with |.||2 the quadratic norm on L?(A; x Ap), and ## = (7Fpcr)+ or (7)4. It
is not difficult to see that the choice of the positive part of both estimators can only make their
risks decrease. The estimation of the expectation is done over N = 100 replicated samples, and
the quadratic norm is approximated using subdivisions of A; and Asg (see Brunel et al. |[BCLO7],
Section 5.1, for details about the formula).

The risk of our estimator 7 is often better than the one of the penalized least-squares estimator
7pcr. We indicate in those cases (in parenthesis) the percentage of improvement in the two
tables: it can be quite important (up to 75%). Precisely, in Table 1, one can notice that for the
sample size n = 200, there is as many cases where the risk of 7 is better than the one of 7pcy, as
the opposite case (risk of 7 larger than the risk of Tpcr). However, for the larger sample sizes
n = 500 or n = 2000, 7 has a smaller risk in 89% of the situations of Example 1 (see Table 1).
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0 TBCL

FiGurE 2. Plots of true function versus estimators, Example 4 with n = 2000
observations. First line: (a) true function 7, (b) estimator 7, (¢) estimator Tpcr.
Second line: plots of y +— 7(z,y) (full line), y — 7(x,y) (left, dashed dotted line)
and y — Tpor(z,y) (right, dashed dotted line) for a fixed x. Third line: like the
second line, for another value of z.

To conclude this section, let us stress out two main advantages of building an estimator of
7w developed in warped bases, and selected with a Goldenshluger-Lepski strategy, in practice:
first, its expression is explicit, fast and simple to compute (much faster than the least-squares
strategy). Then, on top of its novelty and simplicity, it seems to bring risk values which are
smaller than the least-squares method.

5. PROOFS

In all the proofs, the letter C' denotes a nonnegative real that may change from line to line.
We also denote by ||t]|o0,4 the infinite norm of a function ¢ over a set A, by ||t]| 4 its Hilbert norm,
and by (.,) 4 the associated scalar product.

5.1. Preliminary result. Let us start by setting a result which is the key argument in the
proofs of the two main theorems. We consider the centered empirical process defined by

(18) Vi € L2(0;1] % Ag), vn(t) = 3 H(Fx(X0), i) — E [t (Fx (X,), Y0)].
=1

The aim of the following proposition is to control the deviations of the supremum of this process
on the unit sphere of S,,

(19) S(m) = {t € Sm, [It] =1}.



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 13
b(x) € X || n = 200 500 2000 | Method
2 +5 N(0,1) Upp,) || 313 2.89 1.49 TBCL
4.12 1.74 (—a%) 0.81 (—a5%) T
U[_l;l} 6.63 5.36 3.96 TBCL
6.22 (—6%) 4.14 (—23%)  2.D8 (-53%) T
N(0,1) || 26.94 23.89 22.61 TBCL
24.05 (-11%) 20.02 (—16%) 8.40 (—63%) T
r4,1) U[O;l} 1.56 1.27 0.77 TBCL
1.42 (—o%) 1.01 (—2%) 0.68 (—12%) T
U1, || 363 2.98 1.93 TBCL
5.18 2.53 (—15%)  1.90 (—2%) T
N(0,1) || 14.41 13.39 12.20 TBCL
12.55 (—13%) 10.18 (—24%) 6.20 (—19%) T
cos(z) N(0,1) U,y || 2.06 2.36 1.38 TBCL
2.34 0.92 —61%)  0.43 (—69%) T
U1, || 3.61 5.18 2.43 TBCL
5.43 1.65 (—es%)  0.81 (—69%) T
N(0,1) || 9.87 8.06 4.53 TBCL
14.64 6.26 (—22%)  3.20 (—67%) T
r'4,1) U[O;l} 1.02 0.80 0.45 TBCL
0.69 (-32%)  0.49 (-30%)  0.32 (—20%) T
U[_l;l} 1.83 1.86 0.97 TBCL
1.27 (—31%) 094 (—120%)  0.68 (—30%) T
N(0,1) | 5.48 4.92 3.10 TBCL
4.43 (—19%)  3.93 (—28%)  2.DD (~18%) T
1’2 ./\/(0, 1) U[O;l} 2.49 2.48 1.36 ﬁBC’L
2.89 1.35 (6%  0.60 (=56%) T
U1, || 499 5.72 2.45 TBCL
5.39 2.03 (—e5%)  0.88 (—64%) T
N(O, 1) | 13.99 9.02 4.35 TBCL
23.21 14.92 8.72 T
r'4,1) Ujo;1) || 0.98 0.98 0.57 TBCL
0.88 (—10%)  0.60 (-38%)  0.54 (—5%) T
Z/l[_l;l} 2.13 2.36 1.06 TBCL
1.44 (—32%) 1.23 (—as%)  1.02 (—a%) T
N(0,1) || 7.98 6.31 3.23 TBCL
14.13 7.53 4.61 T

TABLE 1. Values of MISE x100 averaged over 100 samples, in Examples 1 (re-
gression models) for the estimators 7 and 7oy, with percentage of improvement
(in parenthesis) of the warped-bases method with Goldenshluger-Lepski selection
(7) compared to the least-squares method (Tpcr)-

Proposition 3. Under the assumptions of Theorem 1, for all § > 0, there ezxists a constant
C > 0, depending on ||h||, such that,

, D,y D,y
sup v (t) —2(1+ 25)% <
+

teS(m’)

E

s |a

max
m'eMy,
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Example || n = 200 500 2000 Method
Ex 2| 1.9 1.97 1.07 TBCL
2.52 0.65 (—6m%)  0.27 (—75%) T
Ex3| 1.34 1.19 0.63 TBCL
1.48 1.04 (—13%  0.69 T
Ex4 | 11.72 11.85 10.82 TBCL
10.21 (—13%) 10.49 (—11%) 10.13 (—6%) T

TABLE 2. Values of MISE x100 averaged over 100 samples, in Example 2,3,4 for
the estimators 7 and 7pcr, with percentage of improvement (in parenthesis) of
the warped-bases method with Goldenshluger-Lepski selection (7) compared to
the least-squares method (7pcr).

