
HAL Id: hal-00575464
https://hal.science/hal-00575464v1

Preprint submitted on 10 Mar 2011 (v1), last revised 15 Mar 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the equation −∆u + eu − 1 = 0 with measures as
boundary data

Laurent Veron

To cite this version:
Laurent Veron. On the equation −∆u + eu − 1 = 0 with measures as boundary data. 2011. �hal-
00575464v1�

https://hal.science/hal-00575464v1
https://hal.archives-ouvertes.fr


On the equation −∆u + e
u − 1 = 0 with

measures as boundary data
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Abstract If Ω is a bounded domain in R
N , we study conditions on a Radon measure µ

on ∂Ω for solving the equation −∆u + eu − 1 = 0 in Ω with u = µ on ∂Ω. The conditions

are expressed in terms of Orlicz capacities.
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1 Introduction

Let Ω be a bounded domain in R
N with smooth boundary and µ a Radon measure

on ∂Ω. In this note we consider the problem of finding a function u solution of

−∆u+ eu − 1 = 0 (1.1)

in Ω satisfying u = µ on ∂Ω. Let ρ(x) = dist (x, ∂Ω), then this problem admits a
weak formulation: find a function u ∈ L1(Ω) such that eu ∈ L1

ρ(Ω) satisfying

∫

Ω
(−u∆ζ + (eu − 1)ζ) dx = −

∫

∂Ω

∂ζ

∂ν
dµ ∀ζ ∈W 1,∞

0 (Ω) ∩W 2,∞(Ω). (1.2)

This equation has been initiated by Grillot and Véron [15] in 2-dim in the framework
of the boundary trace theory. Much works on boundary trace problems for equation
of the type

−∆u+ uq = 0 (1.3)

with q > 1), have been developed by Le Gall [18], Dynkin and Kuznetsov [9], [10],
Marcus and Véron [19], [20], by purely probabilistic methods, by purely analytic
methods or by a combination of the preceding aspects. One of the main features
of the problem with power nonlinearities is the existence of a critical exponent
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qc =
N+1
N−1 which is linked to the existence of boundary removable sets. Existence of

boundary removable points have been discovered by Gmira and Véron [14]. Let us
recall briefly the main results for (1.3):

(i) If 1 < q < qc, then for any µ ∈ M+(∂Ω) there exists a unique function u ∈
L1
+(Ω) ∩ Lq

ρ(Ω) which satisfies (1.3) in Ω and achieves the value µ on ∂Ω in the
following weak sense

∫

Ω
(−u∆ζ + uqζ) dx = −

∫

∂Ω

∂ζ

∂ν
dµ ∀ζ ∈W 1,∞

0 (Ω) ∩W 2,∞(Ω). (1.4)

(ii) If q ≥ qc, the above problem can be solved if and only if µ vanishes on bound-
ary Borel subsets with zero C 2

q
,q′-capacity. Furthermore a boundary compact set is

removable if and only if it has zero C 2
q
,q′-capacity.

In this article we adapt some of the ideas used for (1.3) to problem

−∆u+ eu − 1 = 0 in Ω
u = µ on ∂Ω,

(1.5)

Following the terminology of [4] we say that a measure µ ∈ M(∂Ω) is good if (4.22)
admits a weak solution. Let PΩ(x, y) (resp. GΩ(x, y)) be the Poisson kernel (resp.
the Green kernel) in Ω and P

Ω[µ] the Poisson potential of a boundary mesure µ
(resp. GΩ[φ] the Green potential of a bounded measure φ defined in Ω). A boundary
measure µ which satisfies

exp(PΩ[µ]) ∈ L1(Ω; ρdx). (1.6)

is called admissible. Since PΩ[µ] is a supersolution for (1.1), an admissible measure
is good (see [25]). Our first result which extends a previous one obtained in [15] is
the following.

Theorem A. Suppose µ ∈ M(∂Ω) admits Lebesgue decomposition µ = µS + µR
where µS and µR are mutually singular and µR is absolutely continuous with respect
to the (N-1)-dim Hausdorff measure dHN−1. If

exp(PΩ[µS ]) ∈ L1(Ω; ρdx), (1.7)

then µ is good.

