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Abstract

The aim of this paper is to address the following question: given a contact
manifold (Σ, ξ), what can be said about the aspherical symplectic manifolds
(W,ω) bounded by (Σ, ξ) ? We first extend a theorem of Eliashberg, Floer
and McDuff to prove that under suitable assumptions the map from H∗(Σ) to
H∗(W ) induced by inclusion is surjective. We then apply this method in the
case of contact manifolds having a contact embedding in R2n or in a subcritical
Stein manifold. We prove in many cases that the homology of the fillings
is uniquely determined. Finally we use more recent methods of symplectic
topology to prove that, if a contact hypersurface has a Stein subcritical filling,
then all its weakly subcritical fillings have the same homology.

∗Supported by ANR project ”Floer Power” ANR-08-BLAN-0291-03/04. We are grateful to
Beijing International Center for Mathematical Research of Beijing University for hospitality during
the completion of this paper.
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A number of applications are given, from obstructions to the existence
of Lagrangian or contact embeddings, to the exotic nature of some contact
structures. We refer to the table in section 7 for a summary of our results.

1 Introduction

In this paper all symplectic manifolds will be assumed to be connected, of dimension
2n and aspherical, that is [ω]π2(M) = 0. All contact manifolds are connected and
have dimension 2n− 1. The form σ0 denotes the standard symplectic form on R2n

or CP n, and α0 the standard contact form on S2n−1.
In a celebrated paper, Eliashberg, Floer and McDuff ([McDuff]) proved that

if (W,ω) is a symplectic manifold with contact boundary (S2n−1, α0), then W is
diffeomorphic to the unit ball B2n. In the case of dimension 4, Gromov had earlier
proved in ([Gromov]) that W is actually symplectomorphic to (B4, σ0), but this
relies heavily on positivity of intersection for holomorphic curves that is special to
dimension 4.

One can ask more generally, given a fillable contact manifold (Σ, ξ) and a sym-
plectic filling (W,ω), what can be said about the topology or the homology of W .
Is it uniquely determined by the contact structure (Σ, ξ) ? Is it determined by the
topology of Σ ? Do we have lower bounds ? Upper bounds ? It turns out that all
these possibilities actually occur.

For example, if (Σ, ξ) has an exact contact embedding into (R2n, σ0) - many such
examples can be found in [Laudenbach] -, it readily follows from the Eliashberg-
Floer-McDuff theorem and some elementary algebraic topology that all fillings have
the same homology. This gives easy examples of contact manifolds with no exact
embedding in (R2n, σ0). As far as the authors know, there are only few previously
known examples of fillable manifolds not embeddable in R2n, with the exception of
recent results in [Cieliebak-Frauenfelder-Oancea] and [Albers-McLean], which how-
ever assume the exactness of the embeddings, an assumption we usually can dispense
with. More general results relating the homology follow from the same methods,
and a generalization of the Eliashberg-Floer-McDuff theorem to the Stein subcriti-
cal1 manifold, that is a manifold admitting an exhausting plurisubharmonic function
with no critical points of index n = 1

2
dim(W ).

Our last result uses more sophisticated tools. One of them will be symplectic
homology of W , and the positive part, defined in [Viterbo]. It turns out that this
positive part, under mild assumptions on the Conley-Zehnder index of closed char-
acteristics, is independent of the filling. In [Cieliebak-Frauenfelder-Oancea], this
is proved as a consequence of arguments in [Bourgeois-Oancea-1]. One can then

1see the definition 2.3
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prove that if (Σ, ξ) bounds a subcritical Stein manifold (W,ω), any other weakly
subcritical filling will have the same homology.

Of course many questions remain open. As far as we can see, nothing can be said
about the symplectic topology of fillings outside the subcriticality/non-subcriticality
alternative. Are there examples of compact manifolds L such that ST ∗L has fillings
with homology different fromH∗(L) ? Is there an embedding of the Brieskorn sphere
of a singularity of Milnor number µ in the Milnor fibre of a singularity of Milnor
number µ′ < µ ?

2 The Eliashberg-Floer-McDuff theorem

revisited

Conventions. In this section we denote by (W,ω) an aspherical symplectic manifold
of dimension 2n, and by (M, ξ) a contact manifold of dimension 2n− 1. We assume
that ξ is co-orientable, and fix a co-orientation. The contact structure ξ is then
defined by a contact form α and since α ∧ (dα)n−1 does not vanish, it defines an
orientation of M .

All homology and cohomology groups are taken with field coefficients.

Definition 2.1. A contact embedding of (Σ, ξ) in (W,ω) is a codimension 1 embed-
ding such that there exists a positive contact form α which extends to a neighbour-
hood of Σ as a primitive of ω. We shall say that the embedding is an exact contact
embedding if α extends to the whole of W as a primitive of ω.