Proof of Proposition 3. We first bound the maximum by a sum:

B | max  sup 120 -S| < Y0 B |( sup s20) - els) 22
m'eMy, n n . — n N 5

tES(m’) m,EMn tes(ml) n

with the abbreviation ¢(§) = 2(1 4 2§) and we apply the following concentration inequality.

Lemma 4. Let &, ..., &, be i.i.d. random variables, and define v,(r) = 237" (&) —E[r(&)],
for r belonging to a countable class R of real-valued measurable functions. Then, for § > 0, there
exist three constants ¢, | = 1,2,3, such that

(20) E [<§272(Vn (r)* — 6(5)H2>J = a {%eXp <_C25HTHz>
+ i e (—esCOVAR ) |

with, C(6) = (V1+d—1)A1, ¢(6) =2(1 +20) and
sup [|7]|eo < My, E [sup |1/n(7‘)|} < H, and sup Var(r(&)) < wv.
rerR reR rerR

Inequality (20) is a classical consequence of Talagrand’s Inequality given in Klein and Rio
[KRO5]: see for example Lemma 5 (page 812) in Lacour [Lac08|. Using density arguments,
we can apply it to the unit sphere of a finite dimensional linear space, that is S(m’), for our
problem. We replace also the functions r by r; : (x,y) — t(Fx(x),y), and compute the constants
Mi, H and v. Notice first that [|r¢]|cc < [|t]|co, We deduce from Property (3) that we can

D, _D,., )
set My = /Dy Dy It € S(m'), it can be written t = > . 1" >3, _F bjrp; ® ¢, with
Zj’k b?,k = 1. So, using the linearity of the process, and Cauchy-Schwarz’s Inequality, we get

D,, _D,,
SUDtes(m/) vn(t)? < Dt Dokt v2(p; ® ¢r). We use anew Property (3) to define H?:

g 2 D,, D
1 mh Ym/
E [ gy )vr%(t)] <Y SVar (o (Fx (X)pr(1i) < 2 = 2

Finally, Var(t(Fx(X1),Y1)) < E[t2(Fx(X1),Y1)] < [|t]*|hllcc = [|lloo := v. We just replace the
quantities M, H and v by the values derived above in Inequality (20):
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Z E ( sup Vn(t)2—c(5)M) ]
"

mEM,, teS(m’) n

1 D, D,
< Z - exp <—62Dm/1Dmf2) + Z TQ exp (—03\/5)
m/'eEMn m/eEMp
It remains to remark that the first sum is a constant and that ), M, Dm’l Dmé < n? to conclude
the proof.
O

5.2. Proof of Theorem 1. For the sake of simplicity, we denote in this section by m the selected
index /X, by V the penalty VX, and by A the quantity A(., Fx). Let S,, be a fixed model in
the collection indexed by M,,.

5.2.1. Main part of the proof. We decompose the loss of the estimator as follows:

S SN ES N B S
By definition of A and m,
P — hH2 < 3(A(m)+ V() + 3(Am) + V(m)) + 3 Hil,f;x - h‘ :

. 2
< 6(A(m)+V(m))+3 thgx . hH .
We have already bounded the risk of the estimator on a fixed model (see Section 2.3.1, Inequalities
(8) and (10)), therefore, by definition of V', we get

Dy, D

(21) E [Hﬁgx - hm < 3E[A(m)] + (6er +3) =222 4 3|, — h]*.

To pursue the proof, we have to control the expectation of A(m). By splitting the norm ||iALZ)f —

ilfj;m, |2 for m, m’ € M,,, and using the definition of A, we get
N 2 / . 2 /
A(m) < 3 max [HhF)f — hm/H — V(m)] +3 max |:Hhm/\m’ _ hF;/c\ /H _V(im )]
m/'eEMy, m 6 + m'eMpy mAm 6 +

+3 mI’rg.}\)/l{n ||hm’ = Nnamy ||2 .

The three terms of the above decomposition are studied in the following lemmas, proved just
below.

Lemma 5. Under the assumptions of Theorem 1, there exists a constant C' > 0 such that, for

m e M,,
(a) E| max HiLFi‘ —hme2 _ Vi) < ¢
m'eEMy, m 6 + ~n’

) ]

Lemma 6. Under the assumptions of Theorem 1, there exists a constant C > 0 such that,

ml,lé%(n 1 Ar — hm/\m’”2 < 4| hy — hHZ'

IN

(b) E [mrrgjn <HhmAm/ -
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These inequalities show that

C

n

(22) E[A(m)] < — + 4|7 — hl|*.

Gathering this with Inequality (21) ends the proof of the Theorem.

5.2.2. Proof of Lemma 5. To simplify the notations, we denote by T}, = ||iL5X — hpl|? for p = m/

orp=mAm, and by U, = (T, — V(m/)).