In order to go further in the study of good measures, it is necessary to introduce
an Orlicz capacity modelized on the Legendre transform of r 7→ p(r) := er − 1.
These capacities have been studied by Aissaoui and Benkirane [1] and they inherit
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most of the properties of the Bessel capacities. The capacity CNL lnL associated to
the problem is constructed later and it has strong connexion with Hardy-Littlewood
maximal function. In this capacity framework we obtain the following types of re-
sults:

Theorem B. Let µ ∈ M+(∂Ω) be a good measure, then µ vanishes on boundary
Borel subsets E with zero CNL lnL-capacity.

A charaterization of positive measures which have the property of vanishing on
Borel subsets E with zero CNL lnL-capacity is also provided. We also give below a
result of removability of boundary singularities.

Theorem C. Let K ⊂ ∂Ω be a compact subset with zero CNL lnL-capacity. Suppose
u ∈ C(Ω \K)∩C2(Ω) is a positive solution of (1.1) in Ω which vanishes on K, then
u is identically zero.

We give also some extensions of this approach to the equation

−∆u+ eu − 1 = µ, (1.8)

as well as removability questions for internal singularities of solutions of (1.1). In
that case the natural capacity associated to the problem is

C∆L lnL(K) = inf{‖M [∆η]‖L1 : η ∈ C2
0 (Ω) : 0 ≤ η ≤ 1, η = 1 in a neighborhood ofK}

(1.9)
where M [.] denotes Hardy-Littlewood’s maximal function.

Theorem D. Let µ ∈ M
b
+(Ω) be a bounded good measure, then µ vanishes on

boundary Borel subsets E with zero C∆L lnL-capacity.

A charaterization of positive measures which have the property of vanishing on
Borel subsets E with zero CNL lnL-capacity is also provided. We also give below a
result of removability of boundary singularities.

Theorem E. Let K ⊂ Ω be a compact subset with zero C∆L lnL-capacity. Suppose
u ∈ C(Ω \K)∩C2(Ω) is a positive solution of (1.1) in Ω \K which vanishes on ∂Ω,
then u is identically zero.

This note is essentially derived from the preliminary report [26], written in 2004
and left escheated since this period.
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2 Good measures

Proof of Theorem A. For k > 0, set µR,k = inf{k, µR} and denote by uk the solution
of

−∆uk + euk − 1 = 0 in Ω
uk = µS + µR,k on ∂Ω.

(2.1)

Such a solution exists because

exp(PΩ[µS + µR,k]) ≤ ek exp(PΩ[µS ])

by the maximum principle, and (1.7) implies that exp(PΩ[µS+µR,k])−1 ∈ L1(Ω; ρdx).

The sequence uk is nondecreasing. Since, for any ζ ∈ C1,1
c (Ω̄),

∫

Ω
(−uk∆ζ + (euk − 1)ζ)dx =

∫

∂Ω

∂ζ

∂ν
d(µS + µR,k),

if we take in particular for test function ζ the solution ζ0 of

−∆ζ0 = 1 in Ω
ζ0 = 0 on ∂Ω,

(2.2)

we get
∫

Ω
(uk + (euk − 1)ζ0)dx = −

∫

∂Ω

∂ζ0
∂ν

d(µS + µR,k) ≤ c ‖µ‖
M
. (2.3)

Thus u = limk→∞ uk is integrable,

∫

Ω
(u+ (eu − 1)ζ0)dx ≤ c ‖µ‖

M
,

and the convergence of uk and euk to u and eu hold respectively in L1(Ω) and
L1(Ω; ρdx) and u satisfies (1.2). �

The proof of the next result is inspired by [4].

Theorem 2.1 The following properties hold:

(i) If µ ∈ M
exp
+ (∂Ω) and 0 ≤ µ̃ ≤ µ, then µ̃ ∈ M

exp
+ (∂Ω).

