On the equation $-\Delta u+e^{u}-1=0$ with measures as boundary data
Résumé
If $\Omega$ is a bounded domain in $\mathbb R^N$, we study conditions on a Radon measure $\mu$ on $\partial\Omega$ for solving the equation $-\Delta u+e^{u}-1=0$ in $\Omega$ with $u=\mu$ on $\partial\Omega$. The conditions are expressed in terms of Orlicz capacities.
Origine | Fichiers produits par l'(les) auteur(s) |
---|