Inequality (a). We compute first classically

, D Do L Dot Do
(23) AEX — h|| = afx —a, = V2(p; @ pr) = sup v2(t)
m’ m - gk gk ) = n\Pj & Pk) = p Vp(l),
j=1 k=1 j=1 k=1 teS(m’)

with v, the empirical process defined by (18). Thus,

!/
E [ max Um/} =E | max sup vA(t) — Vim) ,
m'eMy, m'eMn \ teS(m!) 6 N

and Inequality (a) of the lemma is proved by applying Proposition 3.
Inequality (b). We have to distinguish several cases, depending on the value of m A m/:

maXm/ e M, Um/\m’

< max Umam! + max Umam! + max Umam! + max Umnam? -
m'eMy, m/'eMy, m/ eMy, m/eMy,
m) <my,mH<ma m1<m/,ma<m) mj <my,ma<m) m1<m/y,mH<ma

e First term: m} < my and m/, < mgy. In this case, m Am’ = m’. Thus, we bound roughly

m'eMy, m'eMy,
mh <mamly<m

E max Uprm' | <E [ max Um/} ,

and use Inequality (a) to conclude that this term is bounded by C'/n.

e Second term: my < m} et mo < mh. Here, m Am’ = m. Using V(m) < V(m') (because

Drny < Dy, [ =1,2), we have,

E max Unrm' | <E max (Tm — M) =E [(Tm — M) ] ,
m/eMy, m'eMn, 6 + 6 +

m1<m),ma<mi my1<m),ma<mj

and it can be seen as a consequence of Proposition 3 and of the beginning of the proof

of Inequality (a) that this last term is bounded by C/n.
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e Third term: m) < mq et ma < mb. Here, mAm' = (m/, ms). We use thus V((m/}, mz)) <
V(mf, mb) to get

‘/((1 lla ”LQ))
E U, ’ < E T, — s
n%%(n mAm > mI’IS\)A(n ( (mf,ma) 6 .
m) <my,mo<ml m} <mi,ma<ml
5 V((mhms))
< E |:<T(m’17m2) - é .
m’IEI,(ll) +

The last term is also bounded by C/n, using a slightly different version of Proposition
3 (take the maximum only over m) € 1'7(11) instead of over m € M, and replace m by
mAm).
o Fourth term: my < mj et m)y < mg. We deal with this case by using the same arguments
as for the last case.
We conclude that E[max,, e, Unam] is upper-bounded by C/n.
O

5.2.3. Proof of Lemma 6. Following the same lines as in the proof of Lemma 5, we distinguish
four cases:
e m) < my and m) < msy. For such couples (mq,ma) and (m}, m}), [|hm — hmpm||* = 0.
e my < m) et my < mh. We notice first that ||y — Ry |2 = | — Bnl|? < 2|/ By —
h||> + 2||h;m — h||?. Since the models are nested in each direction (see Property (4)),
we have Sp, = Sy X Smy C Sy X Sy, = Spy. Consequently, by, € Sy, and by the
definition of the orthogonal projection onto S,,/, we get ||h,y — h| < ||hy — h||. This
leads t0 ||Am — Pupmy |2 < 4l|hm — B2
e m) < my et my < mf. To deal with this case, we use first the following remark: if
t belongs to L%([0;1] x Ag), then for all u € [0;1], y — t(u,y) belongs to L?*(A3) and
y € Ag, u — t(u,y) belongs to L%([0;1]). Moreover, denoted by G (respectively G2) a
closed linear subspace of L?([0;1]) (respectively of L?(As)), and by Il the projection
operator onto a subspace G, the following equality holds:

g, xaat = g xr2(a,) (2o xest) -

In our setting, we thus compute
2
| = R ||* = HHSm/1><L2(A2) |:HL2([0;1])><Sm/2h = Hr2((01])x S, h] H ;

2

IN

2 HHL%[o;u)xSméh - hH2 + 2| g o) s, , b = ]
< 4| Maeyesn,h— A < Ao —BIP,

where the inequalities of the last line are obtained by noticing that S,,, C Smé and that
Sm, C L%([0;1]), and by using the definition of orthogonal projections.

e my < mj et mh < mg. This case is the symmetric from the latter, and can be thus
handled similarly.
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Gathering the bounds of the four cases and taking the maximum of the four upper-bounds lead
to the conclusion:
max ||h,, — hmAm/H2 < max {0,4||hm — h||2} = 4|hy, — h||2.
m/'eEMn

O

5.3. Proof of Theorem 2. To simplify the notations, we write in this section A(m) to replace

A(m, F,), V for VF, and 1 instead of /mf. The main idea of the proof is to recover the

framework of the proof of Theorem 1. The computatlon are more technical, since the estimator

7 =hE(F (F'(.),.) depends doubly on F'. We denote it by 7 7T F and coherently, we denote by 7rFX Fx
m

the estimator previously studied, that is 5. We also mtroduce the following mtermedlate
(24) V(x,y) € Ay x Ag, #7575 (@, y) = BE (Fx (2),y).

These notations suit also well for a fixed index m € M,,. We denote by E[.|(X_;)] the conditional
expectation given the sample (X_;);=1 ., (the conditional expectation will be coherently denoted
by Var(.[(X_;))). A key point is the following decomposition which holds for any index m:

A r2. <63k Tm, with
Ix 1=0 11
Fx 12 F ~Fx ,F'x |2
T(;n - ”7'(' _7T7TLXHfX + ”7'(' >~ _7T o X”fx’ 9
T = Hﬁixfx _ ﬁ-ﬁyFX _E |:7I-FX7FX _ AF Fx I(X_ )l] H

29 g

AP Fx _ AFF E[FFX_ FF’ ]H

m

el = e gl

Let us remark that 7" is the bias-variance decomposition for the risk of an estimator 7TFX ’FX

and has already been studled (see Section 2.3.1). The sketch of the proof is now to decompose
the loss function, using these intermediates and the definition of A and V, and then to bound
each of the terms by CD,y,, Dy, /n or to center them (so as to show they are negligible).

5.3.1. Main part of the proof. We begin by introducing the intermediate estimator defined by
(24) in the loss of our estimator:

~A A 2 ~A A N ~A A
P R e
L A 2 2
e - £ ool ol
Ix fx

N . s 2
- 3T?+3T£’"‘+3Hh§l—hH .