(ii) Let {µn} ⊂ M
exp
+ (∂Ω) be an increasing sequence which converges to µ in the

weak sense of measures. Then µ ∈ M
exp
+ (∂Ω).

(iii) M
exp
+ (∂Ω) + L1

+(∂Ω) = M
exp
+ (∂Ω).
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Proof. (i) Let u = uµ be the solution of (4.22) and w = inf{u,PΩ[µ̃]}. Since PΩ[µ̃] is
a supersolution for (1.1), w is a supersolution too. Furthermore w is nonnegative and
ew − 1 ∈ L1(Ω; ρdx). By Doob’s theorem w admits a boundary trace µ∗ ∈ M+(∂Ω)
and µ∗ ≤ µ̃ ≤ µ. Let w∗ be the solution of

−∆w∗ + eu − 1 = 0 in Ω
w∗ = µ̃ on ∂Ω.

then u ≥ w ≥ w∗ and [21],

lim
t

∫

∂Ωt

w∗(t, .)ηdSt =

∫

∂Ω
ηdµ̃ ∀η ∈ C(∂Ω),

(here we denote by ∂Ωt the set of x ∈ Ω such that ρ(x) = t > 0). This implies that
the boundary trace of w∗ is µ̃ and thus µ∗ = µ̃. Set Ωt = {x ∈ Ω : ρ(x) > t} and let
vt we the solution of

−∆vt + evt − 1 = 0 in Ωt

vt = w on ∂Ωt.

Then vt ≤ w in Ωt. Furthermore

0 < t′ < t =⇒ vt′ ≤ vt in Ωt.

Then ũ = limt→0 vt exists, the convergence holds in L
1(Ω) and evt → eũ in L1(Ω; ρdx)

(here we use the fact that ew ∈ L1(Ω; ρdx). Because

lim
t→0

∫

∂Ωt

w̃(t, .)ηdSt =

∫

∂Ω
ηdµ̃ ∀η ∈ C(∂Ω),

and vt = w̃ on ∂Ωt, is follows that ũ admits µ̃ for boundary trace and thus ũ = uµ̃.

(ii) Let un = uµn be the solutions of (4.22) with boundary value µn. The sequence
{un} is increasing. Since

∫

Ω
(un + (eun − 1)ζ0)dx = −

∫

∂Ω

∂ζ0
∂ν

dµn ≤ −

∫

∂Ω

∂ζ0
∂ν

dµ, (2.4)

we conclude as in the proof of Theorem 1, that un increases and converges to a
solution u = uµ of (4.22) with boundary value µ.

(iii) In the proof of (i) we have actually used the following result : Let w be a
nonnegative supersolution of (1.1) such that ew ∈ L1(Ω; ρdx) and let µ ∈ M+(∂Ω)
be the boundary trace of w. Then µ is good. Let f ∈ L1

+(∂Ω) and µ be an good
measure. We denote by u = uµ the solution of (4.22). For k > 0, set fk = min{k, f}.
The function wk = uµ+P

Ω[fk] is a nonnegative supersolution, and, since PΩ[fk] ≤ k,
ewk ∈ L1(Ω; ρdx). Furthermore the boundary trace of wk is µ+fk. Therefore µ+fk
is good. We conclude by II that µ+ f is good �

Remark. The assertions (i) and (ii) in Theorem 1 are still valid if we replace r 7→
er − 1 by any continuous nondecreasing function f vanishing at 0.
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3 The Orlicz space framework

3.1 Orlicz capacities

The set M exp(∂Ω) of nonnegative measures µ on ∂Ω such that

exp(PΩ[µ]) ∈ L1(Ω; ρdx) (3.1)

is not a linear space, but it is a convex subset of M+(∂Ω). The role of this set comes
from the fact that any measure in M exp(∂Ω) is good. Put

p(t) = sgn(s)(es − 1), P (t) = e|t| − 1− |t|,

and
p̄(s) = sgn(s) ln(|s|+ 1), P ∗(t) = (|t|+ 1) ln(|t|+ 1)− |t|.

