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A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF ACONDITIONAL DENSITYGAËLLE CHAGNY(∗)Abstra
t. We 
onsider the problem of estimating the 
onditional density π of a responseve
tor Y given the predi
tor X (whi
h is assumed to be a 
ontinuous variable). We providean adaptive nonparametri
 strategy to estimate π, based on model sele
tion. We start with a
olle
tion of �nite dimensional produ
t spa
es, spanned by orthonormal bases. But instead ofexpanding dire
tly the target fun
tion π on these bases, we rather 
onsider the expansion of
h(x, y) = π(F−1

X (x), y), where FX is the 
umulative distribution fun
tion of the variable X. This'warping' of the bases allows us to propose a family of proje
tion estimators easier to 
omputethan estimators resulting of the minimization of a regression-type 
ontrast. The data-drivensele
tion of the best estimator ĥ for the fun
tion h, is done with a model sele
tion devi
e in thespirit of Goldenshluger and Lepski (2011). The resulting estimator is π̂(x, y) = ĥ(FX(x), y) if
FX is known, or π̂(x, y) = ĥ(F̂ (x), y) otherwise, where F̂ is the empiri
al distribution fun
tion.We prove that it realizes a global squared-bias/varian
e 
ompromise, in a 
ontext of anisotropi
fun
tion 
lasses: we establish non-asymptoti
 mean-squared integrated risk bounds and providealso 
onvergen
e rate for the risk. Simulation experiments illustrate the method.Keywords: Adaptive estimator. Conditional density. Model sele
tion. Non parametri
 estima-tion. Warped bases.AMS Subje
t Classi�
ation 2010: 62G05; 62G07-62G08.November 20111. Introdu
tion1.1. Motivation. Assume that we observe pairs of real random variables (X,Y ) with jointunknown density f(X,Y ). The relationship between the predi
tor X and the response Y is 
las-si
ally des
ribed by regression analysis. But this 
an also be a
hieved by estimating the entire
onditional density, that is

π(x, y) =
f(X,Y )(x, y)

fX(x)
, if fX(x) > 0,where fX is the marginal density of the X, and is assumed not to vanish on the interval ofestimation.The aim of this paper is to provide a nonparametri
 strategy to estimate π, whi
h has to beboth adaptive, fast and simple to 
ompute. Our main ideas are to use warped bases to buildproje
tion estimators and to perform model sele
tion in the spirit of Goldenshluger and Lepski[GL11℄.1.2. State of the art. Nonparametri
 
onditional density estimation has be
ome only re
entlya subje
t of interest, and the adaptive strategies are still rather s
ar
e. To our knowledge, mostof the methods to estimate π are based on the prin
iple that it 
an be seen as a nonparametri
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2 GAËLLE CHAGNYweighted regression. This leads mainly to two dire
tions: kernel methods and proje
tion estima-tors built on regression-type 
riterions.For kernel estimation, Fan et al. [FYT96℄ generalize Rosenblatt estimator using lo
al polyno-mials, while Bashtannyk et al. [HBG96℄ and then Hall et al. [HWY99℄ and Hyndman and Yao[HY02℄ propose di�erent versions of reweighted Nadaraya-Watson estimator. De Gooijer and Ze-rom [DGZ03℄ 
ombine the better side of the last methods, to propose a fun
tion whi
h takes onlypositive values. Kanamori et al. [TNK09℄ study a pie
ewise linear kernel-estimator using meth-ods based on quantile regression fun
tions: a family of 
onditional quantile fun
tion provides afull des
ription of π. All these estimators involve a ratio: this means both theoreti
al problems,as studied in Penskaya [Pen95℄, and numeri
al problems, due to the denominator whi
h 
an be
lose to zero. This leads Faugeras [Fau09℄ to propose a kernel-type estimator based on the 
opulafun
tion and on the estimation of the marginal 
umulative distribution fun
tions of X and Y .In a di�erent dire
tion, Györ� and Kohler [GK07℄ 
onsider a partitioning-type estimate. Thesepro
edures have in 
ommon to be studied with an asymptoti
 point of view: 
onsisten
e andasymptoti
 normality are shown. But the adaptive properties like the 
hoi
e of the bandwidthsfor kernel estimator, are studied only in Bashtannyk and Hyndman [BH01℄ and in Hyndman andYao [HY02℄.Adaptation and minimax results have re
ently been developed. Efromovi
h proposes a Fourierbasis to build a blo
kwise-shrinkage Efromovi
h-Pinsker estimator. The regression setting is �rststudied in [Efr07℄, while the general 
ase is the subje
t of [Efr10a℄, using 
hara
teristi
 fun
tionsto rewrite π. Finally, multidimensionality is taken into a

ount in [Efr10b℄. Ora
le-inequalitiesare given.Su
h adaptation results are also provided by Brunel et al. [BCL07℄. They use model sele
tionmethods, based on the minimization of a least-squares penalized 
ontrast introdu
ed by La
our[La
07℄. But this 
ontrast, 
onsidered also by Akakpo and La
our [AL11℄ to deal with dependentdata and inhomogeneous fun
tional 
lasses, does not provide expli
it estimator without matrixinvertibility requirements (ex
ept when using histogram basis). Moreover the penalty given in[BCL07℄ depends on the unknown in�nite norm of π. It 
an be estimated but it requires thenstrong regularity assumptions. Noti
e also that re
ent works of Cohen and Le Penne
 [CLP11℄fo
us on a penalized maximum likelihood estimator leading to risk bounds for a Kullbla
k-Leiblerloss fun
tion. In the same way of all re
ent papers, we provide a data driven estimator but witha new method allowing fast 
omputation, thanks to the fa
t that we avoid matrix inversion and'purify' the penalty fun
tion.1.3. Generality about the estimation method. The data are pairs of real random variables
(Xi, Yi)i∈{1,...,n} (with n a positive integer), independent and identi
ally distributed (i.i.d.) withjoint density f(X,Y ), supported by a subset A1 ×A2 of R

2 (A2 a bounded interval). We assumethat the marginal density fX of the Xi does not vanish, and denote by FX the 
umulativedistribution fun
tion (
.d.f.) of these variables, whi
h 
onsequently admits an inverse.Our aim is to use model sele
tion point of view with a 
ontrast leading to an expli
it estimatorand a sele
tion rule whi
h is entirely 
omputable, while satisfying good theoreti
al propertiesunder weak assumptions. The �rst point is a
hieved by the use of warped bases, introdu
ed byKerkya
harian and Pi
ard [KP04℄ to provide a wavelet thresholding estimator of a regressionfun
tion. In our 
onditional density setting, we pre
isely de�ne(1) ∀(u, y) ∈ [0; 1] ×A2, h(u, y) = π
(

F−1
X (u), y

)

,



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 3and re
over π by estimating both h and FX . The assumption that h is squared integrable leadsto proje
tion estimators of the form
∀(u, y) ∈ [0; 1] ×A2, ĥD1,D2(u, y) =

D1
∑

j1=1

D2
∑

j2=1

âj1,j2φj1 ⊗ ψj2(u, y),with φj1 ⊗ ψj2(u, y) = φj1(u)ψj2(y), for di�erent 
ouples (D1,D2) with (φj1 ⊗ ψj2)j1,j2 an or-thonormal family of fun
tions and âj1,j2 estimated 
oe�
ients. Then, instead of estimating FXover the whole sample, we assume that we observe (X−i)i∈{1,...,n} a sample of variables with thesame distribution than the (Xi) and independent of them. Thus, we 
an de�ne
F̂n : x 7→ 1

n

n
∑

i=1

1X−i≤x,and propose an estimator of π given by:
∀(x, y) ∈ A1 ×A2, π̂D1,D2(x, y) = ĥD1,D2

(

F̂n(x), y
)

.We get thus a development of π̂D1,D2 in an orthonormal basis, whose �rst 
oordinate is warpedby F̂n:
∀(x, y) ∈ A1 ×A2, π̂D1,D2(x, y) =

D1
∑

j1=1

D2
∑

j2=1

âj1,j2φj1 ⊗ ψj2

(

F̂n(x), y
)

.The parti
ular 
ase of known 
.d.f. FX is also studied. In the two 
ases (known or estimated
FX), the pro
edure is parti
ularly simple and fast to 
ompute, sin
e the 
oe�
ients âj1,j2 arejust empiri
al means (they do not involve any matrix inversion). The sele
tion rule of the levels
D1 and D2 used in a se
ond step is inspired by re
ent works of Goldenshluger and Lepski [GL11℄and is new in the multidimensional framework.We give both non-asymptoti
 results su
h that ora
le-inequalities (proving the adaptivity ofour estimators) and asymptoti
 rates of 
onvergen
e for the quadrati
 risk if the fun
tion hbelongs to anisotropi
 fun
tional spa
es. We show that adaptation has no pri
e and that the rate
orresponds exa
tly to the best bias-varian
e 
ompromize, with assumptions stated on fun
tion
h instead of π. Moreover, on the pra
ti
al examples, the strategy we propose outperforms thepenalization devi
e of Brunel et al. [BCL07℄: it is faster and leads to smaller risks in most 
ases.1.4. Organization of the paper. Se
tion 2 presents the two warped bases estimators (the onebuilt assuming FX is known, and the one built in the general 
ase). The performan
es of ea
hestimator are studied in Se
tion 3: the fun
tional spa
es are des
ribed and global risks boundsand rates of 
onvergen
e presented. Se
tion 4 is devoted to numeri
al results. Finally, the proofsare gathered in Se
tion 5. 2. Estimation strategyAll the estimators de�ned in the sequel are proje
tion estimators. Therefore, we begin withthe des
ription of the approximation spa
es (Se
tion 2.1). We pro
eed then in three steps toestimate the 
onditional density π, on A1 × A2. First, we de�ne a 
olle
tion of estimators forthe fun
tion h (see its de�nition (1)), by minimizing a 
ontrast on the models (Se
tion 2.2). These
ond step is then to ensure the automati
 sele
tion of the model, without any knowledge aboutthe regularity of h. This leads to a well de�ned estimator ĥ (Se
tion 2.3). Finally, we partiallywarp ĥ to estimate π.



4 GAËLLE CHAGNY2.1. Approximation spa
es. Our estimation pro
edure is based on the assumption that thefun
tion h belongs to L2([0; 1] ×A2), the set of square-integrable fun
tions on [0; 1] ×A2, whi
his equiped with its usual Hilbert stru
ture: we denote by 〈., .〉 the s
alar-produ
t and by ‖.‖ thenorm. Consequently, h 
an be developed in any orthonormal basis, and 
an be approximated byits orthogonal proje
tions onto the linear subspa
es spanned by the �rst fun
tions of the basis.For the sake of simpli
ity, we assume A2 = [0; 1] in the sequel. The 
ase of any segment A2 
anbe easily obtained by making a s
aling 
hange. Following the example of Efromovi
h [Efr99℄, we
hoose the Fourier basis (ϕj1 ⊗ ϕj2)j1,j2∈N\{0} of L2([0; 1] ×A2), de�ned for u, y ∈ [0; 1] by(2) ϕ1(u) = 1, ∀k ∈ N\{0}, ϕ2k(u) =
√

2 cos(2πku), ϕ2k+1(u) =
√

2 sin(2πku),and ϕj1 ⊗ ϕj2(u, y) = ϕj1(u)ϕj2(y). For an index l = 1, 2, we also denote by Sml
the spa
espanned by {ϕ1, . . . , ϕDml

}, for Dml
= 2ml + 1, and ml an element of the set of indi
es I(l)

n =

{1, . . . , [√n/2]− 1} ([.] is the integer part). The approximation spa
es are then Sm = Sm1 ×Sm2for m = (m1,m2) ∈ Mn, with Mn = I(1)
n × I(2)

n . Thus, we have
Sm = Sm1 × Sm2 = Span {ϕj1 ⊗ ϕj2 , j1 = 1, . . . ,Dm1 j2 = 1, . . . ,Dm2} ,and the dimension of Sm is Dm = Dm1Dm2 . Noti
e that for all ml ∈ I(l)

n (l = 1, 2), Dml
≤ √

nand thus Dm ≤ n.Remark 1. • The basis satis�es ‖∑Dm1
j1=1

∑Dm2
j2=1(ϕj1 ⊗ ϕj2)

2‖∞ ≤ Dm, where ‖.‖∞ is thesupremum of the fun
tion on [0; 1] × A2. This is equivalent to the following useful linkbetween the in�nite norm and the L2 norm (see Birgé and Massart [BM98℄ for the proof):(3) ∀t ∈ L2([0; 1] ×A2), ‖t‖∞ ≤
√

Dm1Dm2‖t‖ =
√

Dm‖t‖.

