Funclust: a curves clustering method using functional random variables density approximation - Archive ouverte HAL
Article Dans Une Revue Neurocomputing Année : 2013

Funclust: a curves clustering method using functional random variables density approximation

Julien Jacques
Cristian Preda

Résumé

A new method for clustering functional data is proposed under the name Funclust. This method relies on the approximation of the notion of probability density for functional random variables, which generally does not exists. Using the Karhunen-Loeve expansion of a stochastic process, this approximation leads to define an approximation for the density of functional variables. Based on this density approximation, a parametric mixture model is proposed. The parameter estimation is carried out by an EM-like algorithm, and the maximum a posteriori rule provides the clusters. The efficiency of Funclust is illustrated on several real datasets, as well as for the characterization of the Mars surface.
Fichier principal
Vignette du fichier
Paper-Funclust-V2-versionHAL.pdf (440.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00628247 , version 1 (30-09-2011)
hal-00628247 , version 2 (13-10-2012)

Identifiants

Citer

Julien Jacques, Cristian Preda. Funclust: a curves clustering method using functional random variables density approximation. Neurocomputing, 2013, 112, pp.164-171. ⟨10.1016/j.neucom.2012.11.042⟩. ⟨hal-00628247v2⟩
867 Consultations
821 Téléchargements

Altmetric

Partager

More