On the topology of fillings of contact manifolds and applications.
Résumé
The aim of this paper is to address the following question: given a contact manifold $(\Sigma, \xi)$, what can be said about the aspherical symplectic manifolds $(W, \omega)$ bounded by $(\Sigma, \xi)$ ? We first extend a theorem of Eliashberg, Floer and McDuff to prove that under suitable assumptions the map from $H_{*}(\Sigma)$ to $H_{*}(W)$ induced by inclusion is surjective. We then apply this method in the case of contact manifolds having a contact embedding in $ {\mathbb R}^{2n}$ or in a subcritical Stein manifold. We prove in many cases that the homology of the fillings is uniquely determined. Finally we use more recent methods of symplectic topology to prove that, if a contact hypersurface has a Stein subcritical filling, then all its weakly subcritical fillings have the same homology. A number of applications are given, from obstructions to the existence of Lagrangian or contact embeddings, to the exotic nature of some contact structures.
Origine | Fichiers produits par l'(les) auteur(s) |
---|