Definition 2.2. A symplectic filling of (Σ, ξ) is a symplectic manifold (W,ω) without
closed components, such that ∂W = Σ and there exists a positive contact form α
which extends to a neighbourhood of Σ as a primitive of ω. We shall say that the
symplectic filling is an exact symplectic filling if α extends to the whole of W as a
primitive of ω.

Definition 2.3. A symplectic filling (W,ω) of (Σ, ξ) is a Stein symplectic filling if W
has an almost complex structure J , and a non-positive plurisubharmonic function
ψ such that Σ = ψ−1(0) and −J∗dψ is a contact form defining ξ. Note that ψ can
always chosen to be a Morse function. Its critical points must then have index at
most n, hence W has the homotopy type of a CW complex of dimension at most n.
If we can find the function ψ with no critical points of index n, then W is said to
be Stein subcritical.

Remark 2.4. A contact embedding of (Σ, ξ) in (W,ω) which is separating – i.e. W \Σ
consists of two connected components – yields a filling of (Σ, α) by the connected
component of W \ Σ for which the boundary orientation of Σ coincides with the
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orientation induced by α. This filling we shall call the interior of Σ. If W is non-
compact, this is the bounded component of W \Σ. Note that Σ is always separating
if H2n−1(W ; Z) is torsion.

Our goal in this section is to prove the following theorem

Theorem 2.5. Assume (Σ, ξ) admits a contact embedding in a subcritical Stein
manifold (M,ω0). If (W,ω) is any symplectic filling of Σ and (M \ Z) ⊔Σ W is
aspherical, then the map Hj(Σ) −→ Hj(W ) is onto. This holds in particular if
[ω]π2(W ) = 0 and one of the following conditions is satisfied

(a). H2(W,Σ) = 0.

(b). (Σ, ξ) is of restricted contact type in (M,ω0) and in (W,ω). Moreover, we
require that the same contact form α is a primitive of both ω and ω0 (this last
condition holds if H1(Σ,R) = 0).

(c). The maps π1(Σ) −→ π1(W ) and π1(Σ) −→ π1(M \ Z) are injective.

Remark 2.6. Note that (c) holds if Σ is simply connected and (a) holds if W is Stein
and n ≥ 3.

Remark 2.7. When Σ is a sphere, we get that W has vanishing homology. This is
the original Eliashberg-Floer-McDuff theorem (see [McDuff]), since an application
of the h-cobordism theorem (plus the fact due to Eliashberg that π1(W ) vanishes)
implies that W is diffeomorphic to the ball B2n. Indeed, since Hj(S

2n−1) = 0, for
1 ≤ j ≤ 2n − 2, the same holds for Hj(W ), and since Σ is a boundary in W , the
map H2n−1(S

2n−1) −→ H2n−1(W ) vanishes. When n = 2 Gromov (see [Gromov])
proved that W is symplectomorphic to the ball B4, but this relies heavily on purely
4-dimensional arguments (positivity of intersection of holomorphic curves).

Our proof of theorem 2.5 closely follows the original proof in [McDuff], except
for the final homological argument.

We shall start by working in the following special situation. We will then prove
that this is enough to deal with the general case.

Let (P, ωP ) be a symplectic manifold, and H a codimension two symplectic
submanifold with pseudo-convex complement (i.e. the first Chern class of its normal
bundle is a positive multiple of ω) such that P \ H is aspherical. Consider the
symplectic manifold (P × S2, ωP ⊕ σ). Let (Σ, α) be a separating contact manifold
contained in (P \H) ×D2

−, where D2
− (resp. D2

+) is the southern (resp. northern)
hemisphere. Let Z be the interior of Σ, Y = (P × S2 \ Z), and

V = Y ⊔Σ W = (P × S2 \ Z) ⊔Σ W

where (W,ω) is a filling of (Σ, α). Then V has a symplectic form ωV obtained
by gluing ωP ⊕ σ on Y and ω on W . Let p0 be a point in H , and M be the
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space of maps u : CP 1 −→ V homologous to {p0} × S2 (notice that for p0 ∈ H ,
{p0} × S2 ⊂ Y ) such that u(z) ∈ P × {z} for z ∈ {−1, 1,∞}. This makes sense
since P ×D2

+ ⊂ Y ⊂ V . Note that M coincides with the set of holomorphic maps
u : CP 1 −→ V homologous to {p0}×S

2 divided by the conformal group PSL(2,C).

Proposition 2.8. Under the assumptions of the previous paragraph, the mapHj(Σ) −→
Hj(W ) induced by inclusion is surjective.

Proof. Assuming for the moment the compactness of M, our first task is to prove
that the map

ev : M× S2 −→ V

(u, z) −→ u(z)

has degree one. Indeed, the Riemann-Roch formula implies that the two spaces
have the same dimension. It is then enough to count algebraically the number of
preimages over a point in V such that no curve through this point goes through W
(or through Z, which is equivalent by connectedness). Choosing a point p0 ∈ H
and counting the number of curves through p0 ×∞, we will get the same result as
for P × S2. Indeed p0 × ∞ is contained in Y , as well as the curve p0 × S2, and
we get that provided H is a complex submanifold, which we can assume without
loss of generality, any holomorphic curve either intersects positively with H×S2, or
is contained in H × S2. The first case is impossible for homological reasons, since
[p0 × S2] ∩ [H × S2] = 0, the second case implies that our count is the same as
the number of rational curves through p0 ×∞ in P × S2, and then such a curve is
unique.

