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Model-based 
lustering of fun
tional dataJulien Ja
ques and Cristian PredaLaboratoire Paul Painlevé, UMR CNRS 8524, University Lille I, Lille, Fran
eINRIA Lille-Nord Europe and Polyte
h'LilleSeptember 30, 2011Abstra
tModel-based 
lustering for fun
tional data is 
onsidered. An alternative tomodel-based 
lustering using the fun
tional prin
ipal 
omponents is proposed byapproximating the density of fun
tional random variables. The EM algorithm isused for parameter estimation and the maximum a posteriori rule provides the
lusters. Simulation study and real data appli
ation illustrate the interest of theproposed methodology.Key words: fun
tional data, fun
tional prin
ipal 
omponent analysis, model-based 
lustering, random fun
tion density, EM algorithm.1 Introdu
tionLet X be a fun
tional random variable with values in a fun
tional spa
e F . For instan
e,we 
onsider F is the spa
e of squared integrable fun
tions, L2([0, T ]), T > 0, and X isa L2-
ontinuous sto
hasti
 pro
ess, X = {Xt, t ∈ [0, T ]}. Let X1, . . . , Xn be an i.i.dsample of size n from the same probability distribution as X. Known as fun
tional data(see [16℄), the observation of Xi's 
orresponds to n 
urves belonging to F .The aim of model-based 
lustering is to identify homogeneous groups of data froma mixture densities model. More pre
isely, the model-based 
lustering allows to predi
tthe observation of an indi
ator ve
tor Z = (Z1, . . . , ZK) of the K 
lusters, su
h that,
onditionally to the belonging to the gth group, Zg = 1, Xi's 
omes from a 
ommondistribution f indexed by some group-spe
i�
 parameters, f(θg).In �nite dimensional setting (see for instan
e [2, 6℄), the multivariate probabilitydensity fun
tion is the main tool for estimating su
h a model. For fun
tional data,the notion of probability density is not well de�ned be
ause of the in�nite dimensionof data. To over
ome this di�
ulty, a pragmati
 solution 
onsists in using 
lassi
al
lustering tools, designed for the �nite dimensional setting, onto the expansion 
oe�
ientof X on some �nite basis of fun
tions. The main drawba
k of su
h method is that thebasis expansion is built independently of the 
lustering obje
tive. Re
ent works [10, 4℄over
ome this problem by de�ning basis expansion spe
i�
 to ea
h 
luster.1



Our work is based on the idea developped in [7℄ where a "surrogate density" for
X is proposed using the Karhunen-Loeve expansion (or prin
ipal 
omponent analysis(PCA)):

X(t) = µ(t) +
∞
∑

j=1

Cjψj(t), (1)where µ is the mean fun
tion of X, Cj =

ˆ T

0

(Xt − µ(t))ψj(t)dt, j ≥ 1, are zero-meanrandom variables (
alled prin
ipal 
omponents) and ψj 's form an orthonormal systemof eigen-fun
tions of the 
ovarian
e operator of X:
ˆ T

0

Cov(Xt, Xs)ψj(s)ds = λjψj(t), ∀t ∈ [0, T ].Noti
e that the prin
ipal 
omponents Cj 's are un
orrelated random variables of varian
e
λj . Considering the prin
ipal 
omponents indexed upon the des
ending order of theeigenvalues (λ1 ≥ λ2 ≥ . . .), let denote by X(q) the approximation of X by trun
ating(1) at the q �rst terms, q ≥ 1,

X(q)(t) = µ(t) +

q
∑

j=1

Cjψj(t). (2)Then, X(q) is the best approximation of X, under the mean square 
riterion, among allthe approximations of the same type (linear 
ombination of deterministi
 fun
tions of twith random 
oe�
ients, [17℄). Denoting by ‖.‖ the usual norm on L2([0, T ]), we have
E(‖X −X(q)‖2) =