• For ea
h ml,m
′
l ∈ I(l)

n (l = 1, 2), we have(4) Dml
≤ Dm′

l
=⇒ Sml

⊂ Sm′

l
.Noti
e that other 
lassi
al models, su
h as models spanned by regular wavelet basis, histogrambasis or dyadi
 pie
ewise polynomial basis satisfy similar properties. We refer to Barron et al.[BBM99℄, and Brunel and Comte [BC05℄ for a pre
ise des
ription. See also Remark 2 belowabout the extension of our results to these models.2.2. Estimation on a �xed model. We start with the following 
riterion(5) ∀t ∈ L2([0; 1] ×A2) 7→ γn(t, F̂n) := ‖t‖2 − 2

n

n
∑

i=1

t
(

F̂n(Xi), Yi

)

.This 
ontrast is knew and quite far from the regression and density least-squares 
riterion. Thenovelty 
omes both from the L2 norm whi
h stands in pla
e of the empiri
al norm used inthe 
lassi
al 
ontrasts (see for example the 
ontrast γ0
n in Brunel et al. [BCL07℄), and fromthe presen
e of the empiri
al 
.d.f F̂n. To justify this 
hoi
e, assume for a moment that thedistribution of the Xi is known: we 
an thus plug the true 
.d.f FX instead of its empiri
al
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ounterpart, and 
ompute more easily, for t ∈ L2([0; 1] ×A2),
E [γn(t, FX )] − E [γn(h, FX )] = ‖t‖2 − ‖h‖2 − 2E [(t− h) (FX(X1), Y1)] ,

= ‖t‖2 − ‖h‖2 − 2

∫

A1×A2

(t− h)(FX (x), y)π(x, y)fX (x)dxdy,

= ‖t‖2 − ‖h‖2 − 2

∫

[0;1]×A2

(t− h)(u, y)h(u, y)dudy,

= ‖t‖2 − ‖h‖2 − 2〈h, t− h〉,
= ‖t− h‖2.This quantity is minimal when t = h. This shows that γn(., FX ) in the 
ase of known FX (or

γn(., F̂n) otherwise) suits well for the estimation of h. We set thus, for ea
h model Sm,(6) ĥF̂
m = arg min

t∈Sm

γn(t, F̂n), ĥFX
m = arg min

t∈Sm

γn(t, FX),or equivalently,(7) ĥF̂
m =

Dm1
∑

j1=1

Dm2
∑

j2=1

âF̂
j1,j2ϕj1 ⊗ ϕj2, with âF̂

j1,j2 =
1

n

n
∑

i=1

ϕj1(F̂n(Xi))ϕj2(Yi),and a similar expression for estimator ĥFX
m with 
oe�
ients aFX

j1,j2
in the 
ase of known 
.d.f. FX .Finally, we set

πF̂ ,F̂
m (x, y) = ĥF̂

m(F̂n(x), y) and π̂FX ,FX
m (x, y) = ĥFX

m (FX(x), y),denoted with two super-indexes F̂ (or FX) to underline the double dependen
e of the estimatoron this fun
tion, through both the 
oe�
ients âF̂
j,k and the 
omposition of the �rst variable by FX .Noti
e the advantage of the 
ontrast we de�ne: we get an expli
it formula for the estimator. The
oe�
ients are empiri
al means easily 
omputable. They do not involve a matri
ial inversion
ompared to the estimator obtained via least-squares 
riterion (see for example Brunel et al.[BCL07℄). Moreover, in the 
ase of known 
.d.f. FX , ĥFX

m is an unbiased estimator of theorthogonal proje
tion of h onto Sm.2.3. Model sele
tion.2.3.1. Risk on a �xed model. In order to explain whi
h model Sm we should 
hoose, we �rststudy the quadrati
 risk of ea
h estimator of the 
olle
tion, in the simpler 
ase of known 
.d.f.
FX . The loss fun
tion naturally asso
iated to our 
ontext is the following L2−norm,

∀v ∈ L2(A1 ×A2, fX), ‖v‖2
fX

=

∫

A1×A2

v2(x, y)fX(x)dxdy,with L2(A1 × A2, fX), the spa
e of squared-integrable fun
tions on A1 × A2 with respe
t tothe Lebesgue measure weighted by the density fX . We denote 〈., .〉fX
the 
orresponding s
alar-produ
t. Noti
e besides that the following links hold between this norm and the 
lassi
al normpreviously de�ned: for t, s ∈ L2([0; 1] ×A2), we 
ompute, using F ′

X = fX ,
‖t(FX(.), .)‖fX

= ‖t‖, 〈t(FX (.), .), s(FX (.), .)〉fX
= 〈t, s〉.The 
lassi
al L2−norm on A1 ×A2 
an be re
overed, under the assumption that fX is boundedfrom below by a stri
tly positive 
onstant. This assumption is standard, see for example As-sumption A2 in Brunel et al. [BCL07℄, or Assumption (HBas) in Baraud [Bar02℄.For the weighted L2−risk whi
h is used in the sequel, and for ea
h m ∈ Mn, we get
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E

[

∥

∥π̂FX ,FX
m − π

∥

∥

2

fX

]

=
∥

∥π − πFX
m

∥

∥

2

fX
+ E

[

∥

∥πFX
m − π̂FX ,FX

m

∥

∥

2

fX

]

,

= ‖h− hm‖2 + E

[

∥

∥

∥
hm − ĥFX

m

∥

∥

∥

2
]

,(8)where(9) πFX
m (x, y) = hm(FX(x), y) and hm is the orthogonal proje
tion of h onto Sm.We re
over the usual squared-bias/varian
e de
omposition of the risk. The key point is thedi�eren
e of behaviour of the two terms: they both depend on Dm but in opposite ways. The�rst term in the right-hand side of (8) de
reases when Dm grows, sin
e π is better approximatedby its proje
tion when the approximation spa
e grows, while the se
ond term grows with Dm:

E

[

∥

∥π̂FX ,FX
m − πFX

m

∥

∥

2

fX

]

=

Dm1
∑

j1=1

Dm2
∑

j2=1

Var(âFX

j1,j2

)

,

≤ 1

n

Dm1
∑

j1=1

Dm2
∑

j2=1

E

[

(ϕj1 (FX(Xi))ϕj2(Yi))
2
]

≤ Dm1Dm2

n
,(10)using Property (3) (see Se
tion 2.1). The best model among the 
olle
tion is the one whi
hminimizes the right-hand side in (9), making a trade-o� between the squared-bias term and thevarian
e term. However, it is unknown sin
e h and hm are not observed. Therefore, an adaptiveestimator of π must make automati
ally this 
ompromise.2.3.2. Sele
tion rule. We propose to use a s
heme proposed by Goldenshluger and Lepski [GL11℄for density estimation. The adaptive index is 
hosen as the value whi
h minimizes the followingsum:

m̂F̂ =
(

m̂F̂
1 , m̂

F̂
2

)

= arg min
m∈Mn

[

A(m, F̂n) + 2V F̂ (m)
]

,where V F̂ has the order of the varian
e term:(11) V F̂ : m = (m1,m2) 7→ c1
Dm1Dm2

n
,with c1 is a purely numeri
al 
onstant, adjusted in pra
ti
e. The fun
tion A(., F̂n) is based onthe 
omparison of the estimators built in the �rst stage:(12) A(m, F̂n) = max

m′∈Mn

(

∥

∥

∥ĥF̂
m′ − ĥF̂

m∧m′

∥

∥

∥

2
− V F̂ (m′)

)

+

,where x+ = max(x, 0), x ∈ R. We will prove besides that A(m, F̂n) has the order of the biasterm (see Inequality (22)). Thus we get an estimator, expli
itly expressed in a warped basis,(13) π̃(x, y) = ĥF̂
mF̂

(F̂n(x), y).The L2−norm involved in the de�nition of A(., m̂) is easy to 
ompute, sin
e the fun
tions ĥF̂
m′ ,

m′ ∈ Mn are expressed with a development in an orthonormal basis (see Se
tion 4 for details).This advantage has to be noti
ed 
ompared to other strategies of model sele
tion using the
ontrast fun
tion or to strategies involving bandwith 
hoi
e for a kernel.There are several novelties to underline. First, the warping of the basis for the variable x leads toexpli
it and simple 
oe�
ients âF̂
j1,j2

for the estimator. The use of a sele
tion devi
e inspired of



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 7Goldenshluger and Lepski [GL11℄ is original in the setting of multidimensional model sele
tion.Note also that the spe
i�
 fa
tor 2 in the de�nition of m̂F̂ plays an important (but te
hni
al)role in the proofs. The "penalty" term V F̂ is entirely 
omputable with the data (with no termto estimate), up to a purely numeri
al 
onstant to 
alibrate. On the opposite, penalization of aregression-type 
ontrast in this 
ontext leads to a penalty whi
h depends on the unknown in�nitenorm of π (see Brunel et al. [BCL07℄, or La
our [La
07℄).Finally, let us de�ne also an estimator in the toy 
ase of known 
.d.f. FX :(14) π̃0(x, y) = ĥFX

m̂FX
(FX (x), y),with m̂FX sele
ted as the argument-minimum of A(m,FX) + V FX (m), where we denote by

V FX (m) = c0Dm1Dm2/n, c0 a numeri
al 
onstant, whi
h 
an be di�erent of c1.3. Main results3.1. Anisotropi
 Sobolev spa
es. Let us de�ne the fun
tional spa
es we 
onsider furtherfor the fun
tion h (even if its index of regularity has not to be known). The 
hoi
e of thetrigonometri
 models leads us to 
onsider spa
es of periodi
 fun
tions, that is Sobolev spa
es.We de�ne them dire
tly via Fourier 
oe�
ients, keeping in mind that it 
an also be 
hara
terizedvia weak di�erentiability (see for example DeVore and Lorentz [DL93℄ and Härdle et al. [HKPT98℄for fun
tions of one variable, and Adams [Ada75℄ for fun
tions of several variables). Pre
isely,our aim is to extend to fun
tions of two variables the 
hara
terization of Tsybakov (Lemma A.3,p.162, [Tsy04℄).Let t ∈ L2([0; 1]2). Then there exists a real-valued family (θj1,j2)j1,j2∈N\{0} su
h that
t =

∑

j1,j2∈N\{0}

θj1,j2ϕj1 ⊗ ϕj2 .Re
all that the fun
tions ϕj are de�ned by (2). We say that t belongs to the partial ball withradius L > 0 and regularity α = (α1, α2) (αl ∈ N, l = 1, 2, but not simultaneously equal to zero),if(15) ∑

j1,j2∈N\{0}

µ2
j1,α1

µ2
j2,α2

θ2
j1,j2 ≤ L2

π2(α1+α2)
,with µjl,αl

= jαl

l for even jl, µjl,αl
= (jl − 1)αl otherwise. We write t ∈W 2

per([0; 1]
2, L, α), in thespirit of the de�nition of Tsybakov [Tsy04℄. These spa
es are anisotropi
. The fun
tion h 
anthus have di�erent smoothness properties with respe
t to di�erent dire
tions.Let us �nally give a useful approximation property of this spa
e. We denote by tm = t(m1,m2) theorthogonal proje
tion of the fun
tion t onto the subspa
e Sm = S(m1,m2). We have the followingrate:

‖t− tm‖2 ≤ C(α,L)
(

D−2α1
m1

+D−2α2
m2

)

,where C(α,L) is a 
onstant depending on α and L. This inequality is a parti
ular 
ase of Lemma9 in La
our [La
07℄, based on papers from Ho
hmuth [Ho
02℄ and Nikol'skii [Nik75℄.3.2. Case of known 
.d.f. FX. We �rst fo
us on the simpler situation of known 
.d.f. FX .This allows us to derive the results with few assumptions and short proofs. The �rst theoremprovides non-asymptoti
 bounds for the risk of the estimator π̃0 (see its de�nition (14)). Were
all that the trigonometri
 models satisfy properties (3) and (4), and that the dimensions Dmlare bounded by √
n.