The last term can be itself decomposed, by construction of A, V| and

e A I A
< 3(A(m)+V(m))+3(A(m)+V(m))+3Hl}£—
= 3(A(m) + 2V (m)) + 3 (A (1) + 2V (1)) +3“E£—h“2—3V(m)—3V(m),
< 6(A(m) + 2V (m)) — 2V (in +3HhF hH
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Furthermore, |hE — h||? = |#5™* — x||2. = 377" + 3T + 3T7". Consequentl
» m = ITm fx — 241 3 0 - q Y,

(26)

PPN 2 . N
A F wa < 3T 4 3T — 3 % 2V (1) + 3 x 6 (A(m) + 2V (m))
X

m
+3 % 3 x (3T + 315" + 3T3")

where the terms 7", 1 = 0,...,4 are defined by (25). We split the term A, first in a similar way
as in Theorem 1. Let (m,m’) € M2,

~

- 2 - 2 - 2
hE, - h,ﬁAm,H <3 th; - hmH 4 3| — B |2+ 3 Hhmw - h,me,H .

But we immediatly try to recover the splitting terms defined by (25). Let us remark that an
analogous relation to (23) holds, for a different empirical process: for p =m or p = m A m/,

| =it || = sup 72(t), %(t)%it(mxi),m) B[t (Fx(X,),Yi)

teS(p) i—

for a function t € L2(]0; 1] x A3). We recover the previous empirical process by the decomposition
P2(t) < 202(t) + R2(t), with R, (t) = (1/n) 0 t(Fu(X)), Vi) — t(FX(XZ-),Y-) Moreover, if t
belongs to S(p), we have already written ¢ = Z.Dpl ZkD”l 0,10 ® @r, with Z ZD” 6’2
Usmg this expression, Cauchy-Schwarz Inequality, and the definition of the coefﬁments afk or

J’k yield sup;es(p) R2(t) = Z]Dpi kDp21( fk - afjj)Q The conditional expectation of a aj = afjj
is introduced to get sup;esp) RZ(t) < 2TF + 2T%. Consequently,

hy — hE ’ <2 sup (vn(t))? 4 4T + 4TP.
[ = 5]
teS(p)

By substracting V (m'), taking the maximum over m’ € M,, and integrating give an upper-bound
for E[A(m)]. We introduce it into (26) to obtain:

[

< 36V(m) + 2TE [T + T + 15" + 3 max ("
m/'eEM,,

+3E [(Tgn - V(m))J +3E [(Tf’ - V(m)>+]

V(m') o V()
+6E | max sup (v (t))? — ———= +6E | max sup  (vn(t))” —
m'eMp (tES(m’) 36 N m'eMn \ teS(mam!) 36 N
!/ !/
+12E | max (T3 — Vim) +12E | max (T3 ™ — Vim)
m/'eMp 72 i m'eMy 72 i
/! !
+12E | max (717" — Vim) +12E | max (17 — Vim) .
m/'eMy, 72 + m'eMp 72 +

We bound each of these terms. Some of them have already been studied: recall first that

Dy Dy,

E[1§"] < g = + =
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using (8) and (10). Moreover, applying twice Proposition 3 shows that

E [ max ( sup  (vn(t))? —Vo(m,)) ] < 97
+

m'eMn, teS(m’) n

E| max [ sup (vn()*—Vo(m)| | <
m'eMn \ teS(mAm!) i

with Vo(m') = 2(1 + 20) D,y Dy /n. Choosing ¢; (see the definition (11)) larger than 2(1 +
20), these inequalities hold with V' in place of V4. Finally, we have proved in Lemma 6 that
max, e, |hms — R |2 < 4]|hm — h||?. Taking into account the previous inequality (A) for
the risk, we get,

e|
(27) +3E [(Tgn — V(i ] +3E [
12K [mné%(n< _ Vi ) } ~|—12E[ <TmAm - /)>+]

V /
+12E [ max ( > } + 12E [ max < TmAm! _ )> ] .
m/eM,, m'eMy, +

It remains to bound the terms 7;™, [ = 1,2,3, 4 or their centering versions, by quantities of order
at most Dy, Dy, /n. Let us first notice that, for | = 2,4,

E [(Tlm - V(m))J <E [mrré%( (T{” - V(m’))J ;

and then use the lemmas just below, whose proofs are deferred to the following sections.

I

s Dy, Do C
ﬁIf’F—WH ] < 36V/(m) + 27— 9T [1" + T3] + —

fx

m }+(12+27)Hh —hl?

Lemma 7. Assuming that the models are trigonometric, there exists a constant C depending
only on ||¢h||ec such that, for m € M,
D3 D
E [T < - "2
[ 1 ] — n2
Moreover, the following inequality holds, if Dy,, = O(v/n/In(n)), for ppy =m' or ppy = mAm/,
and for a constant C' > 0
/ C
E [ max <T1pm - Vl(m/)) ] < -,
/ +

m'eMy, n

with Vi(m') = k1 Dy Dyy /1, and k1 a constant depending only on [|¢5||e.-
If D,,, = O(n'/?) in particular, the first inequality of Lemma 7 leads to E[T]"] < CDjpn, Dy, -

Lemma 8. Assuming that the models are trigonometric, there exists a constant C, which depends
on [0 |0, [0:1], such that

E [ max (sz’ _ Vg(m/))+:| <o)

m'eMy, n

with Va(m') = /42Dfn,1 Dy, In(n)/n?, and kg a constant depending also on 1125 Il oo, 011

Assuming that D, = O(n'/3/In?3(n)), we have Va(m') < V(m') := 15Dy Dy /10 (K
constant independent of h). The inequality of Lemma 8 still holds by replacing V5 by Vzb.
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Lemma 9. Assuming that the models are trigonometric, and that h is C' with respect to its

first variable on [0;1], there exists a constant C' depending on ||<,0§3)||oo, Il1h]| and ||O1h|| (01 is the
derivation operator with respect to the first variable) such that, for m € M,

1 D D? D7
E[T§”]§C<—+ O ";1>.
n n n n

Moreover, the following inequality holds, for p,, = m' or p,y = m Am’, for n > ng(h), and
assuming Dy, = O(n'/3) and D,,, > cIn*(n) (for a constant ¢ > 0) for each m,

Pt b / c
m _ < _
. [mlllé%(n <T3 Va(m )>+] —n’

Dmll D,/

with Vz(m') = K3—L—=2, K3 a constant independent of h, and no(h) a nonnegative integer
depending on the function h.

