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Model-based lustering of funtional dataJulien Jaques and Cristian PredaLaboratoire Paul Painlevé, UMR CNRS 8524, University Lille I, Lille, FraneINRIA Lille-Nord Europe and Polyteh'LilleSeptember 30, 2011AbstratModel-based lustering for funtional data is onsidered. An alternative tomodel-based lustering using the funtional prinipal omponents is proposed byapproximating the density of funtional random variables. The EM algorithm isused for parameter estimation and the maximum a posteriori rule provides thelusters. Simulation study and real data appliation illustrate the interest of theproposed methodology.Key words: funtional data, funtional prinipal omponent analysis, model-based lustering, random funtion density, EM algorithm.1 IntrodutionLet X be a funtional random variable with values in a funtional spae F . For instane,we onsider F is the spae of squared integrable funtions, L2([0, T ]), T > 0, and X isa L2-ontinuous stohasti proess, X = {Xt, t ∈ [0, T ]}. Let X1, . . . , Xn be an i.i.dsample of size n from the same probability distribution as X. Known as funtional data(see [16℄), the observation of Xi's orresponds to n urves belonging to F .The aim of model-based lustering is to identify homogeneous groups of data froma mixture densities model. More preisely, the model-based lustering allows to preditthe observation of an indiator vetor Z = (Z1, . . . , ZK) of the K lusters, suh that,onditionally to the belonging to the gth group, Zg = 1, Xi's omes from a ommondistribution f indexed by some group-spei� parameters, f(θg).In �nite dimensional setting (see for instane [2, 6℄), the multivariate probabilitydensity funtion is the main tool for estimating suh a model. For funtional data,the notion of probability density is not well de�ned beause of the in�nite dimensionof data. To overome this di�ulty, a pragmati solution onsists in using lassiallustering tools, designed for the �nite dimensional setting, onto the expansion oe�ientof X on some �nite basis of funtions. The main drawbak of suh method is that thebasis expansion is built independently of the lustering objetive. Reent works [10, 4℄overome this problem by de�ning basis expansion spei� to eah luster.1



Our work is based on the idea developped in [7℄ where a "surrogate density" for
X is proposed using the Karhunen-Loeve expansion (or prinipal omponent analysis(PCA)):

X(t) = µ(t) +
∞
∑

j=1

Cjψj(t), (1)where µ is the mean funtion of X, Cj =

ˆ T

0

(Xt − µ(t))ψj(t)dt, j ≥ 1, are zero-meanrandom variables (alled prinipal omponents) and ψj 's form an orthonormal systemof eigen-funtions of the ovariane operator of X:
ˆ T

0

Cov(Xt, Xs)ψj(s)ds = λjψj(t), ∀t ∈ [0, T ].Notie that the prinipal omponents Cj 's are unorrelated random variables of variane
λj . Considering the prinipal omponents indexed upon the desending order of theeigenvalues (λ1 ≥ λ2 ≥ . . .), let denote by X(q) the approximation of X by trunating(1) at the q �rst terms, q ≥ 1,

X(q)(t) = µ(t) +

q
∑

j=1

Cjψj(t). (2)Then, X(q) is the best approximation of X, under the mean square riterion, among allthe approximations of the same type (linear ombination of deterministi funtions of twith random oe�ients, [17℄). Denoting by ‖.‖ the usual norm on L2([0, T ]), we have
E(‖X −X(q)‖2) =

∑

j≥q+1

λj and ‖X −X(q)‖ m.s.−−−→
q→∞

0. (3)Without loss of generality, we will suppose in the following that X is a zero-meanstohasti proess, i.e. µ(t) = 0, ∀t ∈ [0, T ].Based on the approximation of X by X(q), [7℄ show that the probability of X tobelong to a ball of radius h entered in x ∈ L2[0, T ] an be written as
logP (‖X − x‖ ≤ h) =

q
∑

j=1

log fCj
(cj(x)) + ξ(h, q(h)) + o(q(h)), (4)where fCj

is the probability density of Cj and cj(x) is the jth prinipal omponent soreof x, cj(x) =< x, ψj >L2 . The funtions q(h) and ξ are suh that q(h) grows to in�nitywhen h dereases to zero and ξ is a onstant depending on h and q(h).The equality (4) suggests the use of the multivariate probability density of the vetor
C(q) = (C1, . . . , Cq) as an approximation for the "density" of X. Moreover, observe thatwe have, ∀h > 0, x ∈ L2[0, T ],
P

