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Abstract

Model-based clustering for functional data is considered. An alternative to
model-based clustering using the functional principal components is proposed by
approximating the density of functional random variables. The EM algorithm is
used for parameter estimation and the maximum a posteriori rule provides the
clusters. Simulation study and real data application illustrate the interest of the
proposed methodology.

Key words: functional data, functional principal component analysis, model-
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1 Introduction

Let X be a functional random variable with values in a functional space F. For instance,
we consider F is the space of squared integrable functions, Ls([0,7]), T > 0, and X is
a Lo-continuous stochastic process, X = {X;, ¢t € [0,7]}. Let Xi,..., X, be an i.i.d
sample of size n from the same probability distribution as X. Known as functional data
(see [16]), the observation of X;’s corresponds to n curves belonging to F.

The aim of model-based clustering is to identify homogeneous groups of data from
a mixture densities model. More precisely, the model-based clustering allows to predict
the observation of an indicator vector Z = (Zy,..., Zx) of the K clusters, such that,
conditionally to the belonging to the gth group, Z, = 1, X;’s comes from a common
distribution f indexed by some group-specific parameters, f(6,).

In finite dimensional setting (see for instance [2, 6]), the multivariate probability
density function is the main tool for estimating such a model. For functional data,
the notion of probability density is not well defined because of the infinite dimension
of data. To overcome this difficulty, a pragmatic solution consists in using classical
clustering tools, designed for the finite dimensional setting, onto the expansion coefficient
of X on some finite basis of functions. The main drawback of such method is that the
basis expansion is built independently of the clustering objective. Recent works [10, 4]
overcome this problem by defining basis expansion specific to each cluster.



Our work is based on the idea developped in |7] where a "surrogate density" for

X is proposed using the Karhunen-Loeve expansion (or principal component analysis
(PCA)):

t) + Zcﬂﬁj(t)a (1)

T
where p is the mean function of X, C; = / (Xe — (b)) (t)dt, j > 1, are zero-mean

0
random variables (called principal components) and ;’s form an orthonormal system
of eigen-functions of the covariance operator of X:

/T Cov(Xy, Xs);(s)ds = A\jap;(t), Vt € [0,T.

Notice that the principal components C;’s are uncorrelated random variables of variance
Aj. Considering the principal components indexed upon the descending order of the
eigenvalues (A; > Ay > ...), let denote by X(@ the approximation of X by truncating
(1) at the g first terms, ¢ > 1,

X9D(t) = pu(t) + Z Cj;(t). (2)

Then, X(@ is the best approximation of X, under the mean square criterion, among all
the approximations of the same type (linear combination of deterministic functions of ¢

with random coefficients, [17]). Denoting by ||.|| the usual norm on Lo ([0,77]), we have
E(IX - X@P)= > X and X - X9 =0, (3)
g—00
Jjzgq+1

Without loss of generality, we will suppose in the following that X is a zero-mean
stochastic process, i.e. u(t) =0, vt € [0,7T].

Based on the approximation of X by X@  [7] show that the probability of X to
belong to a ball of radius h centered in z € Ly [O, T) can be written as

log P(|X — =] <n) Zlogfc ¢j(x)) +&(h, q(h)) + o(q(h)), (4)

where fc. is the probability density of C; and ¢;(x) is the jth principal component score
of x, ¢;(x) =< x,v; >r,. The functions ¢(h) and & are such that ¢(h) grows to infinity
when h decreases to zero and ¢ is a constant depending on h and ¢(h).

The equality (4) suggests the use of the multivariate probability density of the vector
Cl) = (Cy,... ,C,) as an approximation for the "density" of X. Moreover, observe that
we have, Vh > 0, x € L,[0, T,

P(IX® —al| < h— | X = XD||) < P(IX —al <) < P (JXD 2] <h+]IX - XD]). (5)
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The relation (3) and (5) suggest also that the probability P(||X — z|| < h) could be

approximated by P([|X@ — z|| < h).

Let denote by f)((q) the joint probability density of C@. If x = > i>16(); and 2@ =
I_1¢j(x); then

PUXD =l <n) = | £ @)y, (6)

where DY = {y € RY: [ly — e@fas < (/12— 5, ().
When X is a gaussian process, the principal components C; are gaussian and indepen-
dent. The density f)((q) is then:

18@) =] fe,(es(2))- (")

We use the functional defined by (7) to develop our model-based clustering methodol-
ogy for functional data. Our approach is different of that consisting to perform classical
model-based clustering on the first ¢ principal components of X.

The paper is organized as follows. In Section 2 we define the model underlying the
functional data and describe the parameter estimation procedure for the model-based
clustering procedure. The choice of the approximation order ¢ and the definition of the
clustering rule are described. In Section 3 we present a simulation study as well as an
application on real data (Danone) and compare our results with those provided by other
clustering methods.