Then P and P ∗ are complementary functions in the sense of Legendre. Furthermore
Young inequality holds

xy ≤ P (x) + P ∗(y) ∀(x, y) ∈ R× R,

with equality if and only if x = p̄(y) or y = p(x). It is classical to define

MP (Ω; ρdx) = {φ ∈ L1
loc(Ω) : P (φ) ∈ L1(Ω; ρdx)}, (3.2)

MP ∗(Ω; ρdx) = {φ ∈ L1
loc(Ω) : P

∗(φ) ∈ L1(Ω; ρdx)}. (3.3)

The Orlicz spaces LP (Ω; ρdx) and LP ∗(Ω; ρdx) are the vector spaces spanned re-
spectively byMP (Ω; ρdx) andMP ∗(Ω; ρdx). They are endowed with the Luxemburg
norms

‖φ‖LPρ
= inf

{

k > 0 :

∫

Ω
P

(

φ

k

)

ρdx ≤ 1

}

. (3.4)

and

‖φ‖LP∗
ρ

= inf

{

k > 0 :

∫

Ω
P ∗

(

φ

k

)

ρdx ≤ 1

}

. (3.5)

Furthermore the Hölder-Young inequality asserts [16]

∣

∣

∣

∣

∫

Ω
φψ ρ dx

∣

∣

∣

∣

≤ ‖φ‖LPρ
‖ψ‖LP∗

ρ

∀(φ,ψ) ∈ LP (Ω; ρdx)× LP ∗(Ω; ρdx). (3.6)

Since P ∗ satisfies the ∆2-condition, MP ∗(Ω; ρdx) = LP ∗(Ω; ρdx) and LP (Ω; ρdx) is
the dual space of LP ∗(Ω; ρdx), (see [12], [1]). Furthermore, since

|a| ln(1 + |a|)

2
≤ P ∗(a) ≤ |a| ln(1 + |a|) ∀a ∈ R,
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the space LP ∗(Ω; ρdx) is associated with the class L lnL(Ω; ρdx) and to the Hardy-
Littlewood maximal function (see [12]). We recall its definition: we consider a cube
Q0 containing Ω̄, with sides parallel to the axes. If f ∈ L1(Ω) we denote by f̃ its
extension by 0 in Q0 \Ω and put

MQ0
[f ](x) = sup

{

1

|Q|

∫

Q

|f | (y)dy : Q ∈ Qx

}

where Qx denotes the set of all cubes containing x and contained in Q0, with sides
parallel to the axes. Thus

‖f‖L lnLρ
:=

∫

Q0

MQ0
[f ](x)ρdx ≈ ‖f‖LP∗

ρ

. (3.7)

If ℓ is a continuous linear functional on L lnL(Ω; ρdx), there exist a measurable
function gℓ and some θ > 0 such that















ℓ(f) =

∫

Ω
gℓfdx ∀f ∈ L lnL(Ω; ρdx),

∫

Ω
eθ|gℓ|ρdx <∞.

This can be seen as a consequence of Young’s inequality.

Definition 3.1 The space of all measures on ∂Ω such that

P
Ω[µ] ∈ LP (Ω; ρdx)

is denoted by Bexp(∂Ω), with norm

‖µ‖Bexp =
∥

∥P
Ω[µ]

∥

∥

LPρ
. (3.8)

The subset of measures such that

exp(PΩ[µ]) ∈ L1(Ω; ρdx)

is denoted by M
exp(∂Ω).

The following result follows immediately from the definition of the Luxemburg
norm.