Let us now deal with the compactness issue. For this we have to understand the
possible bubbling off in V of sequences of holomorphic spheres in the homology class
of {p0} × S2. First notice that such bubbling off will produce at least two pieces:
one that has intersection +1 with the divisor P×{∞}, and a second one (that could
have several components), that is contained in V \ (H ×S2 ∪P ×{∞}). Indeed, we
may assume both H×S2 and P ×{∞} are complex submanifolds, and positivity of
intersection implies that only one component will intersect P ×{∞}. As for H×S2,
the homological intersection of the curve with H × S2 is zero, hence the curves in
the sequence are either completely contained in H × S2 or in its complement. In
the first case there can be no bubbling off, since the class {p0} × S2 is J-simple in
H × S2. In the second case, no bubble can intersect H × S2 by pseudoconvexity
of P \ H . So the question is that of bubbling off in M ⊔Σ W . Bubbles contained
completely in M or W are already ruled out by asphericity.

Under assumption (b) we have ω0 = dα = ω, so that M ⊔ΣW is exact and there
can be no bubble.
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Under assumption (c), consider a bubble C, and let C1, C2 be the parts of the
bubble separated by Σ. At least one of the components of C1 or C2 is a disc, with
boundary in Σ. By assumption, we can cap it by a disc in Σ to get a sphere in M
or in W , which by asphericity has zero area. We can thus inductively remove each
component of C1, C2 and finally prove that C has zero area, a contradiction.

Under assumption (a), we again consider the two pieces of the rational curve
separated by Σ. We denote by C1 the piece in W and by C2 its complement. Then
∫

C1∪C2

ω =
∫

C1

ω +
∫

C2

ω. But C1 ∈ H2(W,Σ) so by our assumption there is a cycle
Γ in Σ such that ∂C1 = ∂Γ. Because C1 ∪ Γ is a cycle in H2(W ), and the map
H2(Σ) −→ H2(W ) is onto (using again H2(W,Σ) = 0), we obtain that C1 ∪ Γ is
homologous in W to a cycle C3 contained in Σ. Thus

∫

C1

ω −
∫

Γ
ω =

∫

C3

ω which
vanishes because ω is exact near Σ. Finally C2 ∪ Γ is a cycle in M with the same
area as C1 ∪C2, but since (M,ω0) is exact (Stein) this area is zero, a contradiction.

We have thus proved that ev : M× S2 −→ V has degree one. This implies that
the map

(ev)∗ : Hj(M× S2) −→ Hj(V )

is surjective. Denote by iU , for any subset U of V , the inclusion map of U in V .
Consider a class C1 in Hj(W ) and C = (iW )∗(C1) ∈ Hj(V ). It is enough to prove
that C is also in the image of (iY )∗. Indeed, the Mayer-Vietoris exact sequence
writes

−→ Hj(Σ)
(iW

Σ
)∗⊕(iY

Σ
)∗

−→ Hj(W ) ⊕Hj(Y )
(iW )∗−(iY )∗

−→ Hj(V ) −→ Hj−1(Σ) −→

where iWΣ (resp. iYΣ) denotes the inclusion of Σ in W (resp. Y ). If there exists C2

in Hj(Y ) such that C = (iY )∗(C2), then (C1, C2) is in the kernel of (iW )∗ − (iY )∗,
hence in the image of (iWΣ )∗ ⊕ (iYΣ)∗. Thus C1 ∈ Im(iWΣ )∗, and Hj(Σ) −→ Hj(W ) is
surjective.

We now prove that C lies in the image of (iY )∗. By surjectivity of the map
(ev)∗ : Hj(M× S2) −→ Hj(V ), the class C is homologous to the image of some ΓC

in
Hj(M× S2) ≃ Hj(M) ⊗H0(S

2) ⊕Hj−2(M) ⊗H2(S
2).

If ΓC = A⊗{pt}+B⊗ [S2], where A ∈ Hj(M) and B ∈ Hj−2(M), we claim that
B must vanish. Arguing by contradiction, let B′ be Poincaré dual to B in H∗(M),
then

(B ⊗ [S2]) · (B′ ⊗ {pt}) = (B · B′) ⊗ {pt} = {pt} ⊗ {pt}.

Thus ΓC · (B′ ⊗ {pt}) = {pt} ⊗ {pt}. This implies that

{pt} = (ev)∗(ΓC · (B′ ⊗ {pt})) = C · (ev)∗(B
′ ⊗ {pt}) = C · ev∞(B′),

where evz(u) = u(z). Since ev∞(B′) ⊂ P × {∞}, we get C · ev∞(B′) = 0, a
contradiction.
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As a result, we obtain C = evz(A) (for any z ∈ S2), with A ∈ Hj(M). Choosing
z = ∞ we get that C ∈ (iP×{∞})∗(Hj(P )) ⊂ (iY )∗(Hj(Y )). This concludes the
proof.