2 Model-based clustering for functional data

In the following we suppose that X is a zero-mean gaussian stochastic process. Let
X = (Xy,...,X,,) be an i.i.d sample of size n of X and Z be a latent categorical random
variable of dimension K, 1 < K < oo, associated to the K clusters X;’s belong. For
each 7 =1,...,n, let associate to X; the corresponding categorical variable Z; indicating
the group X; belongs : Z; = (Z;1,..., Zi k) € {0,1} is such that Z; ;, = 1 if X; belongs
to the cluster g, 1 < g < K, and 0 otherwise.

In a clustering setting, the X;’s variables are observed but not the Z;’s. The goal is
to predict the Z;’s knowing the X,’s. For this, we define a parametric mixture model
based on the approximation (7) of the density of a random function.

2.1 The mixture model

Let assume that each couple (X;, Z;) is an independent realization of the random vector
(X, Z) where X has an approximated density depending on its group belonging:

dg

f*g(q\gZ)g=1 (x7 Zg) = H ij\Zg=1 (ijg(x); 0]279)

Jj=1



where ¢, is the number of the first principal components retained in the approximation
(7) for the group g, c;4(x) is the jth principal component score of Xz —; for X = z,
fcuzgzl its probability density and ¥, the diagonal matrix diag(o?,, ..., 00 ).

Conditionally on the group, the probability density fcj‘zgzl of the jth principal com-
ponent of X is the univariate gaussian density with zero mean (the principal component
are centered) and variance o7 .

The vector Z = (Z1, ..., Zk) is assumed to have one order multinomial distribution
Z o~ Ml(ﬂ'l, ce ,7Tg)

with 7,..., 7 the mixing probabilities (2521 7y = 1). Under this model it follows
that the unconditional (approximated) density of X is given by

K dg
6) - Z 7Tg H fcj\Zg:l (cjvg(x)’ 0-.7279) (8)
g=1  j=1

where 0 = (m,,07 ..., 05 )i<g<x have to be estimated and ¢ = (¢, ..., qx). Asin the
finite dimensional setting, we define an approximated likelihood of the sample of curves
X by:

ﬁgf;wgﬂm% ooy (S} 0

g
i=1 j=1 2,9

where C; ; , is the jth principal score of the curve X; belonging to the group g.

2.2 Parameter estimation

In the unsupervised context the estimation of the mixture model parameters is not as
straightforward as in the supervised context since the groups indicators Z; are unknown.
On the one hand, we need to use an iterative algorithm which alternate the estimation
of the group indicators, the estimation of the PCA scores for each group and then the
estimation of the mixture model parameters. On the other hand, the parameter ¢ must
be estimated by an empirical method, similar to those used to select the number of
components in usual PCA.

2.2.1 Mixture model and component scores estimation

A classical way to maximise a mixture model likelihood when data are missing (here the
clusters indicators Z;) is to use the iterative EM algorithm [8, 12, 13|. In this work we
use an EM like algorithm for the maximization of the approximated likelihood (9). This
algorithm includes, between the standard E and M steps, a step in which the principal
components scores of each group are updated.

The EM algorithm consists in maximizing the approximated completed log-likelihood

LY(0; X, Z) ZZZZQ <logwg+zlogfcjz ,gg)>,

i=1 g=1
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which is known to be easier to maximise than its incomplete version (9), and leads to
the same estimate. Let 8™ be the current value of the estimated parameter at step h,
h>1.

E step. As the groups indicators Z; ;'s are unknown, the E step consists in computing
the conditional expectation of the approximated completed log-likelihood:

Q(6; 0")) = By [LY(0; X, Z)| X = z] = Zthg (10g7fg+zlog TS c,j,g>>

i=1 g=1

where ¢; ; is the probability for the curve X; to belong to the group g conditionally to
Cijg = Cijg’

,

b B Ze X — a] o LI O Cis) (10)
by — e gl T S m I 1fcg\z (cijg)

The approximation in (10) is due to the use of an approximation of the density of X.