Proposition 3.2 If µ ∈ Bexp(∂Ω) there exists a0 > 0 such that aµ ∈ M
exp(∂Ω) for

all 0 ≤ a < a0. Conversely, if µ ∈ M
exp(∂Ω), then aµ ∈ Bexp(∂Ω) for all a > 0.
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The analytic charaterization of Bexp(∂Ω) can be done in introducing the space
of normal derivatives of Green potentials of L lnL functions:

NL lnL(∂Ω) =
{

η : ρ−1∆(ρ∗PΩ[η]) ∈ L lnL(Ω; ρdx)
}

. (3.9)

where ρ∗ is a smooth positive function with value ρ in a neighborhood of ∂Ω. Then
∣

∣

∣

∣

∫

∂Ω
ηdµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
P
Ω[µ]∆(ρ∗PΩ[η]) dx

∣

∣

∣

∣

≤
∥

∥P
Ω[µ]

∥

∥

LPρ

∥

∥ρ−1∆(ρ∗PΩ[η])
∥

∥

LP∗
ρ

. (3.10)

Notice that the actual regularity of the η function is not clear, although

ρ−1∆(ρ∗PΩ[η]) ∈ L lnL(Ω; ρdx) =⇒ ∆(ρ∗PΩ[η]) ∈ L lnL(Ω).

If we take, as a norm on NL lnL(∂Ω)

‖η‖NL lnL =
∥

∥ρ−1∆(ρ∗PΩ[η])
∥

∥

LP∗
ρ

, (3.11)

and define the CNL lnL-capacity of a compact subset K of ∂Ω by

CNL lnL(K) = inf{‖η‖NL lnL : η ∈ C2(∂Ω), 0 ≤ η ≤ 1, η = 1 in a neighborhood of K}.
(3.12)

Considering the bilinear form H on LP ∗

ρ
(∂Ω)× LPρ(∂Ω)

H(η, µ) := −

∫

Ω
P
Ω[µ]∆(ρ∗PΩ[η]) dx (3.13)

then

H(η, µ) = −

∫

Ω

∫

∂Ω
PΩ(x, y)dµ(y)∆(ρ∗PΩ[η])(x) dx

= −

∫

∂Ω

∫

Ω
∆(ρ∗PΩ[η])(x)PΩ(x, y) dx dµ(y).

(3.14)

It is classical to define

C∗
NL lnL(K) = sup{µ(K) : µ ∈ M+(∂Ω), µ(K

c) = 0,
∥

∥P
Ω[µ]

∥

∥

LPρ
≤ 1}. (3.15)

The following result due to Fuglede [13] is a consequence of the Kneser-Fan min-max
theorem.

Proposition 3.3 For any compact set K ⊂ ∂Ω, there holds

C∗
NL lnL(K) = CNL lnL(K). (3.16)

As a direct consequence of (3.10), we have the following
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Proposition 3.4 If µ ∈ Bexp
+ (∂Ω), it does not charge Borel subsets with CNL lnL-

capacity zero.

Remark. We conjecture that the following result is true: Let µ ∈ M+(∂Ω), which
does not charge Borel sets with CNL lnL-capacity zero. Then there exists an increasing
sequence {µn} ⊂ Bexp(∂Ω) which converges weakly to µ. The construction of the
proof can be adapted from [11, Th8], [3, Lemma 4.2], except one point which is
not clear: If η ∈ NL lnL(∂Ω) does it admit a representative η̃ quasi-continuous with
respect to the capacity CNL lnL? If this statement holds true the remaining of their
proof based on the study of the mapping h defined by

h(η) =

∫

∂Ω
η̃+dµ ∀η ∈ NL lnL(∂Ω).

can be easily adapted.

3.2 Good measures and removable sets

As we have already seen it, a measure in Bexp
+ (∂Ω) is good, and does not charge

Borel subsets of CNL lnL-capacity zero. The following result is a slight extension of
a result of Grillot-Véron, with a proof which inherits some observations of Brezis-
Marcus-Ponce.

Proof of Theorem B. Let K be a compact subset with CNL lnL-capacity zero. There
exist a sequence {ηn} ⊂ C2(∂Ω) such that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood of
K and

lim
n→∞

‖ηn‖NL lnL =
∥

∥ρ−1∆(ρ∗PΩ[ηn])
∥

∥

LP∗
ρ

= 0. (3.17)

Take ρ∗PΩ[ηn]) as a test function, then
∫

Ω

(

−u∆(ρ∗PΩ[ηn]) + (eu − 1)ρ∗PΩ[ηn]))
)

dx = −

∫

∂

Ω
∂(ρ∗PΩ[ηn]))

∂ν
dµ

Since
∂(ρ∗PΩ[ηn]))

∂ν
= ηn and µ > 0, there holds −

∫

∂Ω

∂(ρ∗PΩ[ηn]))

∂ν
dµ ≥ µ(K).