Remark 2.9. The above proof still works provided we have compactness of the set
of holomorphic curves in (P \H) × S2 homologous to {pt} × S2. For example this
will hold if [ω]π2(P \H) = aZ and a > 4π =

∫

S2 σ, since the class {pt} × S2 is then
J-simple (see [McDuff] p.659, 3.1).

Remark 2.10. If the image of the boundary map Hj+1(Y,Σ) → Hj(Σ) coincides
with the image of the boundary map Hj+1(W,Σ) → Hj(Σ), then dimHj(W ) ≤
dimHj(P ). Indeed, it follows from the commutative diagram below that the map
Hj(W ) → Hj(V ) is injective. Since its image is contained in Im(iP×{∞})∗, the
conclusion follows.

Hj+1(V,W ) // Hj(W ) // Hj(V )

Hj+1(Y,Σ)

excision≃

OO

∂
// Hj(Σ) //

OO

Hj(Y )

Hj+1(W,Σ)

∂

OO

Proof of theorem 2.5. We use a result of Cieliebak (see [Cieliebak1]) stating that
a Stein subcritical manifold is symplectomorphic to N × C where N is Stein, and
a result of Lisca and Matič ([Lisca-Matič], section 3, theorem 3.2), stating that
any Stein manifold embeds symplectically in a smooth projective manifold, P , with
ample canonical bundle. Moreover N is contained in the complement of a hyperplane
section, H . We can thus assume that we have embeddings Σ ⊂ N ×D2 ⊂ P × S2

such that N and P carry symplectic forms ωN , ωP for which the second embedding
is symplectic, and of course the image of Σ is contained in the complement of
P × {∞} ∪ H × S2. We may now apply proposition 2.8 and this concludes our
proof.

Remark 2.11. Of course the condition that Hj(Σ) −→ Hj(W ) is onto is equivalent
to the claim that Hj(W ) −→ Hj(Σ) is injective, or that Hj(W ) −→ Hj(W,Σ)
vanishes, etc.

The case when Σ is a sphere leads to the following variant of the Eliashberg-
Floer-McDuff theorem ([McDuff]): the assumptions that we impose are weaker, but
so is the conclusion.
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Corollary 2.12. Let (Σ, ξ) be a simply connected contact manifold admitting an
embedding in a Stein subcritical manifold, and assume that Σ is a homology sphere
(resp. rational homology sphere). Then if it admits a filling, W is a homology ball
(resp. rational homology ball).

Proof. Indeed apply theorem 2.5 to the case where Hj(Σ) = 0. We conclude that
Hj(W ) = 0.

Examples are given by Brieskorn spheres (see corollary 6.2). Note that if (Σ, α)
is the standard contact sphere, it has an obvious embedding in R2n. In this situa-
tion, using an argument by Eliashberg, it is proved in [McDuff] that W is simply
connected. Thus we get, using Smale’s h-cobordism theorem ([Smale]) that W is
diffeomorphic to the ball. This is the original Eliashberg-Floer-McDuff theorem.

Remark 2.13. Here is a more precise statement. Remember that in the proof of
our theorem 2.5, we showed that the image of (iW )∗ is contained in the image of
(iP )∗ := (iP×{∞})∗ in H∗(V ). Now the following commutative diagram

Hj(W )
(iW )∗

// Hj(V ) Hj(P )
(iP )∗

oo

Hj(Σ)
(iΣ)∗

//

OO
OO

Hj(Y )

OO

Hj(P )
(iP )∗

oo

shows that

dim((iP )∗Hj(P )/(iW )∗Hj(W )) ≥ dim((iP )∗(Hj(P )/(iΣ)∗Hj(Σ)).

3 The case of (R2n, σ0)

In this section we denote bp(X) the Betti numbers of a manifold X with coefficients
in a given field. Thus bp(X) is the rank of the p-th homology/cohomology group.

We denote B(X) the total Betti number of X, that is B(X) =
∑dim X

j=0 bj(X).
It is convenient in this section to slightly change the point of view and use the

following definitions. Let (Σ, ξ) be a contact manifold and α a contact form for ξ.

Definition 3.1. A contact embedding of (Σ, α) in (W,ω) is a codimension 1 embed-
ding such that α extends to a neighbourhood of Σ as a primitive of ω. We shall say
that the embedding is an exact contact embedding if α extends to the whole of W
as a primitive of ω.

We call (Σ, α) an (exact) contact hypersurface of (W,ω).
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Definition 3.2. A symplectic filling of (Σ, α) is a symplectic manifold (W,ω) with-
out closed components, such that ∂W = Σ and such that α extends to a neighbour-
hood of Σ as a primitive of ω. We shall say that the symplectic filling is an exact
symplectic filling if α extends to the whole of W as a primitive of ω.