(

‖X(q) − x‖ ≤ h − ‖X − X
(q)‖
)

≤ P (‖X − x‖ ≤ h) ≤ P

(

‖X(q) − x‖ ≤ h + ‖X − X
(q)‖
)

. (5)2



The relation (3) and (5) suggest also that the probability P (‖X − x‖ ≤ h) ould beapproximated by P (‖X(q) − x‖ ≤ h).Let denote by f (q)
X the joint probability density of C(q). If x =

∑

j≥1 cj(x)ψj and x(q) =
∑q

j=1 cj(x)ψj then
P (‖X(q) − x‖ ≤ h) =

ˆ

D
(q)
x

f
(q)
X (y)dy, (6)where D(q)

x = {y ∈ R
q : ‖y − x(q)‖Rq ≤

√

h2 −
∑

j≥q+1 c
2
j (x)}.When X is a gaussian proess, the prinipal omponents Cj are gaussian and indepen-dent. The density f (q)

X is then:
f

(q)
X (x) =

q
∏

j=1

fCj
(cj(x)). (7)We use the funtional de�ned by (7) to develop our model-based lustering methodol-ogy for funtional data. Our approah is di�erent of that onsisting to perform lassialmodel-based lustering on the �rst q prinipal omponents of X.The paper is organized as follows. In Setion 2 we de�ne the model underlying thefuntional data and desribe the parameter estimation proedure for the model-basedlustering proedure. The hoie of the approximation order q and the de�nition of thelustering rule are desribed. In Setion 3 we present a simulation study as well as anappliation on real data (Danone) and ompare our results with those provided by otherlustering methods.2 Model-based lustering for funtional dataIn the following we suppose that X is a zero-mean gaussian stohasti proess. Let

X = (X1, ..., Xn) be an i.i.d sample of size n of X and Z be a latent ategorial randomvariable of dimension K, 1 ≤ K < ∞, assoiated to the K lusters Xi's belong. Foreah i = 1, . . . , n, let assoiate to Xi the orresponding ategorial variable Zi indiatingthe group Xi belongs : Zi = (Zi,1, . . . , Zi,K) ∈ {0, 1}K is suh that Zi,g = 1 if Xi belongsto the luster g, 1 ≤ g ≤ K, and 0 otherwise.In a lustering setting, the Xi's variables are observed but not the Zi's. The goal isto predit the Zi's knowing the Xi's. For this, we de�ne a parametri mixture modelbased on the approximation (7) of the density of a random funtion.2.1 The mixture modelLet assume that eah ouple (Xi, Zi) is an independent realization of the random vetor
(X,Z) where X has an approximated density depending on its group belonging:

f
(qg)
X|Zg=1

(x; Σg) =

qg
∏

j=1

fCj |Zg=1
(cj,g(x); σ

2
j,g)3



where qg is the number of the �rst prinipal omponents retained in the approximation(7) for the group g, cj,g(x) is the jth prinipal omponent sore of X|Zg=1 for X = x,
fCj |Zg=1

its probability density and Σg the diagonal matrix diag(σ2
1,g, . . . , σ

2
q,g).Conditionally on the group, the probability density fCj |Zg=1

of the jth prinipal om-ponent of X is the univariate gaussian density with zero mean (the prinipal omponentare entered) and variane σ2
j,g.The vetor Z = (Z1, . . . , ZK) is assumed to have one order multinomial distribution
Z ∼ M1(π1, . . . , πG)with π1, . . . , πK the mixing probabilities (∑K

g=1 πg = 1). Under this model it followsthat the unonditional (approximated) density of X is given by
f

(q)
X (x; θ) =

K
∑

g=1

πg

qg
∏

j=1

fCj |Zg=1
(cj,g(x); σ

2
j,g) (8)where θ = (πg, σ

2
1,g, . . . , σ

2
qg,g)1≤g≤K have to be estimated and q = (q1, . . . , qK). As in the�nite dimensional setting, we de�ne an approximated likelihood of the sample of urves