8 GAËLLE CHAGNYTheorem 1. We assume that the fun
tion h is bounded on the spa
e [0; 1] × A2. Then thereexists c a purely numeri
al 
onstant, and C a 
onstant depending on ‖h‖∞ su
h that
E

[

‖π̃0 − π‖2
fX

]

≤ c min
m∈Mn

{

Dm1Dm2

n
+
∥

∥πFX
m − π

∥

∥

2

fX

}

+
C

n
,with πFX

m de�ned by (9).The basi
 outline of model sele
tion (by Goldenshluger-Lepski method in our 
ase) is toestimate the bias-varian
e sum and to sele
t the model whi
h minimizes it. Theorem 1 showsthat it is a good strategy: the right model (in the sense that it realizes the trade-o�) has been
hosen in a data-driven way and the sele
ted estimator performs as well as the best estimator inthe family {πFX ,FX
m , m ∈ Mn}, up to some multipli
ative 
onstants and to a negligible residualterm of order 1/n. The 
onstants are given in the proof, whi
h is deferred to Se
tion 5.2.Remark 2. This result still holds in a more general setting. The 
hoi
e of trigonometri
 modelsis not a ne
essary 
ondition. It is su�
ient to assume that the models whi
h are used sat-isfy properties (3) and (4), and have their dimensions bounded by √

n, whi
h are very weakassumptions.Theorem 1 enables also us to give a rate of 
onvergen
e for the estimation of π, under regularityassumptions for fun
tion h. Pre
isely, the minimization of the left-hand-side of the inequality inthe 
ase of regular fun
tions leads to the following Corollary.Corollary 1. We assume that the fun
tion h belongs to the anisotropi
 Sobolev ball denoted by
W 2

per([0; 1]
2, L, α), for some �xed L > 0 and α = (α1, α2) (αl ∈ N, l = 1, 2, but not simultaneouslyequal to zero), with α1−α2 +2α1α2 > 0, and α2−α1 +2α1α2 > 0. Then, under the assumptionsof Theorem 1,

E

[

‖π̃0 − π‖2
fX

]

≤ C(α,L)n−
2ᾱ

2ᾱ+2 ,with C(α,L) a numeri
al 
onstant whi
h depends only on α and L, and ᾱ the harmoni
 mean of
α1 and α2.The harmoni
 mean of α1 and α2 is the real ᾱ su
h that 2/ᾱ = 1/α1 + 1/α2. Note that the
ondition α1 −α2 + 2α1α2 > 0 is ensured as soon as α1 > 1/2 and α2 −α1 + 2α1α2 > 0 as soonas α2 > 1/2. As the αl are integers, this implies that they are larger than or equal to 1. In this
ase, h is bounded.The 
orollary means that without knowing α and L (depending on the unknown h), π̃0 does aswell as the best possible estimator whi
h knows these quantities. It is thus an adaptive estimator.Sin
e Theorem 1 holds for pie
ewise polynomials or wavelet basis, the results 
an be extendedto fun
tions h belonging to anisotropi
 Besov spa
es.Remark 3. We 
an 
onne
t this result to the lower bound established by La
our [La
07℄, overBesov fun
tional 
lasses, for the estimation of the transition density of a Markov 
hain. Theestimation of the 
onditional density is a parti
ular 
ase of that study. However, the regularityassumptions are set dire
tly on fun
tion π in [La
07℄, and not on fun
tion h. The right frameworkto relate our result to the one of [La
07℄ is to de�ne weighted regularity spa
es, su
h as weightedBesov spa
es de�ned and studied 
arefully in Kerkya
harian and Pi
ard [KP04℄. Sin
e the maingoal of our work is to produ
t non-asymptoti
 bounds for the risk, whi
h do not require su
hassumptions, we do not go further in that dire
tion. Thus we only 
onje
ture that the rate of
onvergen
e n− 2ᾱ

2ᾱ+2 is probably optimal in the minimax sense, over Besov 
lasses. The adaptiveminimax rate over Sobolev spa
es has most likely the same order.



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 93.3. Case of unknown 
.d.f. FX. Coming ba
k to the general 
ase, we set the same result asTheorem 1, with slightly stronger assumptions.Theorem 2. We assume that the fun
tion h belongs to the anisotropi
 Sobolev ball denoted by
W 2

per([0; 1]
2, L, (1, 0)), for some �xed L > 0, is bounded on [0; 1]2, and is C1 with respe
t to its�rst variable on [0; 1]. We also assume that, for some 
onstants Ca, Cb, Cc, the trigonometri
models satisfy,(16) ∀m = (m1,m2) ∈ Mn, Dm1 ≤ Ca

(

n

ln2(n)

)1/3 and Cb ln5(n) ≤ Dm2 ≤ Cc
√
n.Then, there exists numeri
al 
onstants c and C depending on ‖ϕ′

2‖∞,[0;1], ‖ϕ′′
2‖∞,[0;1], ‖ϕ(3)

2 ‖∞,[0;1],
‖h‖, ‖∂1h‖, and L, su
h that

E

[

‖π̃ − π‖2
fX

]

≤ c min
m∈Mn

{

Dm1Dm2

n
+
∥

∥

∥πF̂
m − π

∥

∥

∥

2

fX

}

+
C

n
.(17)Remark 4. • There exists a
tually an integer n0, depending on the fun
tion h, su
h thatInequality (17) holds for all n ≥ n0 with a purely numeri
al 
onstant c. But the resultis nonasymptoti
, sin
e the inequality holds also for n < n0, taking a 
onstant c whi
hdepends on quantities of the problem.

• Up to this result, the models Sm1 and Sm2 and their respe
tive dimension have playedthe same role. But in the theorem, the dimension 
onstraints (16) are not the same inea
h dire
tion. To be totally rigorous, we should denote by S(l)
ml

the models and by D(l)
mltheir dimension, for ea
h l = 1, 2. For the sake of simpli
ity, we keep the �rst notationsas there is no possible 
onfusion.As in the 
ase of known FX , the theorem shows that the best estimator in the family

{πF̂ ,F̂
m , m ∈ Mn} is found up to some multipli
ative 
onstants for the risk, in a data-drivenway. Brunel et al. [BCL07℄ provide also the same kind of ora
le-inequality for their estimatorbuilt by penalization of a regression-type 
ontrast. The assumptions seem �rst to be slightlyless restri
tive: it is only assumed that Dm1 ≤ n1/2/ ln(n). However, the term V F̂ does not
ontain any unknown term and is then entirely 
omputable, 
ontrary to the penalty used in[BCL07℄, whi
h depends on ‖π‖∞. Moreover, repla
ing this quantity by an estimator requiresin fa
t mu
h more regularity 
onstraints than the one we get, and leads to a semi-asymptoti
result (see the appendix of La
our [La
07℄ for an example of these 
onditions). Consequently,a model sele
tion strategy in the spirit of Goldenshluger-Lepski applied with warped bases hasthe advantage of providing an estimator easier to 
ompute than a regression-type estimator andwith good theoreti
al properties under quite weak assumptions.Re
all that the bound of Inequality (17) is 
lose to the order of the sum of the varian
e termand the bias term. It implies that the obtained rate of 
onvergen
e is likely to be minimax inmost 
ases. More pre
isely, we prove the following 
orollary.Corollary 2. We assume that the fun
tion h belongs to the anisotropi
 Sobolev ball denotedby W 2

per([0; 1]
2, L, (1, 0)), for some �xed L > 0, and α = (α1, α2) (αl ∈ N, l = 1, 2, but notsimultaneously equal to zero) with α1 − 2α2 +2α1α2 > 0, and α2 −α1 +2α1α2 > 0. Then, underthe assumptions of Theorem 2,

E

[

‖π̃ − π‖2
fX

]

≤ C(α,L)n−
2ᾱ

2ᾱ+2 ,with C(α,L) a numeri
al 
onstant whi
h depends on α and L, ‖ϕ′
2‖∞,[0;1], ‖ϕ′′

2‖∞,[0;1], ‖ϕ(3)
2 ‖∞,[0;1],

‖h‖, ‖∂1h‖. The quantity ᾱ is the harmoni
 mean of α1 and α2.



10 GAËLLE CHAGNYEven if FX is unknown, our estimator adapts to the unknown regularity α of the fun
tion h.We also refer the reader to Remark 3 
on
erning the minimax sense of the result.4. Simulation studyThe aim of this se
tion is to illustrate the behaviour of the estimator π̃ and to 
ompare it withthe estimator of Brunel et al. [BCL07℄ denoted by π̃BCL. Thus, we investigate in the same timethe di�eren
e between the 
lassi
al bases and the warped bases, and the di�eren
e between theGoldenshluger-Lepski method and the penalization devi
e.4.1. Examples. We propose a simulation study based on the following examples: we generatesamples (Xi, Yi,X−i)i∈{1,...,n} su
h that
• Examples 1: Yi = b(Xi) + εi, with the following possibilities. The Xi's follow a uniformdistribution on the interval [0; 1] (denoted by U[0;1]), or on the interval [−1; 1] (U[−1;1]), ora standard Gaussian distribution (N (0, 1)). The εi's are generated following the standardGaussian distribution, or the Gamma distribution (Γ(4, 1)) with parameters 4 and 1 (the

1 is the s
ale parameter). We denote by fε their density. The sample (εi) is independentof the (Xi). Finally, the regression fun
tion b is b(x) = 2x+5, b(x) = cos(x) or b(x) = x2.The 
onditional density π is thus given by
π(x, y) = fε(y − b(x)).

• Example 2: Xi follows a uniform distribution on [0; 1], Yi a standard Gaussian distri-bution, and Xi is independent of Yi. The 
onditional density is just the density of thevariable Yi.
• Example 3: Yi = b(Xi)+σ(Xi)εi, with a uniform distribution on [0; 1] forXi, the previousGamma distribution for εi (whi
h is independent ofXi) and σ(x) =

√

1.3 − |x|. Similarlyto Examples 1, the 
onditional density is
π(x, y) = fε(y − b(x)/σ(x))/σ(x).

• Example 4: The Xi follows a uniform distribution U[0;1], and given Xi = x, Yi followsthe Gaussian mixture 0.5N (8 − 4x, 1) + 0.5N (8 + 4x, 1). The fun
tion π is the densityof the mixture.Examples 3 and 4, and some 
ases of Examples 1 have also been studied by Brunel et al. [BCL07℄,while Example 2 is proposed by Efromovi
h [Efr07℄ (p.2526).4.2. Remarks about the implementation and results. To implement ea
h estimator π̃ and
π̃BCL, we use the trigonometri
 basis. For ea
h sample of data (that is for ea
h 
omputation ofthe estimators), we 
alibrate the set A1 over 95% of the variables Xi: we 
hoose to eliminate thesmallest values (2.5%), and the largest values (2.5%) of the data to avoid the side e�e
ts. Werepeat this method to de�ne A2 with the variables Yi.For our estimator π̃, we have to 
ompute the sum A(m, F̂n) + 2V (m) for ea
h m = (m1,m2).Noti
e that the quadrati
 norm in the de�nition of A(m, F̂n) (see (12)) is simply equal to a sumof squared-
oe�
ients. For example, if m ∧m′ = (m1,m

′
2),

∥

∥

∥
ĥF̂

m′ − ĥF̂
m∧m′

∥

∥

∥

2
=

Dm′

1
∑

j=Dm1+1

Dm′

2
∑

k=1

(

âF̂
j,k

)2
.A large number of simulations allows us to 
alibrate the 
onstant in the de�nition of V : c1 = 0.2.The estimator π̃BCL of Brunel et al. [BCL07℄ is de�ned as a penalized least-squares 
ontrast



A FAST ADAPTIVE STRATEGY FOR THE ESTIMATION OF A CONDITIONAL DENSITY 11estimator. The penalty is pen(m) = K0‖π‖∞Dm1Dm2/n. We put K0 = 0.5 like in [BCL07℄ butwe do not repla
e ‖π‖∞ by an upper bound. To have a real data-driven pro
edure, we estimateit by taking the supremum of the values of a least-squares estimator on a �xed model Sm on arough grid, with m = [(ln(n) − 1)/2].Figures 1 and 2 illustrate the visual quality of the re
onstru
tion, for a 
ase of Examples 1, andfor Example 4. We do not observe signi�
ant di�eren
es between the two estimators, whi
h bothbehave quite well. However, the 
omputation of π̃BCL requires mu
h more time than the oneof π̃, probably be
ause of the presen
e of a matri
ial inversion, 
onsequen
e of the least-squares
ontrast. The warped-bases estimator 
an thus advantageously be used for estimation problemswith large data samples (data deriving from domain su
h as physi
s, �uores
en
e, �nan
e...).(a) π (b) π̃ (
) π̃BCL
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Figure 1. Plots of true fun
tion versus estimators, Examples 1, with Xi i.i.d.
U[0;1], εi i.i.d. N (0, 1), and b(x) = 2x+ 5 with n = 2000 observations. First line:(a) true fun
tion π, (b) estimator π̃, (c) estimator π̃BCL. Se
ond line: plots of
y 7→ π(x, y) (full line), y 7→ π̃(x, y) (left, dashed dotted line) and y 7→ π̃BCL(x, y)(right, dashed dotted line) for a �xed x. Third line: like the se
ond line, foranother value of x.For sample sizes n = 200, 500 and 2000, we give in Tables 1 and 2 the estimated values of therisk E[‖π̂ − π‖2