Theorem 3.3. Let (Σ, α) be a contact hypersurface in (R2n, σ0), and let W0 be the
bounded component of R2n \ Σ. Let W be a symplectic filling of (Σ, α) such that
(R2n \W0)⊔W is aspherical. This holds in particular if W is aspherical and one of
the following properties is satisfied

(a). H2(W,Σ) = 0.

(b). (Σ, α) is of restricted contact type in (W,ω) and in (R2n, σ0).

(c). The maps π1(Σ) −→ π1(W ) and π1(Σ) −→ π1(R
2n \W0) are injective.

Then

(1) any two aspherical symplectic fillings of (Σ, α) which satisfy either of the con-
ditions (a)–(b) have the same cohomology.

(2) given an aspherical symplectic filling W which satisfies one of the conditions
(a)–(b), the inclusion of Σ in W induces an injection in cohomology

Hp(W ) −→ Hp(Σ).

Moreover, we have
bp(Σ) = bp(W ) + b2n−p−1(W ).

Remark 3.4. Note that again, (a) holds if W is Stein and n ≥ 3, while (c) holds if
Σ is simply connected.

Proof. Of course the first statement in (2) follows from the previous section, but we
shall give an alternative proof based on the Eliashberg-Floer-McDuff theorem. The
main point is that any of the conditions (a)–(b) guarantees that W ⊔ (R2n \W0)
is symplectically aspherical, hence diffeomorphic to R2n. Equivalently, since Σ is
contained in some large ball, B, then W ⊔ (B −W0) is diffeomorphic to B.

Thus, the cohomology Mayer-Vietoris exact sequence may be written

−→ Hp(B) −→ Hp(W ) ⊕Hp(B −W0) −→ Hp(Σ) −→ Hp+1(B) −→

Since Hp(B) = 0 for p > 0, we see that the map

Hp(W ) ⊕Hp(B −W0) −→ Hp(Σ)

9



is an isomorphism for p ≥ 1. Since it is induced by the inclusion maps, the first
claim follows.

Moreover, for p > 0 we have

bp(Σ) = bp(W ) + bp(B −W0)

Since according to Alexander duality (see [Greenberg-Harper], theorem 27.5,
p.233) for 2n− 1 > p > 0 we have

bp(B −W0) = b2n−p−1(W0)

this last equality implies that

bp(Σ) = bp(W ) + b2n−p−1(W0)

But of course this also holds when we replace W by W0, so that

bp(Σ) − bp(W0) = b2n−p−1(W0)

hence
bp(Σ) = bp(W ) + (bp(Σ) − bp(W0))

This implies bp(W ) = bp(W0) for 0 < p < 2n− 1.
For p = 2n− 1, if B(ε) is a very small ball inside W0, the inclusions

B \B(ε) ⊃ B −W0 ⊃ S2n−1

imply that b2n−1(B −W0) ≥ 1, and the exact sequence

0 −→ H2n−1(W ) ⊕H2n−1(B −W0) −→ H2n−1(Σ) −→ 0

implies that b2n−1(B − W0) = 1 and b2n−1(W0) = 0. Finally it is easy to check
that the equality still holds for p = 0, since b0(Σ) = b0(W ) = 1 while b2n−1(W ) =
b2n−1(Σ) − b0(W ) = 0 (using the equality for p = 2n− 1).

Corollary 3.5. Assume (Σ, ξ) has a Stein symplectic filling (W,ω) and has a contact
embedding in (R2n, σ0). Then

{

bp(Σ) = bp(W ) for 0 ≤ p ≤ n− 2
bn−1(Σ) = bn(Σ) = bn(W ) + bn−1(W )

Thus the homology of W is completely determined by the homology of Σ except,
maybe, for degree n−1. It is completely determined by the homology of Σ if bn(Σ) = 0
or W is Stein subcritical.
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Proof. We see from theorem 3.3 that bp(W ) is determined by bp(Σ), except maybe
in dimension n, n − 1. But if bn(Σ) = 0 this implies bn(W ) = bn−1(W ) = 0 and if
W is subcritical, bn(W ) = 0 hence bn−1(Σ) = bn−1(W ).

Remark 3.6. Mei-Lin Yau proved (see [M.-L.Yau]) that if W is Stein subcritical,
and the first Chern class of the complex vector bundle defined by ξ, c1(ξ), vanishes,
then

HC∗(Σ, α) ≃ H∗(W,Σ) ⊗H∗(CP
∞)

so that it is a general fact that the homology of a subcritical filling is determined by
the contact structure (Σ, ξ). It is however not clear whether in general it is already
determined by the knowledge of the topology of Σ (i.e. independently from ξ or the
topology of a filling).