X by:
l(q)(θ;X) =

n
∏

i=1

K
∑

g=1

πg

qg
∏

j=1

1√
2πσj,g

exp−1

2

(

Ci,j,g

σj,g

)2 (9)where Ci,j,g is the jth prinipal sore of the urve Xi belonging to the group g.2.2 Parameter estimationIn the unsupervised ontext the estimation of the mixture model parameters is not asstraightforward as in the supervised ontext sine the groups indiators Zi are unknown.On the one hand, we need to use an iterative algorithm whih alternate the estimationof the group indiators, the estimation of the PCA sores for eah group and then theestimation of the mixture model parameters. On the other hand, the parameter q mustbe estimated by an empirial method, similar to those used to selet the number ofomponents in usual PCA.2.2.1 Mixture model and omponent sores estimationA lassial way to maximise a mixture model likelihood when data are missing (here thelusters indiators Zi) is to use the iterative EM algorithm [8, 12, 13℄. In this work weuse an EM like algorithm for the maximization of the approximated likelihood (9). Thisalgorithm inludes, between the standard E and M steps, a step in whih the prinipalomponents sores of eah group are updated.The EM algorithm onsists in maximizing the approximated ompleted log-likelihood
L(q)

c (θ;X,Z) =

n
∑

i=1

G
∑

g=1

Zi,g

(

log πg +

qg
∑

j=1

log fCj |Zg=1
(Ci,j,g)

)

,4



whih is known to be easier to maximise than its inomplete version (9), and leads tothe same estimate. Let θ(h) be the urrent value of the estimated parameter at step h,
h ≥ 1.E step. As the groups indiators Zi,g's are unknown, the E step onsists in omputingthe onditional expetation of the approximated ompleted log-likelihood:
Q(θ; θ(h)) = Eθ(h) [L(q)

c (θ;X,Z)|X = x] =

n
∑

i=1

K
∑

g=1

ti,g

(

log πg +

qg
∑

j=1

log fCj |Zg=1
(ci,j,g)

)where ti,g is the probability for the urve Xi to belong to the group g onditionally to
Ci,j,g = ci,j,g:

ti,g = Eθ(h) [Zi,g|X = x] ≃
πg

∏qg

j=1 fCj |Zi,g=1
(ci,j,g)

∑K
l=1 πl

∏qg

j=1 fCj |Zi,g=1
(ci,j,g)

. (10)The approximation in (10) is due to the use of an approximation of the density of X.Prinipal sore updating step. The omputation of FPCA eigenfuntions andsores within a given luster follows [16℄. In general, this omputation needs someapproximation. The most usual one is to assume that the urve admits an expansioninto a basis of funtions φ = (φ1, . . . , φL). Let Γ be the n × L expansion oe�ientsmatrix and W =
´

φφ′ be the matrix of the inner produts between the basis funtions.Here, the omputation of the prinipal omponent sores Ci,j,g of the urve Xi in thegroup g is updated depending of the urrent onditional probability ti,g omputed in theprevious E step. This omputation is arried out by ponderating the importane of eahurve in the onstrution of the prinipal omponents with the onditional probabilities
Tg = diag(t1,g, . . . , tn,g). Consequently, the �rst step onsists in entering the urve X iwithin the group g by substration of the mean urve omputed using the ti,g's. Theprinipal omponent sores Ci,j,g are then given by

Ci,j,g = (λj,g)
−1/2γi,gWβj,gwhere βj,g = W−1/2

uj,g, uj,g and λj,g being the jth eigenvetor and respetively eigen-value of the matrix n−1W 1/2Γ′TgΓW
1/2.Group spei� dimension qg estimation step. The estimation of the group spei�dimension qg is an open problem. It an not be solved by the use of suh likelihood-based method. Indeed, the approximation of the density (7) is the produt of the densityof the q �rst prinipal omponent sores. Therefore, when the density distributions ofthe prinipal omponents are not too peaked (variane lower than (2π)−1 for gaussiandensities), their values are lower than 1, and then the likelihood neessarily dereaseswhen q grows.In this work we propose to use, one the group spei� FPCA have been omputed,lassial empirial riteria as the proportion of the explained variane or the sree-testof Cattell [5℄ in order to selet eah group spei� dimension qg.5



M step. The M step onsists in omputing the mixture model parameters θ(h+1) whihmaximizes Q(θ; θ(h)). It leads simply to the following estimators
π(h+1)

g =
1

n

n
∑

i=1

ti,g, and σ2
j,g

(h+1)
= λj,g, 1 ≤ j ≤ qgwhere λj,g is the variane of the jth prinipal omponent of the luster g already om-puted in the prinipal sore updating step.The EM algorithm stops when the di�erene of the approximated likelihood valueof two onseutive steps is lower than a given threshold ǫ (typially ǫ = 10−6).2.2.2 Model seletionWe provided an EM proedure for �tting the model-based lustering for funtionaldata. However, there is a disrete parameter to estimate: the number K of lusters. Wepropose to use an approximation of the BIC riterion [18℄ built from the approximatedlog-likelihood (9):