∑

j≥q+1

λj and ‖X −X(q)‖ m.s.−−−→
q→∞

0. (3)Without loss of generality, we will suppose in the following that X is a zero-meansto
hasti
 pro
ess, i.e. µ(t) = 0, ∀t ∈ [0, T ].Based on the approximation of X by X(q), [7℄ show that the probability of X tobelong to a ball of radius h 
entered in x ∈ L2[0, T ] 
an be written as
logP (‖X − x‖ ≤ h) =

q
∑

j=1

log fCj
(cj(x)) + ξ(h, q(h)) + o(q(h)), (4)where fCj

is the probability density of Cj and cj(x) is the jth prin
ipal 
omponent s
oreof x, cj(x) =< x, ψj >L2 . The fun
tions q(h) and ξ are su
h that q(h) grows to in�nitywhen h de
reases to zero and ξ is a 
onstant depending on h and q(h).The equality (4) suggests the use of the multivariate probability density of the ve
tor
C(q) = (C1, . . . , Cq) as an approximation for the "density" of X. Moreover, observe thatwe have, ∀h > 0, x ∈ L2[0, T ],
P

(

‖X(q) − x‖ ≤ h − ‖X − X
(q)‖
)

≤ P (‖X − x‖ ≤ h) ≤ P

(

‖X(q) − x‖ ≤ h + ‖X − X
(q)‖
)

. (5)2



The relation (3) and (5) suggest also that the probability P (‖X − x‖ ≤ h) 
ould beapproximated by P (‖X(q) − x‖ ≤ h).Let denote by f (q)
X the joint probability density of C(q). If x =

∑

j≥1 cj(x)ψj and x(q) =
∑q

j=1 cj(x)ψj then
P (‖X(q) − x‖ ≤ h) =

ˆ

D
(q)
x

f
(q)
X (y)dy, (6)where D(q)

x = {y ∈ R
q : ‖y − x(q)‖Rq ≤

√

h2 −
∑

j≥q+1 c
2
j (x)}.When X is a gaussian pro
ess, the prin
ipal 
omponents Cj are gaussian and indepen-dent. The density f (q)

X is then:
f

(q)
X (x) =

q
∏

j=1

fCj
(cj(x)). (7)We use the fun
tional de�ned by (7) to develop our model-based 
lustering methodol-ogy for fun
tional data. Our approa
h is di�erent of that 
onsisting to perform 
lassi
almodel-based 
lustering on the �rst q prin
ipal 
omponents of X.The paper is organized as follows. In Se
tion 2 we de�ne the model underlying thefun
tional data and des
ribe the parameter estimation pro
edure for the model-based
lustering pro
edure. The 
hoi
e of the approximation order q and the de�nition of the
lustering rule are des
ribed. In Se
tion 3 we present a simulation study as well as anappli
ation on real data (Danone) and 
ompare our results with those provided by other
lustering methods.2 Model-based 
lustering for fun
tional dataIn the following we suppose that X is a zero-mean gaussian sto
hasti
 pro
ess. Let

X = (X1, ..., Xn) be an i.i.d sample of size n of X and Z be a latent 
ategori
al randomvariable of dimension K, 1 ≤ K < ∞, asso
iated to the K 
lusters Xi's belong. Forea
h i = 1, . . . , n, let asso
iate to Xi the 
orresponding 
ategori
al variable Zi indi
atingthe group Xi belongs : Zi = (Zi,1, . . . , Zi,K) ∈ {0, 1}K is su
h that Zi,g = 1 if Xi belongsto the 
luster g, 1 ≤ g ≤ K, and 0 otherwise.In a 
lustering setting, the Xi's variables are observed but not the Zi's. The goal isto predi
t the Zi's knowing the Xi's. For this, we de�ne a parametri
 mixture modelbased on the approximation (7) of the density of a random fun
tion.2.1 The mixture modelLet assume that ea
h 
ouple (Xi, Zi) is an independent realization of the random ve
tor
(X,Z) where X has an approximated density depending on its group belonging:

f
(qg)
X|Zg=1

(x; Σg) =

qg
∏

j=1

fCj |Zg=1
(cj,g(x); σ

2
j,g)3



where qg is the number of the �rst prin
ipal 
omponents retained in the approximation(7) for the group g, cj,g(x) is the jth prin
ipal 
omponent s
ore of X|Zg=1 for X = x,
fCj |Zg=1

its probability density and Σg the diagonal matrix diag(σ2
1,g, . . . , σ

2
q,g).Conditionally on the group, the probability density fCj |Zg=1

of the jth prin
ipal 
om-ponent of X is the univariate gaussian density with zero mean (the prin
ipal 
omponentare 
entered) and varian
e σ2
j,g.The ve
tor Z = (Z1, . . . , ZK) is assumed to have one order multinomial distribution
Z ∼ M1(π1, . . . , πG)with π1, . . . , πK the mixing probabilities (∑K

g=1 πg = 1). Under this model it followsthat the un
onditional (approximated) density of X is given by
f

(q)
X (x; θ) =

K
∑

g=1

πg

qg
∏

j=1

fCj |Zg=1
(cj,g(x); σ

2
j,g) (8)where θ = (πg, σ

2
1,g, . . . , σ

2
qg,g)1≤g≤K have to be estimated and q = (q1, . . . , qK). As in the�nite dimensional setting, we de�ne an approximated likelihood of the sample of 
urves

X by:
l(q)(θ;X) =

n
∏

i=1

K
∑

g=1

πg

qg
∏

j=1

1√
2πσj,g

exp−1

2

(

Ci,j,g

σj,g

)2 (9)where Ci,j,g is the jth prin
ipal s
ore of the 
urve Xi belonging to the group g.2.2 Parameter estimationIn the unsupervised 
ontext the estimation of the mixture model parameters is not asstraightforward as in the supervised 
ontext sin
e the groups indi
ators Zi are unknown.On the one hand, we need to use an iterative algorithm whi
h alternate the estimationof the group indi
ators, the estimation of the PCA s
ores for ea
h group and then theestimation of the mixture model parameters. On the other hand, the parameter q mustbe estimated by an empiri
al method, similar to those used to sele
t the number of
omponents in usual PCA.2.2.1 Mixture model and 
omponent s
ores estimationA 
lassi
al way to maximise a mixture model likelihood when data are missing (here the
lusters indi
ators Zi) is to use the iterative EM algorithm [8, 12, 13℄. In this work weuse an EM like algorithm for the maximization of the approximated likelihood (9). Thisalgorithm in
ludes, between the standard E and M steps, a step in whi
h the prin
ipal
omponents s
ores of ea
h group are updated.The EM algorithm 
onsists in maximizing the approximated 
ompleted log-likelihood
L(q)

c (θ;X,Z) =

n
∑

i=1

G
∑

g=1

Zi,g

(

log πg +

qg
∑

j=1

log fCj |Zg=1
(Ci,j,g)

)

,4



whi
h is known to be easier to maximise than its in
omplete version (9), and leads tothe same estimate. Let θ(h) be the 
urrent value of the estimated parameter at step h,
h ≥ 1.E step. As the groups indi
ators Zi,g's are unknown, the E step 
onsists in 
omputingthe 
onditional expe
tation of the approximated 
ompleted log-likelihood:
Q(θ; θ(h)) = Eθ(h) [L(q)

c (θ;X,Z)|X = x] =

n
∑

i=1

K
∑

g=1

ti,g

(

log πg +

qg
∑

j=1

log fCj |Zg=1
(ci,j,g)

)where ti,g is the probability for the 
urve Xi to belong to the group g 
onditionally to
Ci,j,g = ci,j,g:

ti,g = Eθ(h) [Zi,g|X = x] ≃
πg

∏qg

j=1 fCj |Zi,g=1
(ci,j,g)

∑K
l=1 πl

∏qg

j=1 fCj |Zi,g=1
(ci,j,g)