As a first consequence of corollary 3.5 and Mei-Lin Yau’s result we have:

Corollary 3.7. Assume (Σ, ξ) satisfies c1(ξ) = 0, has a Stein subcritical filling
(W,ω) and has a contact embedding in (R2n, σ0). Then the rank of HC∗(Σ, α) is
determined by H∗(Σ). Indeed, we have

rank(HCk(Σ, α)) =
∑

2n − 2 − k ≤ p ≤ n − 1
p ≡ k mod 2

bp(Σ)

Proof. Note that assumption (b) from theorem 3.3 is automatically satisfied: we
are in the Stein case. The result is a straightforward application of the corollary,
Mei-Lin Yau’s theorem and the duality H2n−k(W ) ≃ Hk(W, ∂W ).

Thus
HCk(Σ, ξ) =

⊕

m≥0

Hk−2m+2(W,Σ) =
⊕

m≥0

H2n−2−k+2m(W )

and b2n−2−k+2m(W ) = b2n−2−k+2m(Σ) for 0 ≤ 2n − 2 − k + 2m ≤ n − 1. Setting
p = 2n− 2 − k + 2m yields the above formula.

As another application of our theorem, we can prove

Proposition 3.8. Let Σ be the boundary of the disc bundle W associated to a
complex line bundle over a symplectic manifold (N2n−2, ω) with [ω]π2(N) = 0 and
Chern class equal to minus the symplectic form, the contact structure being given
by the kernel of the connection form α. Then (Σ, ξ) has no contact embedding
in (R2n, σ0) with interior Z, such that (R2n \ Z) ⊔ W is aspherical. The same
holds for n ≥ 3 and for any contact manifold obtained by contact surgery (as in
[Eliashberg, Weinstein]) of index k for any k ∈ [3, n].

11



Proof. For details about the fact that Σ has a contact form appearing as the bound-
ary of W , we refer to [Oancea], section 3.3.

The Gysin exact sequence can be written as

−→ Hp−2(N)
ω∪
−→ Hp(N) −→ Hp(Σ) −→ Hp−1(N) −→

In degree 2, we get

H2(Σ) = H2(N)/〈[ω]〉 ⊕ ker
(

[ω]∪ : H1(N) −→ H3(N)
)

hence
b2(Σ) < b2(N) + b1(N) = b2(N) + b2n−2−1(N)

and this contradicts theorem 3.3.
Let us now see what happens when we make a contact surgery. We shall denote

our hypersurface by Σ−, W− will denote its filling, and Σ+ the result of the surgery
on Σ− along a k−1-dimensional isotropic sphere. Let us denote by Ak ≃ Dk×Dn−k

the attached handle, and denote ∂−Ak = Sk−1 ×D2n−k, ∂+Ak = Dk × S2n−k−1, so
that the new filling of Σ+ is W+ = W− ∪∂−Ak

Ak. We first need to prove that W+

is aspherical. But the homotopy exact sequence of the pair (W+,W−) is given by

−→ π3(W
+,W−) −→ π2(W

−) −→ π2(W
+) −→ π2(W

+,W−) −→

and π2(W
+,W−) ≃ π2(Ak, ∂

−Ak) ≃ π2(D
k, ∂Dk) = 0 for k ≥ 3. Thus the inclusion

of W− in W+ induces a surjective map on π2, hence if [ω]π2(W
−) = 0, we also have

[ω]π2(W
+) = 0.

Let us now first consider the case k ≥ 4. We claim that we have b2(Σ
+) = b2(Σ

−)
and b2(W

+) = b2(W
−). Indeed the homology exact sequence for the pair (W+,W−)

writes

−→ H3(W
+,W−) −→ H2(W

−) −→ H2(W
+) −→ H2(W

+,W−) −→

but Hj(W
+,W−) ≃ Hj(Ak, ∂

−Ak) ≃ Hj(D
k, ∂Dk) = 0 for j = 2, 3 and k ≥ 4, so

b2(W
+) = b2(W

−).
Similarly the Mayer-Vietoris exact sequence for Σ± = Σ− \ (∂−Ak)∪∂

±Ak reads

(3.1)
H2(S

k−1 × S2n−k−1) −→ H2(Σ \ ∂−Ak) ⊕H2(∂
±Ak) −→

H2(Σ
±) −→ H1(S

k−1 × S2n−k−1) = 0

When k ≥ 4, the groups H2(S
k−1 × S2n−k−1) and H2(∂

±Ak) vanish, so that we
have isomorphisms

H2(Σ \ ∂−Ak) ≃ H2(Σ
±)

and therefore b2(Σ
+) = b2(Σ

−).