Principal score updating step. The computation of FPCA eigenfunctions and
scores within a given cluster follows [16]. In general, this computation needs some
approximation. The most usual one is to assume that the curve admits an expansion
into a basis of functions ¢ = (¢1,...,¢r). Let I' be the n x L expansion coefficients
matrix and W = [ ¢¢’ be the matrix of the inner products between the basis functions.
Here, the computation of the principal component scores C; ;, of the curve X; in the
group g is updated depending of the current conditional probability ¢; ;, computed in the
previous E step. This computation is carried out by ponderating the importance of each
curve in the construction of the principal components with the conditional probabilities
T, = diag(ti 4, ..., tn,). Consequently, the first step consists in centering the curve X*
within the group g by substraction of the mean curve computed using the ¢; ,’'s. The
principal component scores C; ; , are then given by

Cijg = ()\] g) 1/2%9W6J g

where 3;, = W~/2u;,, u;, and \;, being the jth eigenvector and respectively eigen-
value of the matrix n ='W Y2["T,TW*/2,

Group specific dimension ¢, estimation step. The estimation of the group specific
dimension g, is an open problem. It can not be solved by the use of such likelihood-
based method. Indeed, the approximation of the density (7) is the product of the density
of the ¢ first principal component scores. Therefore, when the density distributions of
the principal components are not too peaked (variance lower than (27)~! for gaussian
densities), their values are lower than 1, and then the likelihood necessarily decreases
when ¢ grows.

In this work we propose to use, once the group specific FPCA have been computed,
classical empirical criteria as the proportion of the explained variance or the scree-test
of Cattell [5] in order to select each group specific dimension g.
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M step. The M step consists in computing the mixture model parameters #**1) which
maximizes Q(; ). It leads simply to the following estimators

1 « (h+1) .
il = - Zti,g, and o7, =Ng 1<ji<gq,
i=1
where ); , is the variance of the jth principal component of the cluster g already com-
puted in the principal score updating step.
The EM algorithm stops when the difference of the approximated likelihood value
of two consecutive steps is lower than a given threshold e (typically ¢ = 107°).

2.2.2 Model selection

We provided an EM procedure for fitting the model-based clustering for functional
data. However, there is a discrete parameter to estimate: the number K of clusters. We

propose to use an approximation of the BIC criterion [18] built from the approximated
log-likelihood (9):

BICY = 2l0gl(h; X) — vlogn,

where v = 2% K — 1 is the number of parameters of the model (mixing proportions and
principal scores variances) and [ (6; X) is the maximum achieved by the likelihood.
The number K of clusters maximizing this criterion could be an appropriate choice.

2.3 Classification step

Once the mixture model parameters have been estimated, we proceed to the classifica-
tion of the observed curves in order to complete our clustering approach. The group
belonging can be estimated by the rule of maximum a posteriori (MAP), which con-
sists in classifying a curve 2% into the group g maximizing the conditional probability
P(Z;, = 1|1X; = x;). At the convergence of the EM algorithm, this probability is given
by (10).

Link with related methods. If the principal component scores of each curve are
not computed conditionally to their group belonging (here the FPCA are carried out
by group), then our approach corresponds exactly to a Gaussian mixture model on the
principal component scores. The closest method to our approach is that proposed in
[4] (called fun-HDDC'), which assumes, conditionally to the group, a Gaussian mixture
model on the coefficients of the eigen-function expansion. Our approach is different since
we assume a Gaussian distribution for the principal component scores, which is true if
the curves are sample paths of a Gaussian process. This is a reasonable hypothesis.

3 Numerical experiments

In order to compare our model (quoted in the following by funclust) to other approaches,
a simulation study and an application on real data are presented in this section. The



simulation study allows to compare funclust to the usual clustering procedures, kmeans
and gaussian mixture model (GMM, |2, 6], through the R package mclust) applied di-
rectly on the FPCA scores. The application on real data consists in clustering Danone
kneading curves. We illustrate the accuracy of funclust with respect to usual clustering
methods such as HDDC [3], MixtPPCA [19], kmeans, GMM |2, 6] and hierarchical clus-
tering (hclust, R package). All these methods are successively applied on the discretized
data, on the expansion coefficients in a natural cubic splines basis and on the func-
tional PCA scores. For both, simulation study and application, the number of clusters
is assumed to be known.

3.1 Simulation study

In this simulation, the number of clusters is assumed to be known: K=2. A sample of
n = 100 curves are simulated according to the following model inspired by [9, 14]:

Class 1 : X(t) = Ulhl(t) -+ Ughg(t) + G(t), te []_,2]_],
Class 2 X(t) = Urhi(t) + €(2), t e 1,21,

where U; and U, are independent gaussian variables such that E[U;] = E[U,] = 0,
Var(Uy) = 1/2, Var(Us) = 1/12 and €(t) is a white noise, independent of U;’s and such
that Var(e;) = 1/12. The function hy and hy (plotted on Figure 1) are defined, for
t €[1,21], by hy(t) =6 — |t — 7| and ho(t) = 6 — |t — 15].

h1 and h2 functions

Figure 1: Plots of the functions hq(t) (solid line) and hy(t) (dashed line).

The mixing proportions 7;’s are choosen to be equal, and the curves are observed in 101
equidistant points (¢t = 1,1.2,...,21). Figure 2 plots the simulated curves.