If D,,, = O(n'/?) in particular, the first inequality of Lemma 7 leads to E[T§*] < C Dy, Dy, /7.

Lemma 10. Assuming that the models are trigonometric, that h is C* with respect to its first
variable on [0;1] and belongs to the anisotropic Sobolev ball denoted by W2,,.([0;1]%, L, (1,0)), and

per
that for all m € My, Dp,, = O(n'/3/In*3(n) and Dy, > cIn®(n) (for a constant ¢ > 0), there
esists a constant C, which depends on |3 oe o> 164lor, 16 oo o ], 10uR], and L
such that, for n > ny(h),

’ In n)
[ e (177~ vin1) | <)
|:m1’léa/\)/l(n 4 4(m) +:| B n
with Vy(m') = K4Dpy Dy [0, and k4 independent of h, and ni(h) a nonnegative integer depend-
wng on the function h.

To conclude the proof, we choose the constant ¢; larger than x; (I = 1,...,4), to have V(m’) >
Vi(m) (or V?(m') for I = 2): this allows to apply the inequalities of the lemmas with V and to
use it in Inequality (27). We obtain then the result of Theorem 2.

O

5.3.2. Technical tools for the proof of Lemmas 7 to 10. Key arguments for the proof of the
lemmas are the properties of the empirical cumulative distribution function F, of the sample
(X_1);. First, let U_; = Fx(X_;) (i =1,...,n). Recall that it is a uniform variable on [0;1]. We
denote by Un the empirical c.d.f. associated to the sample (U_;)i=1,... ». Let us keep also in mind
that for all u € [0;1], Fn(F)zl(u)) — U, (u) and that the random variable ||F}, — Fx||o.4, has
the same distribution as || U, — id||oo,[0;1) (With id the function such that u +— u). In particular,
we get thus

B[afilC] = [ oo auasmhtu, iy
;L X A2

We also recall some inequalities to control the deviations of the empirical c.d.f U,. Dvoretzky,
Kiefer and Wolfowitz [DKW56] established the first one:

Proposition 11. For any A\ > 0, there exists a constant K such that

P <Hﬁn — idHoo 1] > )\> < Kexp (—Zn)\Q) .

By integration, we deduce then other bounds:
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Proposition 12. For any integer p > 0, there exists a constant C,, > 0 such that
. P C
(28) E[ U, —z‘dH } < r
00.[0:

= np/27
For any k > 0, for any integer p > 2, there exists also a constant C such that

R p/2 _
o 8| (Jo -l e |0 w2
00,[0;1] n N
Moreover,
2
(30) E ( —de HM) ] <Cn727",
J051] n

Inequality (30) is a slightly more precise version of Inequality (29) in the case p = 2.

5.3.3. Proof of Lemma 7. The first part of the lemma is to bound E[7]"]. Using the definition
of #F%Fx and #7F% leads to

. g . g 2
Ty = ||dy = hfy —E b = B (X0 |
The decompositions of the estimators in the orthonormal basis (¢; ®¢y) yield T{" =, k{(&fﬁj -
. Fx A
fk) E[%f - aj7k’(X—l)]}2' Thus,
(31) E [T} |(X ZVar<]k—a]k|( o).
We work out the conditional variance for any couple (j, k):
1 .
Var (afy —af) [(X-0) = =Var (9 (Fx (X)) en(¥1) = 5 (F(3X0)) (V) | (X))
1 . 2
< 2620 {& (P00 — 05 (Fulx) } 10C00

We apply the mean value theorem, sum over the indices j and k, and remark [|¢}|loc 0;1) <
Dy 95 ll00,j0:1) (Property of the trigonometric basis):

7712

Zwk Z 165 g |

00,[051] 7

E 17" [(X-1)1]

IN

ooAl

2

~

_Fn

3
Dy,

A

= H90,2||go,[0;1]

00, A '
It remains to use Inequality (28) of Proposition 12 with p = 2 to bound the expectation:

D3 D,,
E[17"] < C||90/2||io,[0;1]#2

This completes the proof of the first inequality. For the second, let us begin with Vi (p,) <
Vi(m'). Therefore E[max, e, (T7™ — Vi(m')s] < Emaxenm, (T7™ — Vi(pm))+]. In the
sequel, we simplify the notations by setting p = p,,. Similar arguments than the ones used to
get (23) lead to TY = supegp) (v (t))? with
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n

> (HFx (X0), Y) = HFu(X0), YD) ) — B[ (H(Fx(X0),Y2) = t(Fu(X0),¥0)) [(X-an ]

i=1

1
n

a process which is centered conditionally to the sample (X_;);. Thus we apply Talagrand in-
equality (20), as in the proof of Proposition 3, but conditionally to (X_;);. In this setting the
key quantities are such that

p il < My B [ ——— \<X_l>l] -
teS(p) teS(p)

n

1
and sup — ZVar (re( X5, Y2) (X)) < vg.