. (10)The approximation in (10) is due to the use of an approximation of the density of X.Prin
ipal s
ore updating step. The 
omputation of FPCA eigenfun
tions ands
ores within a given 
luster follows [16℄. In general, this 
omputation needs someapproximation. The most usual one is to assume that the 
urve admits an expansioninto a basis of fun
tions φ = (φ1, . . . , φL). Let Γ be the n × L expansion 
oe�
ientsmatrix and W =
´

φφ′ be the matrix of the inner produ
ts between the basis fun
tions.Here, the 
omputation of the prin
ipal 
omponent s
ores Ci,j,g of the 
urve Xi in thegroup g is updated depending of the 
urrent 
onditional probability ti,g 
omputed in theprevious E step. This 
omputation is 
arried out by ponderating the importan
e of ea
h
urve in the 
onstru
tion of the prin
ipal 
omponents with the 
onditional probabilities
Tg = diag(t1,g, . . . , tn,g). Consequently, the �rst step 
onsists in 
entering the 
urve X iwithin the group g by substra
tion of the mean 
urve 
omputed using the ti,g's. Theprin
ipal 
omponent s
ores Ci,j,g are then given by

Ci,j,g = (λj,g)
−1/2γi,gWβj,gwhere βj,g = W−1/2

uj,g, uj,g and λj,g being the jth eigenve
tor and respe
tively eigen-value of the matrix n−1W 1/2Γ′TgΓW
1/2.Group spe
i�
 dimension qg estimation step. The estimation of the group spe
i�
dimension qg is an open problem. It 
an not be solved by the use of su
h likelihood-based method. Indeed, the approximation of the density (7) is the produ
t of the densityof the q �rst prin
ipal 
omponent s
ores. Therefore, when the density distributions ofthe prin
ipal 
omponents are not too peaked (varian
e lower than (2π)−1 for gaussiandensities), their values are lower than 1, and then the likelihood ne
essarily de
reaseswhen q grows.In this work we propose to use, on
e the group spe
i�
 FPCA have been 
omputed,
lassi
al empiri
al 
riteria as the proportion of the explained varian
e or the s
ree-testof Cattell [5℄ in order to sele
t ea
h group spe
i�
 dimension qg.5



M step. The M step 
onsists in 
omputing the mixture model parameters θ(h+1) whi
hmaximizes Q(θ; θ(h)). It leads simply to the following estimators
π(h+1)

g =
1

n

n
∑

i=1

ti,g, and σ2
j,g

(h+1)
= λj,g, 1 ≤ j ≤ qgwhere λj,g is the varian
e of the jth prin
ipal 
omponent of the 
luster g already 
om-puted in the prin
ipal s
ore updating step.The EM algorithm stops when the di�eren
e of the approximated likelihood valueof two 
onse
utive steps is lower than a given threshold ǫ (typi
ally ǫ = 10−6).2.2.2 Model sele
tionWe provided an EM pro
edure for �tting the model-based 
lustering for fun
tionaldata. However, there is a dis
rete parameter to estimate: the number K of 
lusters. Wepropose to use an approximation of the BIC 
riterion [18℄ built from the approximatedlog-likelihood (9):

BIC(q) = 2logl(q)(θ̂;X) − ν log n,where ν = 2 ∗K − 1 is the number of parameters of the model (mixing proportions andprin
ipal s
ores varian
es) and l(q)(θ̂;X) is the maximum a
hieved by the likelihood.The number K of 
lusters maximizing this 
riterion 
ould be an appropriate 
hoi
e.2.3 Classi�
ation stepOn
e the mixture model parameters have been estimated, we pro
eed to the 
lassi�
a-tion of the observed 
urves in order to 
omplete our 
lustering approa
h. The groupbelonging 
an be estimated by the rule of maximum a posteriori (MAP), whi
h 
on-sists in 
lassifying a 
urve xi into the group g maximizing the 
onditional probability
P (Zig = 1|Xi = xi). At the 
onvergen
e of the EM algorithm, this probability is givenby (10).Link with related methods. If the prin
ipal 
omponent s
ores of ea
h 
urve arenot 
omputed 
onditionally to their group belonging (here the FPCA are 
arried outby group), then our approa
h 
orresponds exa
tly to a Gaussian mixture model on theprin
ipal 
omponent s
ores. The 
losest method to our approa
h is that proposed in[4℄ (
alled fun-HDDC ), whi
h assumes, 
onditionally to the group, a Gaussian mixturemodel on the 
oe�
ients of the eigen-fun
tion expansion. Our approa
h is di�erent sin
ewe assume a Gaussian distribution for the prin
ipal 
omponent s
ores, whi
h is true ifthe 
urves are sample paths of a Gaussian pro
ess. This is a reasonable hypothesis.3 Numeri
al experimentsIn order to 
ompare our model (quoted in the following by fun
lust) to other approa
hes,a simulation study and an appli
ation on real data are presented in this se
tion. The6



