On the topology of fillings of contact manifolds and applications. - Archive ouverte HAL
Article Dans Une Revue Commentarii Mathematici Helvetici Année : 2012

On the topology of fillings of contact manifolds and applications.

Résumé

The aim of this paper is to address the following question: given a contact manifold $(\Sigma, \xi)$, what can be said about the aspherical symplectic manifolds $(W, \omega)$ bounded by $(\Sigma, \xi)$ ? We first extend a theorem of Eliashberg, Floer and McDuff to prove that under suitable assumptions the map from $H_{*}(\Sigma)$ to $H_{*}(W)$ induced by inclusion is surjective. We then apply this method in the case of contact manifolds having a contact embedding in $ {\mathbb R}^{2n}$ or in a subcritical Stein manifold. We prove in many cases that the homology of the fillings is uniquely determined. Finally we use more recent methods of symplectic topology to prove that, if a contact hypersurface has a Stein subcritical filling, then all its weakly subcritical fillings have the same homology. A number of applications are given, from obstructions to the existence of Lagrangian or contact embeddings, to the exotic nature of some contact structures.
Fichier principal
Vignette du fichier
Oancea-Viterbo-revised-1-Dec09.pdf (345.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00382548 , version 1 (08-05-2009)
hal-00382548 , version 2 (01-12-2009)

Identifiants

Citer

Alexandru Oancea, Claude Viterbo. On the topology of fillings of contact manifolds and applications.. Commentarii Mathematici Helvetici, 2012, pp.41-69. ⟨hal-00382548v2⟩
243 Consultations
487 Téléchargements

Altmetric

Partager

More