We compute

3/2 11/2
Mla—”@zH [051] Dp{D/ ooAl’
H = 5 19505 o) D D || F = FXHooAl, vy =nHZ,
and obtain thus for § > 0, E | | sup (v2(t))” —2(1+20)HZ, | |(X_1)
teS(p) N

2

02(5)

<o (5

Here, Cj is a random constant, which depends on ||[Fx — ls'n||o0 4, and C is purely numer-
ical. But Cp can be also bounded by a fixed quantity, since the infinite norm is smaller
than 1. Thus we write anew C in the sequel. We choose 6 = klIn(n) (k > 0), so that
C(6) = 1. We put now p = m’ (The case p = m A m’ can be handled similarly). We have
thus E [ max (Tf"b’ — (1 + 2k In(n)) H? m) ](X_l)l}

A

m'eEMn,

< Y E[(ry -2 a1,

m/eMn,
< od,-0x Z Dg@ﬁDmé—kexp(—C\/ﬁ) Z Dfn’le’z
- meM, wem, " 7
< C {nl_C“ +nexp (—Cv/n)},

by using just that D,,, = O(y/n) (I = 1,2), and that the cardinal of M,, is smaller than n. The
last bound is itself smaller than Cn =1, if we choose x large enough. We then notice that, for any
a, >0

my

2(1+4 2k ln(n))Him/

IN

D3, D, In(n)
Grs H‘p/ZHio,[o;l] — ‘

n ooA1

D3, D, In(n)
/112 my T My 2
6k H%Hw[o;u : T <an + 1||Fn—Fx||oo,Alzan) :

IN
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Choosing ay, = +/31In(n)/n, and using D, = O(v/n/In(n)),

/
my

IN

201+ 2 ln(m)H2,, < 126 [ @b 0y —"e 4 O,

= Vim)+Cls _pe

|ﬁn_FX ”oo,Al >an’

VAL >am”

Besides,
m/ / m/ 2 R
E [(Tl — Vi(m ))J < E [(Tl — 91+ len(n))Hmm,)J +E [01”Fn_FX”wVA12an] ,
< E [(T{”" — (1 + 2w In(n))H? m) } +Cn73,
’ +

with the inequality of Proposition 11. To conclude, -, /. E[(T]™ — Vi(m))4] < C/n.
O

5.3.4. Proof of Lemma 8. For convenience, the constant ko in the definition of V4 is splitted
into two parts, that is ke = kk’. The first step is to write E[max, e, (19" — Va(m')) 4] <
> mrem, EI(TT" ' — Vo(m'))4]. Then it is enough to bound this quantity for each index m’. We

write in a shortened form the sum "> 7.~ ml ": ">2;" (and the analogous for Zk I ) We compute

= [ (0 ) = B (o) o)

5"
—E VIF/ (Fx(z),y) — hE, (Fn(l’)’y) ’(X—l)l]>2 fx (z)dzdy,
(

N /Alzz i~ [ f’f’ X‘l)lD <df’,k’ —E [df;,k’ \(X—l)zD

3.g" kK

< (130 Fx(@) = 93 0 Ful@)) (10 Px(@) = gy 0 Fula) [, o) () dyfx(@)do

Doy | Pty ) 2
- /01 Z ; (afk —E {dik’(X—l)lD <<Pj(u) — ¥ OUn(u)) du,

By Cauchy-Schwarz Inequality, and the mean value theorem,

/ D U

m

U, _ZdH [0:1] Z E:l ( [ f’“|(X_l)lD2'

Thus, E[(T5" — Va(m/))1] < T3 + T3, with

o< H90,2Hio,[0;1] Dy ||U

r - 2 /1] ~ 12 1
Tz,a D3 so,0:1] E Z <a§jk —E [afk ’(X—Z)ID <‘ Un = ZdHoo 01 g nnn)>+ ’
ok .
o 2 In(n) A A F 2 K Dt D
13, = D??;"bﬁ 90/2“00,[0;1] /-;/TIE Z <a£k -E |:a£k |(X—l)l]> A - 1n 2 In(n)

j?k
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Bounding roughly Zﬁk(&fk - I[E[&I-:jk(X_l)l])2 leads to

. . 2 ,ln(n)> }
L E K U, —id —K— .
Hoo,[O,l} Hoo,[O;l} n +

Inequality (30) and the assumptions D,,, < y/n (I = 1,2) allow to conclude that TQT’:;/ <
Cn3/272% and thus, choosing k' > 7/4, Y omieM, Tﬁ; < C/n. For the second term T;};’ we

notice first that Y2 (al, — E[afy|(X_)1))? = supyes(mn (v5)?(¢), with

! 4
T3 < 2D}, Dy

v (t) = %E_jt (Fu(X0)%7) = B [t (Fa(X0), %) 1(X 0]

We now bound the deviations of this empirical process, centered conditonally to (X_;), exactly
as we bound v¢ in the proof of Lemma 7: they are controled by Talagrand Inequality (20). We
obtain finally 3, /c v T9% < C'ln(n)/n, which ends the proof, by gathering this bound with

the one of >/ c v, Tg:"g.
O

5.3.5. Proof of Lemma 9. To compute a bound for E[T3"], let us begin with the definition of
the estimators and their coefficients, to get 73" = ZDml ZD’"Z {(on, Nj(y)) a,}? with Aj(y) =

N D,
fA1 ©i(Fn(z)) — 0j(Fx(z)))fx,y)(z,y)dr. Thus we can write T3" = Z ¢ ||H5m2A ||A2 <
ZDml |A;1%,, which can be developed as

Diny 2
Z/A (/[O ; Un(u ))—soj(U))h(uvy)dU> dy = /A2 5" (y)dy.