simulation study allows to 
ompare fun
lust to the usual 
lustering pro
edures, kmeansand gaussian mixture model (GMM, [2, 6℄, through the R pa
kage m
lust) applied di-re
tly on the FPCA s
ores. The appli
ation on real data 
onsists in 
lustering Danonekneading 
urves. We illustrate the a

ura
y of fun
lust with respe
t to usual 
lusteringmethods su
h as HDDC [3℄, MixtPPCA [19℄, kmeans, GMM [2, 6℄ and hierar
hi
al 
lus-tering (h
lust, R pa
kage). All these methods are su

essively applied on the dis
retizeddata, on the expansion 
oe�
ients in a natural 
ubi
 splines basis and on the fun
-tional PCA s
ores. For both, simulation study and appli
ation, the number of 
lustersis assumed to be known.3.1 Simulation studyIn this simulation, the number of 
lusters is assumed to be known: K=2. A sample of
n = 100 
urves are simulated a

ording to the following model inspired by [9, 14℄:Class 1 : X(t) = U1h1(t) + U2h2(t) + ǫ(t), t ∈ [1, 21],Class 2 : X(t) = U1h1(t) + ǫ(t), t ∈ [1, 21],where U1 and U2 are independent gaussian variables su
h that E[U1] = E[U2] = 0,
Var(U1) = 1/2, Var(U2) = 1/12 and ǫ(t) is a white noise, independent of Ui's and su
hthat Var(ǫt) = 1/12. The fun
tion h1 and h2 (plotted on Figure 1) are de�ned, for
t ∈ [1, 21], by h1(t) = 6 − |t− 7| and h2(t) = 6 − |t− 15|.

Figure 1: Plots of the fun
tions h1(t) (solid line) and h2(t) (dashed line).The mixing proportions πi's are 
hoosen to be equal, and the 
urves are observed in 101equidistant points (t = 1, 1.2, . . . , 21). Figure 2 plots the simulated 
urves.The prin
ipal 
omponents of X are approximated from {Xt}t=1,...,21 and are 
omputedusing linear spline smoothing (with 30 equidistant knots). For fun
lust, the group spe-
i�
 dimensions qg are estimated su
h that 90% of the total varian
e was explained bythe �rst qg prin
ipal 
omponents. For the 
lassi
al 
lustering pro
edures, kmeans andgaussian mixture model (GMM, [2, 6℄), the number of FPCA s
ores used is sele
ted inthe same way. Corresponding dimensions and 
orre
t 
lassi�
ation rates, averaged on100 simulations, are given in Table 1.As we 
an expe
t, for this dataset with spe
i�
 prin
ipal spa
es of di�erent dimensions,fun
lust outperforms 
lassi
al 
lustering methods for the multivariate setting.7