2], with ‖.‖2 the quadrati
 norm on L2(A1 × A2), and π̂ = (π̃BCL)+ or (π̃)+. Itis not di�
ult to see that the 
hoi
e of the positive part of both estimators 
an only make theirrisks de
rease. The estimation of the expe
tation is done over N = 100 repli
ated samples, andthe quadrati
 norm is approximated using subdivisions of A1 and A2 (see Brunel et al. [BCL07℄,Se
tion 5.1, for details about the formula).The risk of our estimator π̃ is often better than the one of the penalized least-squares estimator
π̃BCL. We indi
ate in those 
ases (in parenthesis) the per
entage of improvement in the twotables: it 
an be quite important (up to 75%). Pre
isely, in Table 1, one 
an noti
e that for thesample size n = 200, there is as many 
ases where the risk of π̃ is better than the one of π̃BCL asthe opposite 
ase (risk of π̃ larger than the risk of π̃BCL). However, for the larger sample sizes
n = 500 or n = 2000, π̃ has a smaller risk in 89% of the situations of Example 1 (see Table 1).
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) π̃BCL
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Figure 2. Plots of true fun
tion versus estimators, Example 4 with n = 2000observations. First line: (a) true fun
tion π, (b) estimator π̃, (c) estimator π̃BCL.Se
ond line: plots of y 7→ π(x, y) (full line), y 7→ π̃(x, y) (left, dashed dotted line)and y 7→ π̃BCL(x, y) (right, dashed dotted line) for a �xed x. Third line: like these
ond line, for another value of x.To 
on
lude this se
tion, let us stress out two main advantages of building an estimator of
π developed in warped bases, and sele
ted with a Goldenshluger-Lepski strategy, in pra
ti
e:�rst, its expression is expli
it, fast and simple to 
ompute (mu
h faster than the least-squaresstrategy). Then, on top of its novelty and simpli
ity, it seems to bring risk values whi
h aresmaller than the least-squares method. 5. ProofsIn all the proofs, the letter C denotes a nonnegative real that may 
hange from line to line.We also denote by ‖t‖∞,A the in�nite norm of a fun
tion t over a set A, by ‖t‖A its Hilbert norm,and by 〈., 〉A the asso
iated s
alar produ
t.5.1. Preliminary result. Let us start by setting a result whi
h is the key argument in theproofs of the two main theorems. We 
onsider the 
entered empiri
al pro
ess de�ned by(18) ∀t ∈ L2([0; 1] ×A2), νn(t) =

1

n

n
∑

i=1

t (FX(Xi), Yi) − E [t (FX(Xi), Yi)] .The aim of the following proposition is to 
ontrol the deviations of the supremum of this pro
esson the unit sphere of Sm(19) S(m) = {t ∈ Sm, ‖t‖ = 1} .
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b(x) ε X n = 200 500 2000 Method

2x+ 5 N (0, 1) U[0;1] 3.13 2.89 1.49 π̃BCL4.12 1.74 (−4%) 0.81 (−45%) π̃
U[−1;1] 6.63 5.36 3.96 π̃BCL6.22 (−6%) 4.14 (−23%) 2.58 (−53%) π̃
N (0, 1) 26.94 23.89 22.61 π̃BCL24.05 (−11%) 20.02 (−16%) 8.40 (−63%) π̃

Γ(4, 1) U[0;1] 1.56 1.27 0.77 π̃BCL1.42 (−9%) 1.01 (−2%) 0.68 (−12%) π̃
U[−1;1] 3.63 2.98 1.93 π̃BCL5.18 2.53 (−15%) 1.90 (−2%) π̃
N (0, 1) 14.41 13.39 12.20 π̃BCL12.55 (−13%) 10.18 (−24%) 6.20 (−49%) π̃

cos(x) N (0, 1) U[0;1] 2.06 2.36 1.38 π̃BCL2.34 0.92 (−61%) 0.43 (−69%) π̃
U[−1;1] 3.61 5.18 2.43 π̃BCL5.43 1.65 (−68%) 0.81 (−69%) π̃
N (0, 1) 9.87 8.06 4.53 π̃BCL14.64 6.26 (−22%) 3.20 (−67%) π̃

Γ(4, 1) U[0;1] 1.02 0.80 0.45 π̃BCL0.69 (−32%) 0.49 (−39%) 0.32 (−29%) π̃
U[−1;1] 1.83 1.86 0.97 π̃BCL1.27 (−31%) 0.94 (−49%) 0.68 (−30%) π̃
N (0, 1) 5.48 4.92 3.10 π̃BCL4.43 (−19%) 3.53 (−28%) 2.55 (−18%) π̃

x2 N (0, 1) U[0;1] 2.49 2.48 1.36 π̃BCL2.89 1.35 (−46%) 0.60 (−56%) π̃
U[−1;1] 4.99 5.72 2.45 π̃BCL5.39 2.03 (−65%) 0.88 (−64%) π̃
N (0, 1) 13.99 9.02 4.35 π̃BCL23.21 14.92 8.72 π̃

Γ(4, 1) U[0;1] 0.98 0.98 0.57 π̃BCL0.88 (−10%) 0.60 (−38%) 0.54 (−5%) π̃
U[−1;1] 2.13 2.36 1.06 π̃BCL1.44 (−32%) 1.23 (−48%) 1.02 (−4%) π̃
N (0, 1) 7.98 6.31 3.23 π̃BCL14.13 7.53 4.61 π̃Table 1. Values of MISE ×100 averaged over 100 samples, in Examples 1 (re-gression models) for the estimators π̃ and π̃BCL, with per
entage of improvement(in parenthesis) of the warped-bases method with Goldenshluger-Lepski sele
tion(π̃) 
ompared to the least-squares method (π̃BCL).Proposition 3. Under the assumptions of Theorem 1, for all δ > 0, there exists a 
onstant

C > 0, depending on ‖h‖∞, su
h that,
E

[

max
m′∈Mn

(

sup
t∈S(m′)

ν2
n(t) − 2(1 + 2δ)

Dm′

1
Dm′

2

n

)

+

]

≤ C

n
.



14 GAËLLE CHAGNYExample n = 200 500 2000 MethodEx 2 1.94 1.97 1.07 π̃BCL2.52 0.65 (−67%) 0.27 (−75%) π̃Ex 3 1.34 1.19 0.63 π̃BCL1.48 1.04 (−13%) 0.69 π̃Ex 4 11.72 11.85 10.82 π̃BCL10.21 (−13%) 10.49 (−11%) 10.13 (−6%) π̃Table 2. Values of MISE ×100 averaged over 100 samples, in Example 2,3,4 forthe estimators π̃ and π̃BCL, with per
entage of improvement (in parenthesis) ofthe warped-bases method with Goldenshluger-Lepski sele
tion (π̃) 
ompared tothe least-squares method (π̃BCL).Proof of Proposition 3. We �rst bound the maximum by a sum:
E

[

max
m′∈Mn

(

sup
t∈S(m′)

ν2
n(t) − c(δ)

Dm′

1
Dm′

2

n

)

+

]

≤
∑

m′∈Mn

E

[(

sup
t∈S(m′)

ν2
n(t) − c(δ)

Dm′

1
Dm′

2

n

)

+

]

,with the abbreviation c(δ) = 2(1 + 2δ) and we apply the following 
on
entration inequality.Lemma 4. Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne νn(r) = 1
n

∑n
i=1 r(ξi)−E[r(ξi)],for r belonging to a 
ountable 
lass R of real-valued measurable fun
tions. Then, for δ > 0, thereexist three 
onstants cl, l = 1, 2, 3, su
h that

E

[

(

sup
r∈R

(νn (r))2 − c(δ)H2

)

+

]

≤ c1

{

v

n
exp

(

−c2δ
nH2

v

)(20)
+

M2
1

C2(δ)n2
exp

(

−c3C(δ)
√
δ
nH

M1

)}

,with, C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and
sup
r∈R

‖r‖∞ ≤M1, E

[

sup
r∈R

|νn(r)|
]

≤ H, and sup
r∈R

Var (r (ξ1)) ≤ v.Inequality (20) is a 
lassi
al 
onsequen
e of Talagrand's Inequality given in Klein and Rio[KR05℄: see for example Lemma 5 (page 812) in La
our [La
08℄. Using density arguments,we 
an apply it to the unit sphere of a �nite dimensional linear spa
e, that is S(m′), for ourproblem. We repla
e also the fun
tions r by rt : (x, y) 7→ t(FX(x), y), and 
ompute the 
onstants
M1, H and v. Noti
e �rst that ‖rt‖∞ ≤ ‖t‖∞, we dedu
e from Property (3) that we 
anset M1 =

√

Dm′

1
Dm′

2
. If t ∈ S(m′), it 
an be written t =

∑
Dm′

1
j=1

∑
Dm′

2
k=1 bj,kϕj ⊗ ϕk, with

∑

j,k b
2
j,k = 1. So, using the linearity of the pro
ess, and Cau
hy-S
hwarz's Inequality, we get

supt∈S(m′) νn(t)2 ≤∑
Dm′

1
j=1

∑
Dm′

2
k=1 ν

2
n(ϕj ⊗ ϕk). We use anew Property (3) to de�ne H2:

E

[

sup
t∈S(m′)

ν2
n(t)

]

≤
Dm′

1
∑

j=1

Dm′

2
∑

k=1

1

n
Var (ϕj(FX(X1))ϕk(Y1)) ≤

Dm′

1
Dm′

2

n
:= H2.Finally, Var(t(FX(X1), Y1)) ≤ E[t2(FX(X1), Y1)] ≤ ‖t‖2‖h‖∞ = ‖h‖∞ := v. We just repla
e thequantities M1,H and v by the values derived above in Inequality (20):
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∑

m′∈Mn

E

[(

sup
t∈S(m′)

νn(t)2 − c(δ)
Dm′

1
Dm′

2

n

)

+

]

≤ c1







∑

m′∈Mn

1

n
exp

(

−c2Dm′

1
Dm′

2

)

+
∑

m′∈Mn

Dm′

1
Dm′

2

n2
exp

(

−c3
√
n
)







.It remains to remark that the �rst sum is a 
onstant and that∑m′∈Mn
Dm′

1
Dm′

2
≤ n2 to 
on
ludethe proof.

25.2. Proof of Theorem 1. For the sake of simpli
ity, we denote in this se
tion by m̂ the sele
tedindex m̂FX , by V the penalty V FX , and by A the quantity A(., FX ). Let Sm be a �xed model inthe 
olle
tion indexed by Mn.5.2.1. Main part of the proof. We de
ompose the loss of the estimator as follows:
‖π̃0 − π‖2

fX
=
∥

∥

∥
ĥFX

m̂ − h
∥

∥

∥

2
≤ 3

∥

∥

∥
ĥFX

m̂ − ĥFX

m∧m̂

∥

∥

∥

2
+ 3

∥

∥

∥
ĥFX

m∧m̂ − ĥFX
m

∥

∥

∥

2
+ 3

∥

∥

∥
ĥFX

m − h
∥

∥

∥

2
.By de�nition of A and m̂,

∥

∥

∥ĥ
FX

m̂ − h
∥

∥

∥

2
≤ 3 (A(m) + V (m̂)) + 3 (A(m̂) + V (m)) + 3

∥

∥

∥ĥFX
m − h

∥

∥

∥

2
,

≤ 6 (A(m) + V (m)) + 3
∥

∥

∥
ĥFX

m − h
∥

∥

∥

2
.We have already bounded the risk of the estimator on a �xed model (see Se
tion 2.3.1, Inequalities(8) and (10)), therefore, by de�nition of V , we get(21) E

[

∥

∥

∥
ĥFX

m̂ − h
∥

∥

∥

2
]

≤ 3E [A(m)] + (6c1 + 3)
Dm1Dm2

n
+ 3 ‖hm − h‖2 .To pursue the proof, we have to 
ontrol the expe
tation of A(m). By splitting the norm ‖ĥFX

m′ −
ĥFX

m∧m′‖2 for m,m′ ∈ Mn, and using the de�nition of A, we get
A(m) ≤ 3 max

m′∈Mn

[

∥

∥

∥ĥ
FX

m′ − hm′

∥

∥

∥

2
− V (m′)

6

]

+

+ 3 max
m′∈Mn

[

∥

∥

∥hm∧m′ − ĥFX

m∧m′

∥

∥

∥

2
− V (m′)

6

]

+

+3 max
m′∈Mn

‖hm′ − hm∧m′‖2 .The three terms of the above de
omposition are studied in the following lemmas, proved justbelow.Lemma 5. Under the assumptions of Theorem 1, there exists a 
onstant C > 0 su
h that, for
m ∈ Mn,

(a) E

[

max
m′∈Mn

(

∥

∥

∥ĥ
FX

m′ − hm′

∥

∥

∥

2
− V (m′)

6

)

+

]

≤ C

n
,

(b) E

[

max
m′∈Mn

(

∥

∥

∥
hm∧m′ − ĥFX

m∧m′

∥

∥

∥

2
− V (m′)

6

)

+

]

≤ C

n
.Lemma 6. Under the assumptions of Theorem 1, there exists a 
onstant C > 0 su
h that,

max
m′∈Mn

‖hm′ − hm∧m′‖2 ≤ 4‖hm − h‖2.



16 GAËLLE CHAGNYThese inequalities show that(22) E[A(m)] ≤ C

n
+ 4‖hm − h‖2.Gathering this with Inequality (21) ends the proof of the Theorem.

