Model-based clustering of functional data
Résumé
Model-based clustering for functional data is considered. An alternative to model-based clustering using the functional principal components is proposed by approximating the density of functional random variables. The EM algorithm is used for parameter estimation and the maximum a posteriori rule provides the clusters. Simulation study and real data application illustrate the interest of the proposed methodology.
Origine | Fichiers produits par l'(les) auteur(s) |
---|