12



Let us now deal with the case k = 3, n ≥ 4.
In case “−”, the first map in the exact sequence 3.1 is injective (since its projec-

tion on the second summand is induced by the inclusion S2 ×S2n−4 −→ S2 ×D2n−3

) and since 2n − 4 > 2, b2(Σ
−) = b2(Σ

− \ ∂−A3). In the “+” case, H2(∂
+A3) = 0

and b2(Σ
+) ≤ b2(Σ \ ∂−A3) = b2(Σ

−).
We write the homology exact sequences of the pairs (W+,W−) and (Σ+,Σ+ ∩

W−)

H3(W
+, W−)

∂W
// H2(W

−) // H2(W
+) // H2(W

+, W−) = 0

H3(Σ
+, Σ+ ∩ W−)

∂Σ
//

OO

H2(Σ
+ ∩ W−) //

OO

H2(Σ
+) //

OO

H2(Σ
+, Σ+ ∩ W−) = 0

OO

H2(Σ
− \ ∂−A3) ≃ H2(Σ

−)

The left hand side vertical map is an isomorphism since

H3(Σ
+,Σ+ ∩W−) ≃ H3(D

3 × S2n−4, S2 × S2n−4)
≃

−→

H3(D
3 ×D2n−3, S2 ×D2n−3) ≃ H3(W

+,W−)

Therefore either the ∂W is injective, and thus so is ∂Σ and consequently b2(W
+) =

b2(W
−)− 1 and b2(Σ

+) = b2(Σ
−)− 1, or it is zero, and then b2(W

+) = b2(W
−) and

b2(Σ
+) ≤ b2(Σ

−).
For n = k = 3, we leave it to the reader to check that

H2(Σ
−) ≃ H2(Σ \ ∂−A3)/ Im(H2({pt} × S2))

H2(Σ
+) ≃ H2(Σ \ ∂−A3)/ Im(H2(S

2 × S2))

so that b2(Σ
+) equals either b2(Σ

−) or b2(Σ
−) − 1. Again using the same argument

as above, whenever b2(W
+) = b2(W

−) − 1 we have b2(Σ
+) = b2(Σ

−) − 1. This
concludes our proof.

Remark 3.9. According to [Laudenbach], if (Σ, ξ) has a contact embedding in R2n,
the same holds for any manifold obtained by contact surgery over an isotropic sphere
of dimension ≤ n − 1. In contrast we display here an obstruction to embedding Σ
in R2n that survives such a surgery.

Examples 3.10. The asphericity condition is really necessary: (CP n, σ0) does not
satisfy the asphericity condition, and indeed (S2n−1, α0) has an embedding into
(R2n, σ0).
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This generalizes to higher dimensional bundles as follows

Proposition 3.11. Let Σ be the boundary of a negative rank r vector bundle (r ≥ 2)
W over a symplectic manifold (N2n−2r, ω) with [ω]π2(N) = 0, and its canonical
contact structure ξ. Then (Σ, ξ) has no contact embedding in (R2n, σ0). The same
holds for n ≥ 2r + 1 and for any contact manifold obtained by contact surgery of
index k for any k ∈ [2r + 1, n].

Proof. For details on the contact structure on Σ, we refer to [Oancea], section 3.4.
Let as usual Z denote the interior of Σ in R2n. The asphericity assumption on
(R2n \ Z) ⊔ W is automatically satisfied here, since a 2-sphere in (R2n \ Z) ⊔ W
generically avoids N , hence deforms into a 2-sphere contained in (R2n \ Z), where
ω vanishes on spheres.

Again the Gysin exact sequence reads

−→ Hp−2r(N)
e∪
−→ Hp(N) −→ Hp(Σ) −→ Hp−2r+1(N)

e∪
−→

where e is the Euler class of W . Hence

H2r(Σ) = H2r(N)/〈e〉 ⊕ ker(e∪ : H1(N) −→ H2r+1(N))

and negativity implies that e is nonzero, so

b2r(Σ) < b2r(N) + b1(N) = b2r(W ) + b2n−2r−1(W ).

This contradicts Theorem 3.3.
The case of surgery is treated as in the previous proposition, details are left to

the reader.

Proposition 3.12. Let L be a compact manifold admitting a Lagrangian embedding
into R2n and n ≥ 3. Then any symplectic filling of ST ∗L has the same homology as
DT ∗L (and hence the homology of L).

Proof. Indeed, the hypothesis implies that ST ∗L has a contact (non exact !) embed-
ding into R2n, so that we can apply theorem 3.3. The condition H2(DT

∗L, ST ∗L)
is clearly satisfied using Thom’s isomorphism.

Let now ST ∗L be the unit cotangent bundle of L. Then the spectral sequence
of this sphere bundle yields the following dichotomy:

• either the Euler class vanishes, and then

bp(ST
∗L) = bp(L) + bp−(n−1)(L)
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• or the Euler class is non zero and then

{

bp(ST
∗L) = bp(L) + bp−(n−1)(L) for p 6= n− 1, n

bn(ST ∗L) = bn−1(ST
∗L) = bn−1(L) = b1(L)

The formula
bp(Σ) = bp(W ) + b2n−p−1(W )

becomes

(a). in the first case

bp(L) + bp−(n−1)(L) = bp(L) + b2n−p−1(L)

hence
bp−(n−1)(L) = b2n−p−1(L)

that is the Poincaré duality formula

(b). in the second case

b1(L) = bn−1(L) = bn(L) + b2n−n−1(L) = bn(L) + bn−1(L)

This implies bn(L) = 0, which is impossible (at least for orientable L).