25.2.2. Proof of Lemma 5. To simplify the notations, we denote by Tp = ‖ĥFX
p − hp‖2 for p = m′or p = m ∧m′, and by Up = (Tp − V (m′))+.Inequality (a). We 
ompute �rst 
lassi
ally(23) ∥

∥

∥ĥ
FX

m′ − hm′

∥

∥

∥

2
=

Dm′

1
∑

j=1

Dm′

2
∑

k=1

(

âFX

j,k − aj,k

)2
=

Dm′

1
∑

j=1

Dm′

2
∑

k=1

ν2
n(ϕj ⊗ ϕk) = sup

t∈S(m′)
ν2

n(t),with νn the empiri
al pro
ess de�ned by (18). Thus,
E

[

max
m′∈Mn

Um′

]

= E

[

max
m′∈Mn

(

sup
t∈S(m′)

ν2
n(t) − V (m′)

6

)

+

]

,and Inequality (a) of the lemma is proved by applying Proposition 3.Inequality (b). We have to distinguish several 
ases, depending on the value of m ∧m′:
maxm′∈Mn

Um∧m′

≤ max
m′∈Mn

m′

1≤m1,m′

2≤m2

Um∧m′ + max
m′∈Mn

m1≤m′

1,m2≤m′

2

Um∧m′ + max
m′∈Mn

m′

1≤m1,m2≤m′

2

Um∧m′ + max
m′∈Mn

m1≤m′

1,m′

2≤m2

Um∧m′ .

• First term: m′
1 ≤ m1 and m′

2 ≤ m2. In this 
ase, m∧m′ = m′. Thus, we bound roughly
E






max

m′∈Mn

m′

1≤m1,m′

2≤m2

Um∧m′






≤ E

[

max
m′∈Mn

Um′

]

,and use Inequality (a) to 
on
lude that this term is bounded by C/n.
• Se
ond term: m1 ≤ m′

1 et m2 ≤ m′
2. Here, m ∧m′ = m. Using V (m) ≤ V (m′) (be
ause

Dml
≤ Dm′

l
, l = 1, 2), we have,

E






max

m′∈Mn

m1≤m′

1,m2≤m′

2

Um∧m′






≤ E






max

m′∈Mn

m1≤m′

1,m2≤m′

2

(

Tm − V (m)

6

)

+






= E

[(

Tm − V (m)

6

)

+

]

,and it 
an be seen as a 
onsequen
e of Proposition 3 and of the beginning of the proofof Inequality (a) that this last term is bounded by C/n.
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• Third term: m′

1 ≤ m1 etm2 ≤ m′
2. Here,m∧m′ = (m′

1,m2). We use thus V ((m′
1,m2)) ≤

V (m′
1,m

′
2) to get

E






max

m′∈Mn

m′

1≤m1,m2≤m′

2

Um∧m′






≤ E






max

m′∈Mn

m′

1≤m1,m2≤m′

2

(

T(m′

1,m2) −
V ((m′

1,m2))

6

)

+






,

≤
∑

m′

1∈I
(1)
n

E

[(

T(m′

1,m2) −
V ((m′

1,m2))

6

)

+

]

.The last term is also bounded by C/n, using a slightly di�erent version of Proposition3 (take the maximum only over m′
1 ∈ I(1)

n instead of over m ∈ Mn, and repla
e m by
m ∧m′).

• Fourth term: m1 ≤ m′
1 et m′

2 ≤ m2. We deal with this 
ase by using the same argumentsas for the last 
ase.We 
on
lude that E[maxm′∈Mn
Um∧m′ ] is upper-bounded by C/n.

25.2.3. Proof of Lemma 6. Following the same lines as in the proof of Lemma 5, we distinguishfour 
ases:
• m′

1 ≤ m1 and m′
2 ≤ m2. For su
h 
ouples (m1,m2) and (m′

1,m
′
2), ‖hm′ − hm∧m′‖2 = 0.

• m1 ≤ m′
1 et m2 ≤ m′

2. We noti
e �rst that ‖hm′ − hm∧m′‖2 = ‖hm′ − hm‖2 ≤ 2‖hm′ −
h‖2 + 2‖hm − h‖2. Sin
e the models are nested in ea
h dire
tion (see Property (4)),we have Sm = Sm1 × Sm2 ⊂ Sm′

1
× Sm′

2
= Sm′ . Consequently, hm ∈ Sm′ , and by thede�nition of the orthogonal proje
tion onto Sm′ , we get ‖hm′ − h‖ ≤ ‖hm − h‖. Thisleads to ‖hm′ − hm∧m′‖2 ≤ 4‖hm − h‖2.

• m′
1 ≤ m1 et m2 ≤ m′

2. To deal with this 
ase, we use �rst the following remark: if
t belongs to L2([0; 1] × A2), then for all u ∈ [0; 1], y 7→ t(u, y) belongs to L2(A2) and
y ∈ A2, u 7→ t(u, y) belongs to L2([0; 1]). Moreover, denoted by G1 (respe
tively G2) a
losed linear subspa
e of L2([0; 1]) (respe
tively of L2(A2)), and by ΠG the proje
tionoperator onto a subspa
e G, the following equality holds:

ΠG1×G2t = ΠG1×L2(A2)

(

ΠL2([0;1])×G2
t
)

.In our setting, we thus 
ompute
‖hm′ − hm∧m′‖2 =

∥

∥

∥ΠSm′

1
×L2(A2)

[

ΠL2([0;1])×Sm′

2

h− ΠL2([0;1])×Sm2
h
]∥

∥

∥

2
,

≤
∥

∥

∥
ΠL2([0;1])×Sm′

2

h− ΠL2([0;1])×Sm2
h
∥

∥

∥

2
,

≤ 2
∥

∥

∥ΠL2([0;1])×Sm′

2

h− h
∥

∥

∥

2
+ 2

∥

∥

∥ΠL2([0;1])×Sm2
h− h

∥

∥

∥

2
,

≤ 4
∥

∥

∥ΠL2([0;1])×Sm2
h− h

∥

∥

∥

2
≤ 4‖hm − h‖2,where the inequalities of the last line are obtained by noti
ing that Sm2 ⊂ Sm′

2
and that

Sm1 ⊂ L2([0; 1]), and by using the de�nition of orthogonal proje
tions.
• m1 ≤ m′

1 et m′
2 ≤ m2. This 
ase is the symmetri
 from the latter, and 
an be thushandled similarly.



18 GAËLLE CHAGNYGathering the bounds of the four 
ases and taking the maximum of the four upper-bounds leadto the 
on
lusion:
max

m′∈Mn

‖hm′ − hm∧m′‖2 ≤ max
{

0, 4‖hm − h‖2
}

= 4‖hm − h‖2.

25.3. Proof of Theorem 2. To simplify the notations, we write in this se
tion A(m) to repla
e
A(m, F̂n), V for V F̂ , and m̂ instead of m̂F̂ . The main idea of the proof is to re
over theframework of the proof of Theorem 1. The 
omputation are more te
hni
al, sin
e the estimator
π̃ = ĥF̂

m̂(F̂ (.), .) depends doubly on F̂ . We denote it by π̂F̂ ,F̂
m̂ , and 
oherently, we denote by π̂FX ,FX

m̂the estimator previously studied, that is π̃0. We also introdu
e the following intermediate:(24) ∀(x, y) ∈ A1 ×A2, π̂
F̂ ,FX (x, y) = ĥF̂

m̂(FX(x), y).These notations suit also well for a �xed index m ∈ Mn. We denote by E[.|(X−l)] the 
onditionalexpe
tation given the sample (X−l)l=1,...,n (the 
onditional expe
tation will be 
oherently denotedby Var(.|(X−l))). A key point is the following de
omposition whi
h holds for any index m:
‖π̂F̂ ,F̂

m − π‖2
fX

≤ 6
∑4

l=0 T
m
l , with(25) Tm

0 = ‖π − πFX
m ‖2

fX
+ ‖πFX

m − π̂FX ,FX
m ‖2

fX
,

Tm
1 =

∥

∥

∥π̂FX ,FX
m − π̂F̂ ,FX

m − E

[

π̂FX ,FX
m − π̂F̂ ,FX

m |(X−l)l

]∥

∥

∥

2

fX

,

Tm
2 =

∥

∥

∥
π̂F̂ ,FX

m − π̂F̂ ,F̂
m − E

[

π̂F̂ ,FX
m − π̂F̂ ,F̂

m |(X−l)l

]∥

∥

∥

2

fX

,

Tm
3 =

∥

∥

∥
E

[

π̂FX ,FX
m − π̂F̂ ,FX

m |(X−l)l

]∥

∥

∥

2

fX

, Tm
4 =

∥

∥

∥
E

[

π̂F̂ ,FX
m − π̂F̂ ,F̂

m |(X−l)l

]∥

∥

∥

2

fX

.Let us remark that Tm
0 is the bias-varian
e de
omposition for the risk of an estimator π̂FX ,FX

m ,and has already been studied (see Se
tion 2.3.1). The sket
h of the proof is now to de
omposethe loss fun
tion, using these intermediates and the de�nition of A and V , and then to boundea
h of the terms by CDm1Dm2/n or to 
enter them (so as to show they are negligible).5.3.1. Main part of the proof. We begin by introdu
ing the intermediate estimator de�ned by(24) in the loss of our estimator:
∥

∥

∥π̂
F̂ ,F̂
m̂ − π

∥

∥

∥

2

fX

≤ 3
∥

∥

∥π̂
F̂ ,F̂
m̂ − π̂F̂ ,FX

m̂ − E

[

π̂F̂ ,F̂
m̂ − π̂F̂ ,FX

m̂ |(X−l)l

]∥

∥

∥

2

fX

+3
∥

∥

∥E

[

π̂F̂ ,F̂
m̂ − π̂F̂ ,FX

m̂ |(X−l)l

]∥

∥

∥

2

fX

+ 3
∥

∥

∥π̂
F̂ ,FX

m̂ − π
∥

∥

∥

2

fX

,

= 3T m̂
2 + 3T m̂

4 + 3
∥

∥

∥
ĥF̂

m̂ − h
∥

∥

∥

2
.The last term 
an be itself de
omposed, by 
onstru
tion of A, V , and m̂:

∥

∥

∥
ĥF̂

m̂ − h
∥

∥

∥

2
≤ 3

∥

∥

∥
ĥF̂

m̂ − ĥF̂
m∧m̂

∥

∥

∥

2
+ 3

∥

∥

∥
ĥF̂

m∧m̂ − ĥF̂
m

∥

∥

∥

2
+ 3

∥

∥

∥
ĥF̂

m − h
∥

∥

∥

2
,

≤ 3 (A(m) + V (m̂)) + 3 (A (m̂) + V (m)) + 3
∥

∥

∥ĥF̂
m − h

∥

∥

∥

2
,

= 3 (A(m) + 2V (m)) + 3 (A (m̂) + 2V (m̂)) + 3
∥

∥

∥
ĥF̂

m − h
∥

∥

∥

2
− 3V (m̂) − 3V (m) ,

≤ 6 (A(m) + 2V (m)) − 2V (m̂) + 3
∥

∥

∥ĥF̂
m − h

∥

∥

∥

2
.
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m − h‖2 = ‖π̂F̂ ,FX

m − π‖2
fX

= 3Tm
1 + 3Tm

3 + 3Tm
0 . Consequently,

∥

∥

∥π̂
F̂ ,F̂
m̂ − π

∥

∥

∥

2

fX

≤ 3T m̂
2 + 3T m̂

4 − 3 × 2V (m̂) + 3 × 6 (A(m) + 2V (m))(26)
+3 × 3 × (3Tm

1 + 3Tm
3 + 3Tm

0 ) ,where the terms Tm
l , l = 0, . . . , 4 are de�ned by (25). We split the term A, �rst in a similar wayas in Theorem 1. Let (m,m′) ∈ M2

n,
∥

∥

∥ĥF̂
m′ − ĥF̂

m∧m′

∥

∥

∥

2
≤ 3

∥

∥

∥ĥF̂
m′ − hm′

∥

∥

∥

2
+ 3 ‖hm′ − hm∧m′‖2 + 3

∥

∥

∥hm∧m′ − ĥF̂
m∧m′

∥

∥

∥

2
.But we immediatly try to re
over the splitting terms de�ned by (25). Let us remark that ananalogous relation to (23) holds, for a di�erent empiri
al pro
ess: for p = m or p = m ∧m′,

∥

∥

∥
hp − ĥF̂

p

∥

∥

∥
= sup

t∈S(p)
ν̃2

n(t), ν̃n(t) =
1

n

n
∑

i=1

t
(

F̂n(Xi), Yi

)

− E [t (FX(Xi), Yi)] ,for a fun
tion t ∈ L2([0; 1]×A2). We re
over the previous empiri
al pro
ess by the de
omposition
ν̃2

n(t) ≤ 2ν2
n(t) + R2

n(t), with Rn(t) = (1/n)
∑n

i=1 t(F̂n(Xi), Yi) − t(FX(Xi), Yi). Moreover, if tbelongs to S(p), we have already written t =
∑Dp1

j=1

∑Dp2
k=1 θj,kϕj ⊗ϕk, with ∑Dp1

j=1

∑Dp2
k=1 θ

2
j,k = 1.Using this expression, Cau
hy-S
hwarz Inequality, and the de�nition of the 
oe�
ients âFX

j,k or
âF̂

j,k yield supt∈S(p)R
2
n(t) =

∑Dp1
j=1

∑Dp2
k=1(â

F̂
j,k − âFX

j,k )2. The 
onditional expe
tation of âF̂
j,k − âFX

j,kis introdu
ed to get supt∈S(p)R
2
n(t) ≤ 2T p

1 + 2T p
3 . Consequently,

∥

∥

∥hp − ĥF̂
p

∥

∥

∥

2
≤ 2 sup

t∈S(p)
(νn(t))2 + 4T p

1 + 4T p
3 .By substra
ting V (m′), taking the maximum over m′ ∈ Mn and integrating give an upper-boundfor E[A(m)]. We introdu
e it into (26) to obtain:

(∆) E

[

∥

∥

∥
π̂F̂ ,F̂

m̂ − π
∥

∥

∥

2

fX

]

≤ 36V (m) + 27E [Tm
0 + Tm

1 + Tm
3 ] + 3 max

m′∈Mn

‖hm∧m′ − hm′‖2

+3E

[

(

T m̂
2 − V (m̂)

)

+

]

+ 3E

[

(

T m̂
4 − V (m̂)

)

+

]

+6E

[

max
m′∈Mn

(

sup
t∈S(m′)

(νn(t))2 − V (m′)

36

)

+

]

+ 6E

[

max
m′∈Mn

(

sup
t∈S(m∧m′)

(νn(t))2 − V (m′)

36

)

+

]

+12E

[

max
m′∈Mn

(

Tm′

3 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

3 − V (m′)

72

)

+

]

+12E

[

max
m′∈Mn

(

Tm′

1 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

1 − V (m′)

72

)

+

]

.We bound ea
h of these terms. Some of them have already been studied: re
all �rst that
E [Tm

0 ] ≤
∥

∥πFX
m − π

∥

∥

2
+
Dm1Dm2

n
,



20 GAËLLE CHAGNYusing (8) and (10). Moreover, applying twi
e Proposition 3 shows that
E

[

max
m′∈Mn

(

sup
t∈S(m′)

(νn(t))2 − V0(m
′)

)

+

]

≤ C

n
,

E

[

max
m′∈Mn

(

sup
t∈S(m∧m′)

(νn(t))2 − V0(m
′)

)

+

]

≤ C

n
,with V0(m

′) = 2(1 + 2δ)Dm′

1
Dm′

2
/n. Choosing c1 (see the de�nition (11)) larger than 2(1 +

2δ), these inequalities hold with V in pla
e of V0. Finally, we have proved in Lemma 6 that
maxm′∈Mn

‖hm′ − hm∧m′‖2 ≤ 4‖hm − h‖2. Taking into a

ount the previous inequality (∆) forthe risk, we get,
E

[

∥

∥

∥
π̂F̂ ,F̂

m̂ − π
∥

∥

∥

2

fX

]

≤ 36V (m) + 27
Dm1Dm2

n
+ 27E [Tm

1 + Tm
3 ] +

C

n

+3E

[

(

T m̂
2 − V (m̂)

)

+

]

+ 3E

[

(

T m̂
4 − V (m̂)

)

+

]

+ (12 + 27)‖hm − h‖2(27)
+12E

[

max
m′∈Mn

(

Tm′

3 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

3 − V (m′)

72

)

+

]

+12E

[

max
m′∈Mn

(

Tm′

1 − V (m′)

72

)

+

]

+ 12E

[

max
m′∈Mn

(

Tm∧m′

1 − V (m′)

72

)

+

]

.It remains to bound the terms Tm
l , l = 1, 2, 3, 4 or their 
entering versions, by quantities of orderat most Dm1Dm2/n. Let us �rst noti
e that, for l = 2, 4,

E

[

(

T m̂
l − V (m̂)

)

+

]

≤ E

[

max
m′∈Mn

(

Tm′

l − V (m′)
)

+

]

,and then use the lemmas just below, whose proofs are deferred to the following se
tions.Lemma 7. Assuming that the models are trigonometri
, there exists a 
onstant C dependingonly on ‖ϕ′
2‖∞ su
h that, for m ∈ Mn,

E [Tm
1 ] ≤ C

D3
m1
Dm2

n2
.Moreover, the following inequality holds, if Dm1 = O(

√
n/ ln(n)), for pm′ = m′ or pm′ = m∧m′,and for a 
onstant C > 0

E

[

max
m′∈Mn

(

T
pm′ ,b
1 − V1(m

′)
)

+

]

≤ C

n
,with V1(m

′) = κ1Dm′

1
Dm′

2
/n, and κ1 a 
onstant depending only on ‖ϕ′

2‖∞.If Dm1 = O(n1/2) in parti
ular, the �rst inequality of Lemma 7 leads to E[Tm
1 ] ≤ CDm1Dm2 .Lemma 8. Assuming that the models are trigonometri
, there exists a 
onstant C, whi
h dependson ‖ϕ′

2‖∞,[0;1], su
h that
E

[

max
m′∈Mn

(

Tm′

2 − V2(m
′)
)

+

]

≤ C
ln(n)

n
,with V2(m

′) = κ2D
4
m′

1
Dm′

2
ln2(n)/n2, and κ2 a 
onstant depending also on ‖ϕ′

2‖∞,[0;1].Assuming that Dm′

1
= O(n1/3/ ln2/3(n)), we have V2(m

′) ≤ V b
2 (m′) := κ′2Dm′

1
Dm′

2
/n (κ′2 a
onstant independent of h). The inequality of Lemma 8 still holds by repla
ing V2 by V b
2 .
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, and that h is C1 with respe
t to its�rst variable on [0; 1], there exists a 
onstant C depending on ‖ϕ(3)
2 ‖∞, ‖h‖ and ‖∂1h‖ (∂1 is thederivation operator with respe
t to the �rst variable) su
h that, for m ∈ Mn,

E [Tm
3 ] ≤ C

(

1

n
+
Dm1

n
+
D4

m1

n2
+
D7

m1

n3

)

.Moreover, the following inequality holds, for pm′ = m′ or pm′ = m ∧ m′, for n ≥ n0(h), andassuming Dm1 = O(n1/3) and Dm2 ≥ c ln4(n) (for a 
onstant c > 0) for ea
h m,
E

[

max
m′∈Mn

(

T
pm′ ,b
3 − V3(m

′)
)

+

]

≤ C

n
,with V3(m

′) = κ3

Dm′

1
Dm′

2
n , κ3 a 
onstant independent of h, and n0(h) a nonnegative integerdepending on the fun
tion h.IfDm1 = O(n1/3) in parti
ular, the �rst inequality of Lemma 7 leads to E[Tm

3 ] ≤ CDm1Dm2/n.Lemma 10. Assuming that the models are trigonometri
, that h is C1 with respe
t to its �rstvariable on [0; 1] and belongs to the anisotropi
 Sobolev ball denoted by W 2
per([0; 1]

2, L, (1, 0)), andthat for all m ∈ Mn, Dm1 = O(n1/3/ ln1/3(n) and Dm2 ≥ c ln5(n) (for a 
onstant c > 0), thereexists a 
onstant C, whi
h depends on ‖ϕ′
2‖∞,[0;1], ‖ϕ′′

2‖∞,[0;1], ‖ϕ(3)
2 ‖∞,[0;1], ‖h‖, ‖∂1h‖, and Lsu
h that, for n ≥ n1(h),

E

[

max
m′∈Mn

(

Tm′

4 − V4(m
′)
)

+

]

≤ C
ln(n)

n
,with V4(m

′) = κ4Dm′

1
Dm′

2
/n, and κ4 independent of h, and n1(h) a nonnegative integer depend-ing on the fun
tion h.To 
on
lude the proof, we 
hoose the 
onstant c1 larger than κl (l = 1, . . . , 4), to have V (m′) ≥

Vl(m) (or V b
l (m′) for l = 2): this allows to apply the inequalities of the lemmas with V and touse it in Inequality (27). We obtain then the result of Theorem 2.

25.3.2. Te
hni
al tools for the proof of Lemmas 7 to 10. Key arguments for the proof of thelemmas are the properties of the empiri
al 
umulative distribution fun
tion F̂n of the sample
(X−l)l. First, let U−i = FX(X−i) (i = 1, . . . , n). Re
all that it is a uniform variable on [0; 1]. Wedenote by Ûn the empiri
al 
.d.f. asso
iated to the sample (U−i)i=1,...,n. Let us keep also in mindthat for all u ∈ [0; 1], F̂n(F−1

X (u)) = Ûn(u) and that the random variable ‖F̂n − FX‖∞,A1 hasthe same distribution as ‖Ûn − id‖∞,[0;1] (with id the fun
tion su
h that u 7→ u). In parti
ular,we get thus
E

[

âF̂
j,k |(X−l)l

]

=

∫

[0;1]×A2

ϕj ◦ Ûn(u)ϕk(y)h(u, y)dudy.We also re
all some inequalities to 
ontrol the deviations of the empiri
al 
.d.f Ûn. Dvoretzky,Kiefer and Wolfowitz [DKW56℄ established the �rst one:Proposition 11. For any λ > 0, there exists a 
onstant K su
h that
P

(

∥

∥

∥
Ûn − id

∥

∥

∥

∞,[0;1]
≥ λ

)

≤ K exp
(

−2nλ2
)

.By integration, we dedu
e then other bounds:



22 GAËLLE CHAGNYProposition 12. For any integer p > 0, there exists a 
onstant Cp > 0 su
h that(28) E

[

∥

∥

∥
Ûn − id

∥

∥

∥

p

∞,[0;1]

]

≤ Cp

np/2
,For any κ > 0, for any integer p ≥ 2, there exists also a 
onstant C su
h that(29) E

[(

∥

∥

∥Ûn − id
∥

∥

∥

p

∞,[0;1]
− κ

lnp/2(n)

np/2

)

+

]

≤ Cn−c(p,κ), with c(p, κ) = 2
2−p

p κ2/p.Moreover,(30) E

[

(

∥

∥

∥Ûn − id
∥

∥

∥

2

∞,[0;1]
− κ

ln(n)

n

)2
]

≤ Cn−2−2κ.Inequality (30) is a slightly more pre
ise version of Inequality (29) in the 
ase p = 2.5.3.3. Proof of Lemma 7. The �rst part of the lemma is to bound E[Tm
1 ]. Using the de�nitionof π̂FX ,FX and π̂F̂ ,FX leads to

Tm
1 =

∥

∥

∥
ĥFX

m − ĥF̂
m − E

[

ĥFX
m − ĥF̂

m |(X−l)l

]∥

∥

∥

2
.The de
ompositions of the estimators in the orthonormal basis (ϕj⊗ϕk) yield Tm

1 =
∑

j,k{(âFX

j,k −
âF̂

j,k) − E[âFX

j,k − âF̂
j,k|(X−l)]}2. Thus,(31) E [Tm

1 |(X−l)l ] =
∑

j,k

Var(âFX

j,k − âF̂
j,k |(X−l)l

)

.We work out the 
onditional varian
e for any 
ouple (j, k):Var(âFX

j,k − âF̂
j,k |(X−l)l

)

=
1

n
Var(ϕj (FX(X1))ϕk(Y1) − ϕj

(

F̂n(X1)
)

ϕk(Y1) |(X−l)l

)

,

≤ 1

n
E

[

ϕ2
k(Y1)

{

ϕj (FX(X1)) − ϕj

(

F̂n(X1)
)}2

|(X−l)l

]

.We apply the mean value theorem, sum over the indi
es j and k, and remark ‖ϕ′
j‖∞,[0;1] ≤

Dm1‖ϕ′
2‖∞,[0;1] (property of the trigonometri
 basis):

E [Tm
1 |(X−l)l ] ≤ 1

n

∥

∥

∥

∥

∥

∥

Dm2
∑

k=1

ϕk

∥

∥

∥

∥

∥

∥

2

∞,[0;1]

Dm1
∑

j=1

‖ϕ′
j‖2

∞,[0;1]

∥

∥

∥
FX − F̂n

∥

∥

∥

2

∞,A1

,

≤ ‖ϕ′
2‖2

∞,[0;1]

D3
m1
Dm2

n

∥

∥

∥
FX − F̂n

∥

∥

∥

2

∞,A1

.It remains to use Inequality (28) of Proposition 12 with p = 2 to bound the expe
tation:
E [Tm

1 ] ≤ C‖ϕ′
2‖2

∞,[0;1]

D3
m1
Dm2

n2This 
ompletes the proof of the �rst inequality. For the se
ond, let us begin with V1(pm′) ≤
V1(m

′). Therefore E[maxm′∈Mn
(T

pm′

1 − V1(m
′))+] ≤ E[maxm′∈Mn

(T
pm′

1 − V1(pm′))+]. In thesequel, we simplify the notations by setting p = pm′ . Similar arguments than the ones used toget (23) lead to T p
1 = supt∈S(p) (νa

n(t))2 with
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νa

n(t) =
1

n

n
∑

i=1

(

t(FX(Xi), Yi) − t(F̂n(Xi), Yi)
)

− E

[(

t(FX(Xi), Yi) − t(F̂n(Xi), Yi)
)

|(X−l)l

]

,a pro
ess whi
h is 
entered 
onditionally to the sample (X−l)l. Thus we apply Talagrand in-equality (20), as in the proof of Proposition 3, but 
onditionally to (X−l)l. In this setting thekey quantities are su
h that
sup

t∈S(p)
‖rt‖∞ ≤M1,a, E

[

sup
t∈S(p)

|νa
n(t)| |(X−l)l

]