BIC(q) = 2logl(q)(θ̂;X) − ν log n,where ν = 2 ∗K − 1 is the number of parameters of the model (mixing proportions andprinipal sores varianes) and l(q)(θ̂;X) is the maximum ahieved by the likelihood.The number K of lusters maximizing this riterion ould be an appropriate hoie.2.3 Classi�ation stepOne the mixture model parameters have been estimated, we proeed to the lassi�a-tion of the observed urves in order to omplete our lustering approah. The groupbelonging an be estimated by the rule of maximum a posteriori (MAP), whih on-sists in lassifying a urve xi into the group g maximizing the onditional probability
P (Zig = 1|Xi = xi). At the onvergene of the EM algorithm, this probability is givenby (10).Link with related methods. If the prinipal omponent sores of eah urve arenot omputed onditionally to their group belonging (here the FPCA are arried outby group), then our approah orresponds exatly to a Gaussian mixture model on theprinipal omponent sores. The losest method to our approah is that proposed in[4℄ (alled fun-HDDC ), whih assumes, onditionally to the group, a Gaussian mixturemodel on the oe�ients of the eigen-funtion expansion. Our approah is di�erent sinewe assume a Gaussian distribution for the prinipal omponent sores, whih is true ifthe urves are sample paths of a Gaussian proess. This is a reasonable hypothesis.3 Numerial experimentsIn order to ompare our model (quoted in the following by funlust) to other approahes,a simulation study and an appliation on real data are presented in this setion. The6



simulation study allows to ompare funlust to the usual lustering proedures, kmeansand gaussian mixture model (GMM, [2, 6℄, through the R pakage mlust) applied di-retly on the FPCA sores. The appliation on real data onsists in lustering Danonekneading urves. We illustrate the auray of funlust with respet to usual lusteringmethods suh as HDDC [3℄, MixtPPCA [19℄, kmeans, GMM [2, 6℄ and hierarhial lus-tering (hlust, R pakage). All these methods are suessively applied on the disretizeddata, on the expansion oe�ients in a natural ubi splines basis and on the fun-tional PCA sores. For both, simulation study and appliation, the number of lustersis assumed to be known.3.1 Simulation studyIn this simulation, the number of lusters is assumed to be known: K=2. A sample of
n = 100 urves are simulated aording to the following model inspired by [9, 14℄:Class 1 : X(t) = U1h1(t) + U2h2(t) + ǫ(t), t ∈ [1, 21],Class 2 : X(t) = U1h1(t) + ǫ(t), t ∈ [1, 21],where U1 and U2 are independent gaussian variables suh that E[U1] = E[U2] = 0,
Var(U1) = 1/2, Var(U2) = 1/12 and ǫ(t) is a white noise, independent of Ui's and suhthat Var(ǫt) = 1/12. The funtion h1 and h2 (plotted on Figure 1) are de�ned, for
t ∈ [1, 21], by h1(t) = 6 − |t− 7| and h2(t) = 6 − |t− 15|.

Figure 1: Plots of the funtions h1(t) (solid line) and h2(t) (dashed line).The mixing proportions πi's are hoosen to be equal, and the urves are observed in 101equidistant points (t = 1, 1.2, . . . , 21). Figure 2 plots the simulated urves.The prinipal omponents of X are approximated from {Xt}t=1,...,21 and are omputedusing linear spline smoothing (with 30 equidistant knots). For funlust, the group spe-i� dimensions qg are estimated suh that 90% of the total variane was explained bythe �rst qg prinipal omponents. For the lassial lustering proedures, kmeans andgaussian mixture model (GMM, [2, 6℄), the number of FPCA sores used is seleted inthe same way. Corresponding dimensions and orret lassi�ation rates, averaged on100 simulations, are given in Table 1.As we an expet, for this dataset with spei� prinipal spaes of di�erent dimensions,funlust outperforms lassial lustering methods for the multivariate setting.7