We apply Taylor formula with Lagrange form for the remainder rest: there exists a random
number depending on j, &; .., such that the following splitting holds:

E [Tgm(y)] < 3E 13" (y)] + 3E [T3%(y)] + 3E [T3%(y)] .

with notations

Dml 1 2
1310 = Y- { [ tun) (0u) — ) gjfutu
j=1
my 1 . 2
1330 = /0 Y { [ ) (0w — ) an
j=1
Dy o ) 5 2
13300 = 1/0) S { [ 1) () - ) <aj,n,u>du} .
j=1
Writing the definition of U, (u), and noting that u = E[1y,<,] (i =1,...,n), we get for the first

term

Diny 1

n 2
BT (y)] =E | ) (%ZAi,j(y) _E[Ai,j(y)]> , with A; ;(y) = / h(u, y)@; (u)du.
i=1

=1 Ui
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We integrate by parts in A; ; (h is assumed to be C L with respect to its first variable). This leads
to another splitting, for each y € As:

E [T371(y)] < 2E [T375 1 (y)] + 2K [T »(v)]

where
Diny 2
T3 1 (y) Z { Zh Ui, y); (U, E[h(Uuy)cpj(Ui)]} :
(32) m1 = )
el { 0uh(u) (0100 ) gy}
In the spirit of the bound given for 77", the first term is controlled as follows:
D,
" 1 Dml
E[I:()] < — D E[(h(Uy)e(U)] < b,y
j=1

Thus, [,, E[T3(y)]dy < |R||2 Dyny /0. Then, by definition and properties of the orthogonal
projection on S,,,

D my

2] = B | Y (@ @) | <2 [Joncod, -, .

J=1

Finally, T3" 5(y) < C|O1h(., y)”[20;1} /n by Inequality (28), and thus, by gathering the bounds for

T3 1 (y) and T3 5(y),
/ E [Tm (y)] dy < C l + Diny
L3 S i

As regards T§%(y), we remark first that for j > 2, ¢ = —(mpi)?pj, with p; = j for even j, and
p; = j — 1 otherwise, so that p; is bounded by D,,,. Hence,

Dm1
o [Té‘g(y)] < (7_‘_4/4)1);;1 {/ h(u,y) (u) — )2<,Dj(u)du}2 )

2012 4

IN

h(.,y) (Un - z‘d)

(x/4) D}, E \

<C [ nI(uy)
[051] [0;1]

by proceeding with the previous arguments (properties of orthogonal projection and Inequality
(28)). So we prove [, E[T3(y)]ldy < CDy,, /n*. The computations for the last term are less
technical:

de } )

thus [, E[T§%(y)]dy < CDJ, /n®. This completes the proof of the first inequality of Lemma 9.

With regard to the second inequality, it is enough to bound E[max,yecm, (I7 — Vi(p))+], like for
the second part of Lemma 7 (p =m/ or p =m Am'). As previously, we get the splitting

(33) Ty < 6/A 3’1:5’,1,1(11)6111+6/j4 T?f’,l,z(y)dy+3/ Tﬁz(y)dy+3/4 T35 (y)dy,
2 2 2

Ao

Doy
E[T0(y)] < (1/6);H‘Pg‘g)Hio,[o;u”h( )H[M]E[



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 27

and
b

B |y, (12" vi0) | <8 | s (6] 22,000 vi0)3)
+]E |:mI/Iéa./\)/((n 6 /Az T§172(y)dy_

4+FE | max (3/ Tgﬁ’g(y)dy—%(p)/?))
m'eEMy, Ay + |

4+E | max <3/ T§3(y)dy—%(p)/3>
m’GMn A2 ’ +

The term which is not centered is direcly negligible : denoting by mmax the largest couple of
index (maximum is taken term by term) in the collection My, we remark that 73, , < T35

(by (32)). Hence, E[max,enm, 6 [, T3, 2(y)dy] < C/n. Let us briefly study each of the other
terms: first 73, (y) = SUDses, sl o =1 Vi, (s), with

Uny(S) = % ZF(XZ', y)so Fx(X;) — E[n(X;,y)s o Fx(X;)].

i=1

Using once more time Talagrand Inequality (20) leads to

(34) E <

)

C
max <6/ Tgﬁl,l(y)dy — V3,1,1(P)> —
As n

m'eMy +

with V31.1(p) = 6 x 2(1 + 20)||h||2% Dp, /n, (§ > 0). Besides, for n > ng = exp(||h[|%,),
Dy, Dy,
n

D
Vara(p) < 12(1+20) In(n) = < C = V31.(p),
since Dp, > cIn(n) (¢ > 0). Inequality (34) holds with V3l:1,1- The two last terms, involving
T57%(y) and T3 (y) can be compute with the same strategy: use the proof of the first inequality
of Lemma 9 to bound fA2 T3 (y)dy (I = 2,3) by quantity of the form C||U, — id||¥,, and then
apply Inequality (29). The conclusion is that

(35) E [ max (3 /A T3 (y)dy — va,,l(p))J < o).

m'eMy n

for | = 2,3, with Vas(p) = CD;, In?(n)/n?, and V33(p) = CDf In®(n)/n3. Assuming both
n > ny = exp(||h]|?), and D,, = O(n'/3), D,, > cIn®(n), we have

DPIDP2

Vsa(p) < C = V{5 (p).

With the more restrictive low bound D, > c¢In(n), we get also V3 3(p) < CD,, D, /n = V3b73(p).
As usual, Inequalities (35) still hold with ngJ instead of V3 ;. The proof is complete if we gather all
these bounds and if we choose the constant 3 such that V3 > 3V§’7171, V3 > 31/;2, et V3 > 3‘/},1773.

(]
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5.3.6. Proof of Lemma 10. Let us first split the term T4m, in several parts. Similarly to the bound
obtained for 73", we use the definitions of the estimators and their coefficients, and the fact that
the basis (¢ )k is orthonormal: hence,

Dy (Dot 2
< / E Z Z a5y <<,0j o Fx(z) —pjo Fn(l’)) (X1 | fx(x)dz.
A =1\ j=1
We write it T} < 2777 + 2777, with
Dy (Do 2
1~ [ (afk = ain) (50 Fx(@) =gy 0 Fu(@)) | 1(X0)t| fxc(@)da,
A =1\ =1
:Dm’2 Dyt ?
sz/ = /A E aj ((Pj o Fx(z) —pjo Fn($)> (X1 | fx(z)de,
1 k=1 \ j=1

where we denote by a;; = (h,p; ® @), the Fourier’s coefficients of the function h. Then we
have also TATll < ZTﬂ/’l + 2TAT1I72 with the notations