≤ Ha,and sup
t∈S(p)

1

n

n
∑

i=1

Var (rt(Xi, Yi) |(X−l)l ) ≤ va.We 
ompute
M1,a = ‖ϕ′

2‖∞,[0;1]D
3/2
p1 D

1/2
p2

∥

∥

∥F̂n − FX

∥

∥

∥

∞,A1

,

H2
a,p = 1

n ‖ϕ′
2‖2

∞,[0;1]D
3
p1
Dp2

∥

∥

∥F̂n − FX

∥

∥

∥

2

∞,A1

, va = nH2
a,p,and obtain thus for δ > 0, E

[(

sup
t∈S(p)

(νa
n(t))2 − 2(1 + 2δ)H2

a,p

)

+

|(X−l)l

]

≤ C0

{

H2
a,p exp (−Cδ) +

H2
a,p

C2(δ)n
exp

(

−C
√
δ
√
n
)

}

.Here, C0 is a random 
onstant, whi
h depends on ‖FX − F̂n‖∞,A1 , and C is purely numer-i
al. But C0 
an be also bounded by a �xed quantity, sin
e the in�nite norm is smallerthan 1. Thus we write anew C in the sequel. We 
hoose δ = κ ln(n) (κ > 0), so that
C(δ) = 1. We put now p = m′ (The 
ase p = m ∧ m′ 
an be handled similarly). We havethus E

[

max
m′∈Mn

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+
|(X−l)l

]

≤
∑

m′∈Mn

E

[

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+
|(X−l)l

]

,

≤ C







n−Cκ
∑

m′∈Mn

D3
m′

1
Dm′

2

n
+ exp

(

−C√
n
)

∑

m′∈Mn

D3
m′

1
Dm′

2

n2







,

≤ C
{

n1−Cκ + n exp
(

−C√
n
)}

,by using just that Dml
= O(

√
n) (l = 1, 2), and that the 
ardinal of Mn is smaller than n. Thelast bound is itself smaller than Cn−1, if we 
hoose κ large enough. We then noti
e that, for any

αn > 0

2(1 + 2κ ln(n))H2
a,m′ ≤ 6κ

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]

D3
m′

1
Dm′

2
ln(n)

n

∥

∥

∥
F̂n − FX

∥

∥

∥

2

∞,A1

,

≤ 6κ
∥

∥ϕ′
2

∥

∥

2

∞,[0;1]

D3
m′

1
Dm′

2
ln(n)

n

(

α2
n + 1‖F̂n−FX‖∞,A1

≥αn

)

.



24 GAËLLE CHAGNYChoosing αn =
√

3 ln(n)/n, and using Dm′

1
= O(

√
n/ ln(n)),

2(1 + 2κ ln(n))H2
a,m′ ≤ 12κ

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]

Dm′

1
Dm′

2

n
+ C1‖F̂n−FX‖∞,A1

≥αn
,

= V1(m
′) + C1‖F̂n−FX‖2

∞,A1
≥αn

,Besides,
E

[

(

Tm′

1 − V1(m
′)
)

+

]

≤ E

[

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+

]

+ E

[

C1‖F̂n−FX‖∞,A1
≥αn

]

,

≤ E

[

(

Tm′

1 − 2(1 + 2κ ln(n))H2
a,m′

)

+

]

+ Cn−3,with the inequality of Proposition 11. To 
on
lude, ∑m′∈Mn
E[(Tm′

1 − V1(m
′))+] ≤ C/n.

25.3.4. Proof of Lemma 8. For 
onvenien
e, the 
onstant κ2 in the de�nition of V2 is splittedinto two parts, that is κ2 = κκ′. The �rst step is to write E[maxm′∈Mn
(Tm′

2 − V2(m
′))+] ≤

∑

m′∈Mn
E[(Tm′

2 − V2(m
′))+]. Then it is enough to bound this quantity for ea
h index m′. Wewrite in a shortened form the sum "∑Dm′

1
j=1 ": "∑j" (and the analogous for∑Dm′

2
k=1 ). We 
ompute

Tm′

2

=

∫

A1×A2

(

ĥF̂
m′ (FX(x), y) − ĥF̂

m′

(

F̂n(x), y
)

−E

[

ĥF̂
m′ (FX(x), y) − ĥF̂

m′

(

F̂n(x), y
)

|(X−l)l

])2
fX(x)dxdy,

=

∫

A1

∑

j,j′

∑

k,k′

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

]) (

âF̂
j′,k′ − E

[

âF̂
j′,k′ |(X−l)l

])

×
(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)(

ϕj′ ◦ FX(x) − ϕj′ ◦ F̂n(x)
)

∫

A2

ϕk(y)ϕk′(y)dyfX(x)dx,

=

∫

[0;1]

Dm′

2
∑

k=1











Dm′

1
∑

j=1

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

]) (

ϕj(u) − ϕj ◦ Ûn(u)
)











2

du,By Cau
hy-S
hwarz Inequality, and the mean value theorem,
Tm′

2 ≤
∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
D3

m′

1

∥

∥

∥
Ûn − id

∥

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1

Dm′

1
∑

j=1

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2
.Thus, E[(Tm′

2 − V2(m
′))+] ≤ Tm′

2,a + Tm′

2,b , with
Tm′

2,a = D3
m′

1

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
E





∑

j,k

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2
(

∥

∥

∥Ûn − id
∥

∥

∥

2

∞,[0;1]
− κ′

ln(n)

n

)

+



 ,

Tm′

2,b = D3
m′

1

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
κ′

ln(n)

n
E









∑

j,k

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2
− κ

‖ϕ′
2‖2

∞,[0;1]

Dm′

1
Dm′

2

n
ln(n)





+



 .
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F̂
j,k − E[âF̂

j,k(X−l)l])
2 leads to

Tm′

2,a ≤ 2D4
m′

1
Dm′

2

∥

∥ϕ′
2

∥

∥

2

∞,[0;1]
E

[(

∥

∥

∥Ûn − id
∥

∥

∥

2

∞,[0;1]
− κ′

ln(n)

n

)

+

]

.Inequality (30) and the assumptions Dml
≤ √

n (l = 1, 2) allow to 
on
lude that Tm′

2,a ≤
Cn3/2−2κ′ , and thus, 
hoosing κ′ ≥ 7/4, ∑m′∈Mn

Tm′

2,a ≤ C/n. For the se
ond term Tm′

2,b , wenoti
e �rst that ∑j,k(â
F̂
j,k − E[âF̂

j,k|(X−l)l])
2 = supt∈S(m′)(ν

b
n)2(t), with

νb
n(t) =

1

n

n
∑

i=1

t
(

F̂n(Xi), Yi

)

− E

[

t
(

F̂n(Xi), Yi

)

|(X−l)l

]

.We now bound the deviations of this empiri
al pro
ess, 
entered 
onditonally to (X−l), exa
tlyas we bound νa
n in the proof of Lemma 7: they are 
ontroled by Talagrand Inequality (20). Weobtain �nally ∑m′∈Mn T

m′

2,b ≤ C ln(n)/n, whi
h ends the proof, by gathering this bound withthe one of ∑m′∈Mn T
m′

2,a .
25.3.5. Proof of Lemma 9. To 
ompute a bound for E[Tm

3 ], let us begin with the de�nition ofthe estimators and their 
oe�
ients, to get Tm
3 =

∑Dm1
j=1

∑Dm2
k=1 {〈ϕk,Λj(y)〉A2}2 with Λj(y) =

∫

A1
(ϕj(F̂n(x)) − ϕj(FX(x)))f(X,Y )(x, y)dx. Thus we 
an write Tm

3 =
∑Dm1

j=1 ‖ΠSm2
Λj‖2

A2
≤

∑Dm1
j=1 ‖Λj‖2

A2
, whi
h 
an be developed as

Tm
3 =

Dm1
∑

j=1

∫

A2

(

∫

[0;1]
(ϕj(Ûn(u)) − ϕj(u))h(u, y)du

)2

dy :=

∫

A2

T
′m
3 (y)dy.We apply Taylor formula with Lagrange form for the remainder rest: there exists a randomnumber depending on j, α̂j,n,u, su
h that the following splitting holds:

E

[

T
′m
3 (y)

]

≤ 3E
[

Tm
3,1(y)

]

+ 3E
[

Tm
3,2(y)

]

+ 3E
[

Tm
3,3(y)

]

,with notations
Tm

3,1(y) =

Dm1
∑

j=1

{
∫ 1

0
h(u, y)

(

Ûn(u) − u
)

ϕ′
j(u)du

}2

,

Tm
3,2(y) = (1/4)

Dm1
∑

j=1

{∫ 1

0
h(u, y)

(

Ûn(u) − u
)2
ϕ′′

j (u)du

}2

,

Tm
3,3(y) = (1/6)

Dm1
∑

j=1

{
∫ 1

0
h(u, y)

(

Ûn(u) − u
)3
ϕ

(3)
j (α̂j,n,u)du

}2

.Writing the de�nition of Ûn(u), and noting that u = E[1Ui≤u] (i = 1, . . . , n), we get for the �rstterm
E
[

Tm
3,1(y)

]

= E





Dm1
∑

j=1

(

1

n

n
∑

i=1

Ai,j(y) − E[Ai,j(y)]

)2


 , with Ai,j(y) =

∫ 1

Ui

h(u, y)ϕ′
j(u)du.



26 GAËLLE CHAGNYWe integrate by parts in Ai,j (h is assumed to be C1 with respe
t to its �rst variable). This leadsto another splitting, for ea
h y ∈ A2:
E
[

Tm
3,1(y)

]

≤ 2E
[

Tm
3,1,1(y)

]

+ 2E
[

Tm
3,1,2(y)

]

,where(32) Tm
3,1,1(y) =

Dm1
∑

j=1

{

1

n

n
∑

i=1

h(Ui, y)ϕj(Ui) − E [h(Ui, y)ϕj(Ui)]

}2

,

Tm
3,1,2(y) =

Dm1
∑

j=1

{
∫ 1

0
∂1h(u, y)

(

Ûn(u) − u
)

ϕj(u)du

}2

.In the spirit of the bound given for Tm
1 , the �rst term is 
ontrolled as follows:

E
[

Tm
3,1,1(y)

]

≤ 1

n

Dm1
∑

j=1

E

[

(h(U1, y)ϕj(U1))
2
]

≤ Dm1

n

∫ 1

0
h(u, y)2du.Thus, ∫A2

E[Tm
3,1,1(y)]dy ≤ ‖h‖2Dm1/n. Then, by de�nition and properties of the orthogonalproje
tion on Sm,

E
[

Tm
3,1,2(y)

]

= E





Dm1
∑

j=1

(

〈∂1h(., y)(Ûn − id), ϕj〉[0;1]
)2



 ≤ E

[

∥

∥

∥
∂1h(., y)(Ûn − id)

∥

∥

∥

2

[0;1]

]

.Finally, Tm
3,1,2(y) ≤ C‖∂1h(., y)‖2

[0;1]/n by Inequality (28), and thus, by gathering the bounds for
Tm

3,1,1(y) and Tm
3,1,2(y),

∫

A2

E
[

Tm
3,1(y)

]

dy ≤ C

(

1

n
+
Dm1

n

)

.As regards Tm
3,2(y), we remark �rst that for j ≥ 2, ϕ′′

j = −(πµj)
2ϕj , with µj = j for even j, and

µj = j − 1 otherwise, so that µj is bounded by Dm1 . Hen
e,
E
[

Tm
3,2(y)

]

≤ (π4/4)D4
m1

E





Dm1
∑

j=2

{∫ 1

0
h(u, y)

(

Ûn(u) − u
)2
ϕj(u)du

}2


 ,

≤ (π4/4)D4
m1

E

[

∥

∥

∥

∥

h(., y)
(

Ûn − id
)2
∥

∥

∥

∥

2

[0;1]

]

≤ C

∫

[0;1]
h2(u, y)du

D4
m1

n2
,by pro
eeding with the previous arguments (properties of orthogonal proje
tion and Inequality(28)). So we prove ∫A2

E[Tm
3,2(y)]dy ≤ CD4

m1
/n2. The 
omputations for the last term are lesste
hni
al:

E
[

Tm
3,3(y)

]

≤ (1/6)

Dm1
∑

j=1

∥

∥

∥
ϕ

(3)
j

∥

∥

∥

2

∞,[0;1]
‖h(., y)‖2

[0;1]E

[

∥

∥

∥
Ûn − id

∥

∥

∥

6

∞,[0;1]

]

, ,thus ∫A2
E[Tm

3,3(y)]dy ≤ CD7
m1
/n3. This 
ompletes the proof of the �rst inequality of Lemma 9.With regard to the se
ond inequality, it is enough to bound E[maxm′∈Mn

(T p
1 −V1(p))+], like forthe se
ond part of Lemma 7 (p = m′ or p = m ∧m′). As previously, we get the splitting(33) T p