The principal components of X are approximated from {X,;},—; 21 and are computed
using linear spline smoothing (with 30 equidistant knots). For funclust, the group spe-
cific dimensions ¢, are estimated such that 90% of the total variance was explained by
the first ¢, principal components. For the classical clustering procedures, kmeans and
gaussian mizture model (GMM, [2, 6]), the number of FPCA scores used is selected in
the same way. Corresponding dimensions and correct classification rates, averaged on
100 simulations, are given in Table 1.

As we can expect, for this dataset with specific principal spaces of different dimensions,

funclust outperforms classical clustering methods for the multivariate setting.



class 1 class 2 both classes

Figure 2: Class 1 (left), Class 2 (center) and both classes (right).

method correct classif. rate ¢ G2
funclust 79.68 1.88 1.90
GMM 56.58 1.10
kmeans 04.46 1.10

Table 1: Correct classification rates, group specific dimension g, for funclust and number
of FPCA scores for GMM and kmeans (averaged on 100 simulations), for the simulation
study.

3.2 Application

The dataset we use comes from Danone Vitapole Paris Research Center and it concerns
the quality of cookies and the relationship with the flour kneading process. The kneading
data set is described in detail in [11].

There are 115 different flours for which the dought resistance is measured during
the kneading process for 480 seconds. One obtains 115 kneading curves observed at
241 equispaced instants of time in the interval [0,480]. The 115 flours produce cookies
of different quality: 50 of them have produced cookies of good quality, 25 produced
adjustable quality and 40 bad quality. The Figure 3 presents the set of the 115 kneading
curves.

In a supervised classification context, this data is used in [11, 15, 1] for fitting linear
and non-parametric prediction models for the cookie’s quality. From these studies, it
appears that it is difficult to discriminate between the three classes, even for supervised
classifiers, partly because of the adjustable class.

Let us consider that the 115 kneading curves are sample-paths of a second order
stochastic process X. In order to get the functional feature of data, each curve is
approximated using cubic B-spline basis expansion with the following 16 knots [11] : 10,
42, 84, 88, 108, 134, 148, 200, 216, 284, 286, 328, 334, 380, 388, 478. Thus, each curve
X, is represented by a set of 18 coefficients. Therefore, the FPCA of X is approximated
using the smoothed curves (for more details, see [16]). The group specific dimensions



q, are estimated such that at least 95% of the total variance was explained. Resulting
dimensions are ¢; = 2,¢2 = 1,q3 = 1.

Quality : Good Quality : Good

dough resistance
dough resistance

o 50 100 150 200 250 300 350 400 450 o 50 100 150 200 250 300 350 400 450
time time

800

Quality : Adjustable Quality : Adjustable

700

600

dough resistance
dough resistance

500 +

400

T T T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 o 50 100 150 200 250 300 350 400 450
time time

800

Quality : Bad Quality : Bad

700

dough resistance
dough resistance

Figure 3: Kneading data : 115 flours observed during 480 seconds. Left : observed data.
Right : smoothed data using cubic B-splines

Table 2 presents the results obtained with different clustering methods. Our method
funclust performs better than fun-HDDC [4] which similarly to funclust considers group
specific subspaces but assume a Gaussian mixture model on the coefficients of the eigen-
function expansion, and not on the principal score as funclust. The methods from the
multivariate finite setting are also outperformed by funclust.

4 Conclusion

In this paper we propose a clustering procedure for functional data based on an approx-
imation of the notion of density of a random function. The main tool is the use of the
probability densities of the principal components scores. Assuming that the functional
data are sample of a Gaussian process, the resulting mixture model is an extrapolation



2-steps discretized | spline coeff. | FPCA scores functional
methods (241 instants) (20 splines) (4 components) methods
HDDC 66.09 53.91 44.35 fun-HDDC! | 62.61
MixtPPCA 65.22 64.35 62.61 funclust 67.82
mclust 63.48 50.43 60

kmeans 62.61 62.61 62.61

hclust 63.48 63.48 63.48

Table 2: Percentage of correct classification for the Kneading dataset

of the finite dimensional Gaussian mixture model to the infinite dimensional setting. We
defined an EM like algorithm for the parameter estimation and performed a simulation
study, as well as an application on real data, in order to show the performance of this
approach with respect to other clustering procedures.

The approximation of the density of a random function, based on the principal com-
ponents densities, opens numerous perspectives for futur works. Indeed, a clustering
procedure for multivariate functional data (several curves observed for a same individ-
ual) can be defined similarly. The difficult task in such a multivariate functional setting
is to define dependence between univariate functions. This challenge can be met by the
FPCA of multivariate curve [16].
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