D_, D_, D_,
) m2 'm1 AA AA 9 ml . 9
1= [ B34S (- B fafil(n]) (i) = 50 Unlw)) 3 1(X0)
01 =1 | =1 j=1
D, (D, D, i
) 2 1 N 2 1 . 2
1, = [ B34 (B[afleco] - a) (i) = 50 Unlw)) 3 1(X0)
o1 |2 | =t j=1
As
D, D,
) 2 1 1 . o
B[] = B 3 awa [ (0w -0 Uu(@) (o0 =0y 0 Un(w) du
k=1 jj'=1

a Taylor formula yields E[T]%] < E[T}5, + T}% 5 + T§% 5], where

my Dt L
Tih, = aj,kaj%/ (u— Un(u))ch;(u)cp;,(u)du,
k=1jj'=1 0
D, r D, 1
Ty = (/9 > aj,kaj’,k/o (u — Un ()@ (6,n,) 1 (601 ),
k=1 j,j'=1

1
Tiha= > Y ajrak /0 (= U (w) 0 () () .
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Hence, the decomposition of the studied term is T4m, < 4Tszll71 +4T4’:"°1”2 + 2T4’:"°2,’1 +2Tff2/72 +2Tsz2/73,
and consequently

m/ / < m' /
E [ml}é%(n <T4 Vi(m ))J < E [ml}é%(n (4T4,1,1 Vi(m )/3) J

m' /
+E ml}é%(n <4T4,172 Vi(m )/3) J

+E | max <2T4f712/73 —V4(m')/3)+]

_mIEMn

+E | max 277 .| + E| max 277 .| .
| EM, 4’2’1] |:m’€./\/ln 422

The methods use to bound each of these terms have already been detailed for other terms: with
regard to the two qunatities which are not centered, we bound it to show that they are negligible
(that is of order at most C/n). For the others, we first bound each T 4””;/ by a quantity of the
form C ||Un — id||oo,[0;1), and we apply finally Inequality (29), as we have already done for T3,

for example. That is why we only give the bounds for each Tﬁ,. To begin, the term TﬁJ can
be written

, My M s my ) 9
(36) 7y = Y0 3 Var (afylcen) [ 3 (viw - 0 Ow) du
k=1 j=1 [0:1] 5=
The conditional variance is
X 1 .
Var (af,|(X_ = Var{ = Yi)ei o E(X)(X_)i b,
ar (af|(X-n) ar{n;m s 0 B (X0)I( m}

IA

2 [ on(01)? (0 Fl060) 10600

By Property (3) applied to the sum over j,k of the last quantity, >, Var(d£k|(X_l)l) <
Dyt Dy, /n. Besides, we use the mean value theorem to bound the integral of (36) so that

w o Pt Dy g
(37) Tihq < . X Dm;H%Hoo,[o;l} ‘ Un

B idHo@[O;l] ’

which allows us to control E[max,, ¢ Mn(4Tﬁ,1 — Va(m')/3)4] as explained previously. Further-
more,

D_
! ! ml ~ 2
T, =Ty 3 ((,Dj(u) —pjo Un(u)) du,
[051] j=1

which leads to Tf o < T3" Df’n,1||<p’2||c2>0’[0;1}||Un - id||c2>o,[0;1}' The term 73" is replaced by its
detailed upp?r—bound (33), and as a result, T4’:"°1/72 < Z?:l Tﬁ&l. Roughly speaking, we get
Tﬂ’zl < C||Uy —id|| o, j0;1 and apply the previous strategy for each [ =1,...,4. Let us consider

now the terms T4’:"°2/71 and T4’:"°2/72 which do not require to be centered. It is usefull to remark that
the Fourier’s coefficients of h can be written

= gilon = [ etesin with &) = [ b p)entiy
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Since the term 7T, 417712,,1 involves the derivative of the projection of & onto Sm’l , we use a specific
Dm/ /

property of the trigonometric basis: Ej:f aj7k<p; = (Hs , (ﬁk)) =1Is , (&), so

m ™

Tis, < ‘

—de Z il

Let us compute then the derivative of & to bound roughly

Dy 2
S llel?, = Z / ( Ouh(uy)en(o)y) du< [ 0uhtu. )13, du = ounl?
k=1 ’

0;1

We have thus E[max;, e, Tész’l] < ||81h||21[*3[\|ﬁn—z'dH?>O [0,1}] < C/n with Inequality (28). Recall
now that

D’m/ 7rL 2
, 2 .1 1
1. =4y [ (- | E s |
k=1
We introduce p; = j for even j and p; = j—1 for odd j. Since h belongs to W2,.([0;1]%, L, (1,0))
and according to (15),
Dy (Dot 2 D, 2
Z aj,k‘p;'/(aj,n,u) < HQD H J[051] Z Z Qj, k,u] 5
k=1 j=1
/ D /
= H [01]22‘13161‘%2“3’
k=1 j=1
< L — Dy, <CDy
— H(’D H [0 1] 7-(-2 M1, max "
Hence, E[max,, e, TAT2I72] < E[||U, — zd||4 ]C’DS11 e C’Df;ﬁb1 _/n* < C/n as soon as
Dy oy < n!/3 (we denote by Dy oy the largest index on the collection (D,,,)). Following the
same sketch for the last term, we write
Dm/ Dm/ m/
, R 2 1 1
155 = | =0 | Y i) | | 3 aunei
[0;1] k=1 \ j=1 j=1
and compute as in the term TZLQIQ:
D’ULI D’ULI 2 D’ULI D’UL 2
2 9 L? { 2 L’
S S wdinn | <ot -z D D Z a;fj(u) | < 16h 13 oy —3 Dot -
k=1 j=1 k=1

This leads to
3
0, — z'dH

, L?
Ty s < ||90/2||oo,[0;1]||<;0/2/||oo,[0;1}FDm’1

and we apply tools already used to complete the proof.
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