3 ≤ 6

∫

A2

T p
3,1,1(y)dy + 6

∫

A2

T p
3,1,2(y)dy + 3

∫

A2

T p
3,2(y)dy + 3

∫

A2

T p
3,3(y)dy,
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E

[

max
m′∈Mn

(

T p,b
3 − V3(p)

)

+

]

≤ E

[

max
m′∈Mn

(

6

∫

A2

T p
3,1,1(y)dy − V3(p)/3

)

+

]

+E

[

max
m′∈Mn

6

∫

A2

T p
3,1,2(y)dy

]

+E

[

max
m′∈Mn

(

3

∫

A2

T p
3,2(y)dy − V3(p)/3

)

+

]

+E

[

max
m′∈Mn

(

3

∫

A2

T p
3,3(y)dy − V3(p)/3

)

+

]

.The term whi
h is not 
entered is dire
ly negligible : denoting by mmax the largest 
ouple ofindex (maximum is taken term by term) in the 
olle
tion Mn, we remark that T p
3,1,2 ≤ Tmmax

3,1,2(by (32)). Hen
e, E[maxm′∈Mn
6
∫

A2
T p

3,1,2(y)dy] ≤ C/n. Let us brie�y study ea
h of the otherterms: �rst T p
3,1,1(y) = sups∈Sp1 ,‖s‖[0;1]=1 ν

2
n,y(s), with

νn,y(s) =
1

n

n
∑

i=1

π(Xi, y)s ◦ FX(Xi) − E [π(Xi, y)s ◦ FX(Xi)] .Using on
e more time Talagrand Inequality (20) leads to(34) E

[

max
m′∈Mn

(

6

∫

A2

T p
3,1,1(y)dy − V3,1,1(p)

)

+

]

≤ C

n
,with V3,1,1(p) = 6 × 2(1 + 2δ)‖h‖2

∞Dp1/n, (δ > 0). Besides, for n ≥ n0 = exp(‖h‖2
∞),

V3,1,1(p) ≤ 12(1 + 2δ) ln(n)
Dp1

n
≤ C

Dp1Dp2

n
:= V b

3,1,1(p),sin
e Dp2 ≥ c ln(n) (c > 0). Inequality (34) holds with V b
3,1,1. The two last terms, involving

Tm
3,2(y) and Tm

3,3(y) 
an be 
ompute with the same strategy: use the proof of the �rst inequalityof Lemma 9 to bound ∫A2
Tm

3,l(y)dy (l = 2, 3) by quantity of the form C‖Ûn − id‖k
∞, and thenapply Inequality (29). The 
on
lusion is that(35) E

[

max
m′∈Mn

(

3

∫

A2

T p
3,l(y)dy − V3,l(p)

)

+

]

≤ C
ln(n)

n
,for l = 2, 3, with V3,2(p) = CD4

p1
ln2(n)/n2, and V3,3(p) = CD7

p1
ln3(n)/n3. Assuming both

n ≥ n1 = exp(‖h‖2), and Dp1 = O(n1/3), Dp2 ≥ c ln3(n), we have
V3,2(p) ≤ C

Dp1Dp2

n
:= V b

3,2(p).With the more restri
tive low bound Dp2 ≥ c ln4(n), we get also V3,3(p) ≤ CDp1Dp2/n := V b
3,3(p).As usual, Inequalities (35) still hold with V b

3,l instead of V3,l. The proof is 
omplete if we gather allthese bounds and if we 
hoose the 
onstant κ3 su
h that V3 ≥ 3V b
3,1,1, V3 ≥ 3V b

3,2, et V3 ≥ 3V b
3,3.
2



28 GAËLLE CHAGNY5.3.6. Proof of Lemma 10. Let us �rst split the term Tm′

4 in several parts. Similarly to the boundobtained for Tm
3 , we use the de�nitions of the estimators and their 
oe�
ients, and the fa
t thatthe basis (ϕk)k is orthonormal: hen
e,

Tm′

4 ≤
∫

A1

E







Dm′

2
∑

k=1







Dm′

1
∑

j=1

âF̂
j,k

(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)







2

|(X−l)l






fX(x)dx.We write it Tm′

4 ≤ 2Tm′

4,1 + 2Tm′

4,2 , with
Tm′

4,1 =

∫

A1

E







Dm′

2
∑

k=1







Dm′

1
∑

j=1

(

âF̂
j,k − aj,k

)(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)







2

|(X−l)l






fX(x)dx,

Tm′

4,2 =

∫

A1

E







Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,k

(

ϕj ◦ FX(x) − ϕj ◦ F̂n(x)
)







2

|(X−l)l






fX(x)dx,where we denote by aj,k = 〈h, ϕj ⊗ ϕk〉, the Fourier's 
oe�
ients of the fun
tion h. Then wehave also Tm′

4,1 ≤ 2Tm′

4,1,1 + 2Tm′

4,1,2 with the notations
Tm′

4,1,1 =

∫

[0;1]
E







Dm′

2
∑

k=1











Dm′

1
∑

j=1

(

âF̂
j,k − E

[

âF̂
j,k |(X−l)l

])2





















Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2











|(X−l)l






du,

Tm′

4,1,2 =

∫

[0;1]
E







Dm′

2
∑

k=1











Dm′

1
∑

j=1

(

E

[

âF̂
j,k |(X−l)l

]

− aj,k

)2





















Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2











|(X−l)l






du.As

E

[

Tm′

4,2

]

= E







Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0

(

ϕj(u) − ϕj ◦ Ûn(u)
)(

ϕj′(u) − ϕj′ ◦ Ûn(u)
)

du






,a Taylor formula yields E[Tm′

4,2 ] ≤ E[Tm′

4,2,1 + Tm′

4,2,2 + Tm′

4,2,3], where
Tm′

4,2,1 =

Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0
(u− Ûn(u))2ϕ′

j(u)ϕ
′
j′(u)du,

Tm′

4,2,2 = (1/4)

Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0
(u− Ûn(u))4ϕ′′

j (α̂j,n,u)ϕ′′
j′(α̂j′,n,u)du,

Tm′

4,2,3 =

Dm′

2
∑

k=1

Dm′

1
∑

j,j′=1

aj,kaj′,k

∫ 1

0
(u− Ûn(u))3ϕ′′

j (α̂j,n,u)ϕ′
j′(u)du.
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e, the de
omposition of the studied term is Tm′

4 ≤ 4Tm′

4,1,1 +4Tm′

4,1,2+2Tm′

4,2,1 +2Tm′

4,2,2+2Tm′

4,2,3,and 
onsequently
E

[

max
m′∈Mn

(

Tm′

4 − V4(m
′)
)

+

]

≤ E

[

max
m′∈Mn

(

4Tm′

4,1,1 − V4(m
′)/3

)

+

]

+E

[

max
m′∈Mn

(

4Tm′

4,1,2 − V4(m
′)/3

)

+

]

+E

[

max
m′∈Mn

(

2Tm′

4,2,3 − V4(m
′)/3

)

+

]

+E

[

max
m′∈Mn

2Tm′

4,2,1

]

+ E

[

max
m′∈Mn

2Tm′

4,2,2

]

.The methods use to bound ea
h of these terms have already been detailed for other terms: withregard to the two qunatities whi
h are not 
entered, we bound it to show that they are negligible(that is of order at most C/n). For the others, we �rst bound ea
h Tm′

4,l by a quantity of theform C‖Ûn − id‖∞,[0;1], and we apply �nally Inequality (29), as we have already done for Tm
2,afor example. That is why we only give the bounds for ea
h Tm′

4,l . To begin, the term Tm′

4,1,1 
anbe written(36) Tm′

4,1,1 =

Dm′

2
∑

k=1

Dm′

1
∑

j=1

Var(âF̂
j,k|(X−l)l

)

∫

[0;1]

Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2
du.The 
onditional varian
e isVar(âF̂

j,k|(X−l)l

)

= Var{ 1

n

n
∑

i=1

ϕk(Yi)ϕj ◦ F̂n(Xi)|(X−l)l

}

,

≤ 1

n
E

[

ϕk(Y1)
2
(

ϕj ◦ F̂n(X1)
)2

|(X−l)l

]

.By Property (3) applied to the sum over j, k of the last quantity, ∑j,k Var(âF̂
j,k|(X−l)l) ≤

Dm′

1
Dm′

2
/n. Besides, we use the mean value theorem to bound the integral of (36) so that(37) Tm′

4,1,1 ≤
Dm′

1
Dm′

2

n
×D3

m′

1
‖ϕ′

2‖2
∞,[0;1]

∥

∥

∥
Ûn − id

∥

∥

∥

2

∞,[0;1]
,whi
h allows us to 
ontrol E[maxm′∈Mn

(4Tm′

4,1,1 − V4(m
′)/3)+] as explained previously. Further-more,

Tm′

4,1,2 = Tm′

3

∫

[0;1]

Dm′

1
∑

j=1

(

ϕj(u) − ϕj ◦ Ûn(u)
)2
du,whi
h leads to Tm′

4,1,2 ≤ Tm′

3 D3
m′

1
‖ϕ′

2‖2
∞,[0;1]‖Ûn − id‖2

∞,[0;1]. The term Tm′

3 is repla
ed by itsdetailed upper-bound (33), and as a result, Tm′

4,1,2 ≤ ∑4
l=1 T

m′

4,1,2,l. Roughly speaking, we get
Tm′

4,1,2,l ≤ C‖Ûn − id‖∞,[0;1] and apply the previous strategy for ea
h l = 1, . . . , 4. Let us 
onsidernow the terms Tm′

4,2,1 and Tm′

4,2,2 whi
h do not require to be 
entered. It is usefull to remark thatthe Fourier's 
oe�
ients of h 
an be written
aj,k = 〈ξk, ϕj〉[0;1] =

∫

[0;1]
ξk(u)ϕj(u)du, with ξk(u) =

∫

A2

h(u, y)ϕk(y)dy.
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e the term Tm′

4,2,1 involves the derivative of the proje
tion of ξk onto Sm′

1
, we use a spe
i�
property of the trigonometri
 basis: ∑Dm′

1
j=1 aj,kϕ

′
j =

(

ΠSm′

1
(ξk)

)′
= ΠSm′

1
(ξ′k), so

Tm′

4,2,1 ≤
∥

∥

∥
Ûn − id

∥

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1

∥

∥ξ′k
∥

∥

2

[0;1]
.Let us 
ompute then the derivative of ξk to bound roughly

Dm′

2
∑

k=1

∥

∥ξ′k
∥

∥

2

[0;1]
=

Dm′

2
∑

k=1

∫

[0;1]

(
∫

A2

∂1h(u, y)ϕk(y)dy

)2

du ≤
∫

[0;1]
‖∂1h(u, .)‖2

A2
du = ‖∂1h‖2 .We have thus E[maxm′∈Mn

Tm′

4,2,1] ≤ ‖∂1h‖2
E[‖Ûn−id‖2

∞,[0;1]] ≤ C/n with Inequality (28). Re
allnow that
Tm′

4,2,2 = (1/4)

Dm′

2
∑

k=1

∫ 1

0
(u− Ûn(u))4







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)







2

du.We introdu
e µj = j for even j and µj = j−1 for odd j. Sin
e h belongs toW 2
per([0; 1]

2, L, (1, 0))and a

ording to (15),
Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)







2

≤
∥

∥ϕ′′
2

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kµ
2
j







2

,

≤
∥

∥ϕ′′
2

∥

∥

2

∞,[0;1]

Dm′

2
∑

k=1

Dm′

1
∑

j=1

a2
j,kµ

2
j

Dm′

1
∑

j=1

µ2
j ,

≤
∥

∥ϕ′′
2

∥

∥

2

∞,[0;1]

L2

π2
D3

m′

1
≤ CD3

m1,max
.Hen
e, E[maxm′∈Mn

Tm′

4,2,2] ≤ E[‖Ûn − id‖4
∞,[0;1]]CD

3
m1,max

≤ CD3
m1,max

/n2 ≤ C/n as soon as
Dm1,max ≤ n1/3 (we denote by Dm1,max the largest index on the 
olle
tion (Dm1)). Following thesame sket
h for the last term, we write

Tm′

4,2,3 =

∫

[0;1]
(u− Ûn)3

Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)













Dm′

1
∑

j=1

aj,kϕ
′
j(u)






.and 
ompute as in the term Tm′

4,2,2:
Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′′
j (α̂j,n,u)







2

≤ ‖ϕ′′
2‖2

∞,[0;1]

L2

π2
D3

m′

1
,

Dm′

2
∑

k=1







Dm′

1
∑

j=1

aj,kϕ
′
j(u)







2

≤ ‖ϕ′
2‖2

∞,[0;1]

L2

π2
Dm′

1
.This leads to

Tm′

4,2,3 ≤ ‖ϕ′
2‖∞,[0;1]‖ϕ′′

2‖∞,[0;1]
L2

π2
Dm′

1

∥

∥

∥Ûn − id
∥

∥

∥

3

∞,[0;1]
,and we apply tools already used to 
omplete the proof.
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