Furthermore
∣

∣

∣

∣

∫

Ω
u∆(ρ∗PΩ[ηn])dx

∣

∣

∣

∣

≤ ‖u‖LPρ

∥

∥ρ−1∆(ρ∗PΩ[ηn])
∥

∥

LP∗
ρ

. (3.18)

Then

µ(E) ≤

∫

Ω
(eu − 1)ρ∗PΩ[ηn])dx+ ‖u‖LPρ

∥

∥ρ−1∆(ρ∗PΩ[ηn])
∥

∥

LP∗
ρ

.

By the same argument as in [4], limn→∞ ρ∗PΩ[ηn] = 0, a.e. in Ω, and there exists
a nonnegative L1

ρ-function Φ such that 0 ≤ ρ∗PΩ[ηn] ≤ Φ. By (3.17), (3.18) and
Lebesgue’s theorem, µ(E) = 0. �
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Definition 3.5 A subset E ⊂ ∂Ω is said removable for equation (1.1), if and only
if any positive solution u ∈ C2(Ω) of (1.1) in Ω, which is continuous in Ω \ E and
vanishes on ∂Ω \E, is identically zero.

Proof of Theorem C. Let u ∈ C(Ω̄\K) be a solution of (1.1) which is zero on ∂Ω\K.
Let {ηn} ⊂ C2(∂Ω) such that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood V of K and
(3.17) holds. Put θn = 1− ηn. Put ρK(x) = dist (x,K). Then, as a consequence of
Keller-Osserman estimate and the fact that u vanishes on Kc, there holds

u(x) ≤ C
ρ(x) ln(2/ρK(x))

ρK(x)
+D.

Thus the function ζn = ρ∗PΩ[θn] is an admissible test function for u, and

∫

Ω
(−u∆ζn + (eu − 1)ζn) dx = 0.

Clearly P
Ω[θn] = 1− P

Ω[ηn] and

∆ζn = ∆ρ∗ −∆(ρ∗PΩ[ηn])

Inasmuch we can modify ρ∗ in order to have −∆ρ∗ ≥ 0, in which case ρ∗ = ρ near
∂Ω is replaced by ρ∗ ≈ ρ, we derive

−

∫

Ω
u∆ζn dx = −

∫

Ω
ζ−1
n ∆ζn uζndx

≥ −2−1

∫

Ω
(eu − 1− u)ζn dx−

∫

Ω
Q(ζ−1

n ∆(ρ∗PΩ[ηn])) ζndx,

where

Q(r) = (|r|+ 2−1) ln(2 |r|+ 1)− |r| ≤ C |r| ln(|r|+ 1) ∀r ∈ R.

Therefore
∫

Ω
(eu − 1− u)ζn dx ≤ 2C

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx, (3.19)

since ζ−1
n

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ≤ ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣. Furthermore

ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)) = − ln ρ+ ln(ρ+ ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)

≤ − ln ρ+ ln(1 + ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)
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But (we can assume ρ ≤ 1)

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx

≤ −

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρdx+

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx,

and
∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx

=

∫

{|∆(ρ∗PΩ[ηn])|≤1}

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx+

∫

{|∆(ρ∗PΩ[ηn])|>1}

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx

≤

∫

{|∆(ρ∗PΩ[ηn])|≤1}

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln ρ−1dx+

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−1
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx

But
lim
n→∞

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ = 0 a. e. in Ω,

at least up to some subsequence. Thus

lim
n→∞

∫

Ω

∣

∣∆(ρ∗PΩ[ηn])
∣

∣ ln(1 + ρ−2
∣

∣∆(ρ∗PΩ[ηn])
∣

∣)dx = 0 (3.20)

Using (4.30), we derive u = 0.