Figure 2: Class 1 (left), Class 2 (enter) and both lasses (right).method orret lassif. rate q1 q2funlust 79.68 1.88 1.90GMM 56.58 1.10kmeans 54.46 1.10Table 1: Corret lassi�ation rates, group spei� dimension qg for funlust and numberof FPCA sores for GMM and kmeans (averaged on 100 simulations), for the simulationstudy.3.2 AppliationThe dataset we use omes from Danone Vitapole Paris Researh Center and it onernsthe quality of ookies and the relationship with the �our kneading proess. The kneadingdata set is desribed in detail in [11℄.There are 115 di�erent �ours for whih the dought resistane is measured duringthe kneading proess for 480 seonds. One obtains 115 kneading urves observed at241 equispaed instants of time in the interval [0, 480]. The 115 �ours produe ookiesof di�erent quality: 50 of them have produed ookies of good quality, 25 produedadjustable quality and 40 bad quality. The Figure 3 presents the set of the 115 kneadingurves.In a supervised lassi�ation ontext, this data is used in [11, 15, 1℄ for �tting linearand non-parametri predition models for the ookie's quality. From these studies, itappears that it is di�ult to disriminate between the three lasses, even for supervisedlassi�ers, partly beause of the adjustable lass.Let us onsider that the 115 kneading urves are sample-paths of a seond orderstohasti proess X. In order to get the funtional feature of data, eah urve isapproximated using ubi B-spline basis expansion with the following 16 knots [11℄ : 10,42, 84, 88, 108, 134, 148, 200, 216, 284, 286, 328, 334, 380, 388, 478. Thus, eah urve
Xi is represented by a set of 18 oe�ients. Therefore, the FPCA of X is approximatedusing the smoothed urves (for more details, see [16℄). The group spei� dimensions8



qg are estimated suh that at least 95% of the total variane was explained. Resultingdimensions are q1 = 2, q2 = 1, q3 = 1.
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Figure 3: Kneading data : 115 �ours observed during 480 seonds. Left : observed data.Right : smoothed data using ubi B-splinesTable 2 presents the results obtained with di�erent lustering methods. Our methodfunlust performs better than fun-HDDC [4℄ whih similarly to funlust onsiders groupspei� subspaes but assume a Gaussian mixture model on the oe�ients of the eigen-funtion expansion, and not on the prinipal sore as funlust. The methods from themultivariate �nite setting are also outperformed by funlust.4 ConlusionIn this paper we propose a lustering proedure for funtional data based on an approx-imation of the notion of density of a random funtion. The main tool is the use of theprobability densities of the prinipal omponents sores. Assuming that the funtionaldata are sample of a Gaussian proess, the resulting mixture model is an extrapolation9



2-steps disretized spline oe�. FPCA sores funtionalmethods (241 instants) (20 splines) (4 omponents) methodsHDDC 66.09 53.91 44.35 fun-HDDC1 62.61MixtPPCA 65.22 64.35 62.61 funlust 67.82mlust 63.48 50.43 60kmeans 62.61 62.61 62.61hlust 63.48 63.48 63.48Table 2: Perentage of orret lassi�ation for the Kneading datasetof the �nite dimensional Gaussian mixture model to the in�nite dimensional setting. Wede�ned an EM like algorithm for the parameter estimation and performed a simulationstudy, as well as an appliation on real data, in order to show the performane of thisapproah with respet to other lustering proedures.The approximation of the density of a random funtion, based on the prinipal om-ponents densities, opens numerous perspetives for futur works. Indeed, a lusteringproedure for multivariate funtional data (several urves observed for a same individ-ual) an be de�ned similarly. The di�ult task in suh a multivariate funtional settingis to de�ne dependene between univariate funtions. This hallenge an be met by theFPCA of multivariate urve [16℄.Referenes[1℄ A.M. Aguilera, M. Esabiasa, C. Preda, and G. Saporta. Using basis expansions forestimating funtional pls regression. appliations with hemometri data. Chemo-metris and Intelligent Laboratory Systems, 104(2):289�305, 2011.[2℄ J.D. Ban�eld and A.E. Raftery. Model-based gaussian and non-gaussian lustering.Biometris, 49:803�821, 1993.[3℄ C. Bouveyron, S. Girard, and C. Shmid. High Dimensional Data Clustering. Com-putational Statistis and Data Analysis, 52:502�519, 2007.[4℄ C. Bouveyron and J. Jaques. Model-based lustering of time series in group-spei�funtional subspaes. Advanes in Data Analysis and Classi�ation, in press, 2011.[5℄ R. Cattell. The sree test for the number of fators. Multivariate Behav. Res.,1(2):245�276, 1966.[6℄ G. Celeux and G. Govaert. Gaussian parsimonious lustering models. The Journalof the Pattern Reognition Soiety, 28:781�793, 1995.[7℄ A. Delaigle and P. Hall. De�ning pobability density for a distribution of randomfuntions. The Annals of Statistis, 38:1171�1193, 2010.10
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