Figure 2: Class 1 (left), Class 2 (
enter) and both 
lasses (right).method 
orre
t 
lassif. rate q1 q2fun
lust 79.68 1.88 1.90GMM 56.58 1.10kmeans 54.46 1.10Table 1: Corre
t 
lassi�
ation rates, group spe
i�
 dimension qg for fun
lust and numberof FPCA s
ores for GMM and kmeans (averaged on 100 simulations), for the simulationstudy.3.2 Appli
ationThe dataset we use 
omes from Danone Vitapole Paris Resear
h Center and it 
on
ernsthe quality of 
ookies and the relationship with the �our kneading pro
ess. The kneadingdata set is des
ribed in detail in [11℄.There are 115 di�erent �ours for whi
h the dought resistan
e is measured duringthe kneading pro
ess for 480 se
onds. One obtains 115 kneading 
urves observed at241 equispa
ed instants of time in the interval [0, 480]. The 115 �ours produ
e 
ookiesof di�erent quality: 50 of them have produ
ed 
ookies of good quality, 25 produ
edadjustable quality and 40 bad quality. The Figure 3 presents the set of the 115 kneading
urves.In a supervised 
lassi�
ation 
ontext, this data is used in [11, 15, 1℄ for �tting linearand non-parametri
 predi
tion models for the 
ookie's quality. From these studies, itappears that it is di�
ult to dis
riminate between the three 
lasses, even for supervised
lassi�ers, partly be
ause of the adjustable 
lass.Let us 
onsider that the 115 kneading 
urves are sample-paths of a se
ond ordersto
hasti
 pro
ess X. In order to get the fun
tional feature of data, ea
h 
urve isapproximated using 
ubi
 B-spline basis expansion with the following 16 knots [11℄ : 10,42, 84, 88, 108, 134, 148, 200, 216, 284, 286, 328, 334, 380, 388, 478. Thus, ea
h 
urve
Xi is represented by a set of 18 
oe�
ients. Therefore, the FPCA of X is approximatedusing the smoothed 
urves (for more details, see [16℄). The group spe
i�
 dimensions8



qg are estimated su
h that at least 95% of the total varian
e was explained. Resultingdimensions are q1 = 2, q2 = 1, q3 = 1.
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Figure 3: Kneading data : 115 �ours observed during 480 se
onds. Left : observed data.Right : smoothed data using 
ubi
 B-splinesTable 2 presents the results obtained with di�erent 
lustering methods. Our methodfun
lust performs better than fun-HDDC [4℄ whi
h similarly to fun
lust 
onsiders groupspe
i�
 subspa
es but assume a Gaussian mixture model on the 
oe�
ients of the eigen-fun
tion expansion, and not on the prin
ipal s
ore as fun
lust. The methods from themultivariate �nite setting are also outperformed by fun
lust.4 Con
lusionIn this paper we propose a 
lustering pro
edure for fun
tional data based on an approx-imation of the notion of density of a random fun
tion. The main tool is the use of theprobability densities of the prin
ipal 
omponents s
ores. Assuming that the fun
tionaldata are sample of a Gaussian pro
ess, the resulting mixture model is an extrapolation9



2-steps dis
retized spline 
oe�. FPCA s
ores fun
tionalmethods (241 instants) (20 splines) (4 
omponents) methodsHDDC 66.09 53.91 44.35 fun-HDDC1 62.61MixtPPCA 65.22 64.35 62.61 fun
lust 67.82m
lust 63.48 50.43 60kmeans 62.61 62.61 62.61h
lust 63.48 63.48 63.48Table 2: Per
entage of 
orre
t 
lassi�
ation for the Kneading datasetof the �nite dimensional Gaussian mixture model to the in�nite dimensional setting. Wede�ned an EM like algorithm for the parameter estimation and performed a simulationstudy, as well as an appli
ation on real data, in order to show the performan
e of thisapproa
h with respe
t to other 
lustering pro
edures.The approximation of the density of a random fun
tion, based on the prin
ipal 
om-ponents densities, opens numerous perspe
tives for futur works. Indeed, a 
lusteringpro
edure for multivariate fun
tional data (several 
urves observed for a same individ-ual) 
an be de�ned similarly. The di�
ult task in su
h a multivariate fun
tional settingis to de�ne dependen
e between univariate fun
tions. This 
hallenge 
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