Conversely, assume that CNL lnL(K) > 0. By Proposition 3.3 there exists a non neg-
ative non-zero measure µ ∈ M+(∂Ω) such that µ(Kc) = 0 in the space Bexp

+ (∂Ω).
This means that θµ ∈ M exp

+ (∂Ω) for some θ > 0. Thus problem (4.22) admits a
solution. �

By Proposition 3.2 and Theorem ?? we have a partial characterization of mea-
sures for which problems (4.22) admits a solution and K is not removable.

Theorem 3.6 If a measure µ is good there exists an increasing sequence of measures
{µn} which converges to µ satisfying

∫

Ω
exp(θnP

Ω[µn])ρdx <∞ (3.21)

for some θn > 0.

11



Several questions can be adressed

1- If a singular measure µ is good does it exist an increasing sequence of {µn}
converging to µ such that (3.21) holds with θn = 1 ?

2- If a measure µ does not charge Borel sets with CL lnL-capacity zero, doest it exist
θ > 0 such that θµ ∈ M

exp(∂Ω) ?

3- If a singular measure µ is good, then (1− δ)µ ∈M exp(∂Ω) for any δ > 0 ?

4 Further extensions and open questions

A part of the above construction could be extended to problems with more general
nonlinearity such as

4.1 Boundary data measures

−∆u+ P (u) = 0 in Ω
u = µ on ∂Ω,

(4.22)

where P is a convex increasing function vanishing at 0 and such that limr→∞ P (r)/r =
∞: In Theorem 1-P , (1.7) should be replaced by

P (PΩ[µn]) ∈ L1(Ω; ρ dx). (4.23)

In Theorem 2-P , (i) and (ii) still hold. For simplicity we assume that P is a N -
function in the sense of Orlicz spaces

P (r) =

∫ r

0
p(s)ds

where p is increasing and vanishes at 0. Let P ∗ be the conjugate N -function,
LP (Ω; ρ dx) and LP ∗(Ω; ρ dx) the corresponding Orlicz spaces endowed with the
Luxenburg norms. Then Proposition 1-P is valid, provided the space BP (∂Ω) and
MP (∂Ω) are accordingly defined with the following notations:

NP ∗

(∂Ω) = {η : ρ−1∆(ρ∗PΩ[η]) ∈ LP ∗(Ω; ρ dx)}

with corresponding norm

‖η‖NP∗ =
∥

∥ρ−1∆(ρ∗PΩ[η])
∥

∥

LP∗
ρ

and the corresponding capacity CNP∗ . It is still likely that Theorem 3-P , 4-P
hold. The proof of Theorem 5-P should be valid without any major modification.
However, it appears that the characterization of removable sets cannot be adapted

12



without further properties of the function P ∗ like the ∆2-condition. Such a condi-
tion holds usually when P has a power-like growth (> 1) and a logarithmic type
growth.

4.2 Internal measures

Many of the above techniques can be extended to the following types of problem in
which µ ∈ M

b
+(Ω):

−∆u+ eu − 1 = µ in Ω
u = 0 on ∂Ω,

(4.24)

and
−∆u+ P (u) = µ in Ω

u = 0 on ∂Ω.
(4.25)

Remark. Note that many interesting results can be found in [2] where the analysis of
µ is made by comparison with the Hausdorff measure in dimension (N-2), HN−2. It
is proved in particular that if a measure µ satisfies µ ≤ 4πHN−2, then problem (4.22)
admits a solution, while if µ charges some Borel set A with Hausdorff diemension
less than N − 2, no solution exists.

We denote by M
exp
+ (Ω) the set of good measures for (4.24) and define the classes

MP (Ω) andMP ∗(Ω) similarly toMP (Ω; ρdx) andMP ∗(Ω; ρdx) except that the mea-
sure ρdx is replaced by the Lebesgue measure dx. The Orlicz spaces LP (Ω) and
LP ∗(Ω) are defined fromMP (Ω) andMP ∗(Ω) and endowed with the respective Lux-
emburg norms ‖ ‖P and ‖ ‖P ∗. Inequality (3.10) becomes

∣

∣

∣

∣

∫

Ω
ηdµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
η∆G

Ω[µ] dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
G

Ω[µ]∆η dx

∣

∣

∣

∣

≤
∥

∥G
Ω[µ]

∥

∥

LP
‖∆η‖LP∗

. (4.26)

for η ∈ C1,1
c (Ω̄). We define the C∆L lnL-capacity of a compact subset K of ∂Ω by

C∆L lnL(K) = inf{‖∆η‖LP∗
: η ∈ C2

c (Ω), 0 ≤ η ≤ 1, η = 1 in a neighborhood of K},
(4.27)

The capacity C∆L lnL can be characterized using the Hardy-Littlewood maximal
function f 7→MQ0

[f ] since

‖f‖L lnL :=

∫

Q0

MQ0
[f ](x)dx ≈ ‖f‖LP∗

. (4.28)

Thus Proposition 3.4 and Theorem B are valid under the form

Proposition 4.1 If µ ∈ Bexp
+ (Ω), it does not charge Borel subsets with C∆L lnL-

capacity zero.

13



Theorem 4.2 Let µ ∈ M+(Ω) be a good measure, then µ vanishes on Borel subset
E with zero C∆L lnL-capacity.

Theorem C has the following counter part

Theorem 4.3 Let K ⊂ Ω be compact. Any solution of

−∆u+ eu − 1 = 0 in Ω \K
u = 0 on ∂Ω,

(4.29)

vanishes identically in Ω if and only if C∆L lnL(K) = 0.

Proof. Let u ∈ C(Ω\K) be a solution of (1.1) which is zero on ∂Ω. Let {ηn} ⊂ C2(Ω)
such that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood V of K and (3.17) holds. Put
ρK(x) = dist (x,K). Then, as a consequence of Keller-Osserman estimate for this
type of nonlinearity (see [24]), there holds

u(x) ≤ C ln(2/ρK(x)) +D.

Put θn = 1 − ηn. Then the function ζn = φ1θn (φ1 being the first eigenfunction of
−∆) is an admissible test function for u, and

∫

Ω
(−u∆ζn + (eu − 1)ζn) dx = 0.

We derive

−

∫

Ω
u∆ζn dx = −

∫

Ω
ζ−1
n ∆ζn u dx

≥ −2−1

∫

Ω
(eu − 1− u) dx−

∫

Ω
Q(∆(ζn) dx.

Therefore
∫

Ω
(eu − 1− u)ζn dx ≤ 2C

∫

Ω
|∆ζn| ln(1 + |∆ζn|)dx, (4.30)

Since the right-hand side goes to zero when n→ ∞, the conclusion follows. �

Remark. The characterization of the C∆L lnL-capacity is not simple, however, by a
result of [6, Th1], there holds

∥

∥D2η
∥

∥

L1,∞ ≤ C ‖∆η‖L lnL ∀η ∈ C1,1
c (Ω) (4.31)

where L1,∞(Ω) denotes the weak L1-space, that is the space of all measurable func-
tions f defined in Ω satisfying

meas ({x ∈ Ω : |f(x)| > t}) ≤
c

t
, ∀t > 0 (4.32)

and ‖f‖L1,∞ is the smallest constant such that (4.32) holds.
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4.2.1 Reduced measures

What are the reduced measures both for the boundary and internal problems (4.22)
(resp. (4.25))? A projection onto the closure of the sets Mexp(∂Ω) (resp. Mexp(Ω))
of positive measures in ∂Ω (resp. Ω) satisfying

∫

Ω
exp (PΩ[µ])ρdx <∞

(resp.
∫

Ω
exp (GΩ[µ])dx <∞.)

The definition of the projection is not clear, although an important fact is that it
ensures uniqueness. This conjectures could be extended to problems involving op-
erator u 7→ −∆u+ P (u).
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