Proposition 3.13. Let L be an orientable manifold with non zero Euler class. Then
ST ∗L has no contact embedding in R2n. The same holds for any contact manifold
obtained from such a ST ∗L by surgery of index 3 ≤ k ≤ n− 3.

Proof. The case of ST ∗L has been already proved above. The surgery does not
modify the conditions H2(W,Σ) = 0 nor does it change bn(Σ) or bn(W ), bn−1(W ).
This concludes our proof.

Remark 3.14. The condition e(L) = 0 is exactly the condition needed to be able
to find a Lagrangian immersion of L regularly homotopic to an embedding. We
however suspect that there are no embeddings of ST ∗L as a a smooth hypersurface
in R2n.
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4 The Stein subcritical case

In this section we assume that (Σ1, ξ1) has a separating contact embedding in a
Stein subcritical domain (W2, ω2) with boundary (Σ2, ξ2), and we denote by V1 the
bounded component of W2 \ Σ1. We denote by (W1, ω1) an arbitrary aspherical
symplectic filling of (Σ1, ξ1) such that (W2 \ V1) ⊔Σ1

W1 is aspherical, which holds
for example under one of the assumptions (b), (c), (a) of theorem 2.5.

Proposition 4.1. Under the above assumptions, we have that

bj(W1) ≤ bj(Σ1) + min(0, bj(Σ2) − bj(W2 \ V1))

Proof. Note that given an exact sequence A
f

−→ B
g

−→ C we have dim(B) =
dim(ker(g)) + dim(Im(g)) = dim(Im f) + dim(Im(g)) ≤ dim(A) + dim(C). Using
the Mayer-Vietoris exact sequence of (W2\V1)⊔W1 and the inequality dimHj(Σ2) ≥
dimHj((W2 \ V1) ⊔W1) proved in the previous section, we get that

bj(W2 \ V1) + bj(W1) ≤ bj(Σ2) + bj(Σ1).

Thus
bj(W1) ≤ (bj(Σ2) − bj(W2 \ V1)) + bj(Σ1).

Since acccording to theorem 2.5, bj(W1) ≤ bj(Σ1), our claim follows.

Note that bj(W2 \ V1) = b2n−j(W2, V1 ∪ Σ2) by Poincaré duality and excision.
Note also that the above result is stronger than Proposition 2.5 only when bj(Σ2)−
bj(W2 \ V1) < 0. This happens for example if Σ2 is a homology sphere.

Proposition 4.2. Let (M,ω) be a Stein subcritical manifold. Let Σ be the boundary
of the disc bundle W associated to a complex line bundle over a symplectic mani-
fold (N2n−2, ω) with [ω]π2(N) = 0, Chern class equal to minus the symplectic form,
the contact structure being given by the kernel of the connection form α. Assume
moreover that [ω]∪ : H1(N) −→ H3(N) is injective (this holds if N is projective
complex manifold by the Hard Lefschetz theorem). Then (Σ, ξ) has no contact em-
bedding in (M,ω) with interior Z, such that (M \ Z) ⊔W is aspherical. The same
holds for n ≥ 3 and for any contact manifold obtained by contact surgery (as in
[Eliashberg, Weinstein]) of index k for any k ∈ [3, n].

Proof. The proof is the same as in the case of euclidean space, with the exception
that our extra assumption implies using the Gysin exact sequence,

H2(Σ) = H2(N)/〈[ω]〉
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(the term ker ([ω]∪ : H1(N) −→ H3(N)) vanishes). Hence

b2(Σ) < b2(N) = b2(W )

and this contradicts theorem 2.5. The case of surgery is dealt with as in proposition
3.8.

There is an analogous theorem, with fewer assumptions, but which only states
that Σ does not bound a subcritical Stein manifold (cf. Prop. 5.14).

Proposition 4.2 generalizes to higher dimensional bundles as in the euclidean
case:

Proposition 4.3. Let Σ be the boundary of a negative rank r vector bundle (r ≥ 2)
W over a symplectic manifold (N2n−2r, ω) with [ω]π2(N) = 0, and its canonical
contact structure ξ. Assume the Euler class of W induces an injective map e∪ :
H1(N) −→ H2r+1(N). Then (Σ, ξ) has no contact embedding in a Stein subcritical
manifold. The same holds for n ≥ 2r + 1 and for any contact manifold obtained by
contact surgery of index k for any k ∈ [2r + 1, n].

Proof. Again the Gysin exact sequence reads

−→ Hp−2r(N)
e∪
−→ Hp(N) −→ Hp(Σ) −→ Hp−2r+1(N)

e∪
−→

hence
H2r(Σ) = H2r(N)/〈e〉

so
b2r(Σ) < b2r(N)

We check as in proposition 3.11 that the assumptions of Theorem 2.5 are satisfied,
and thus get a contradiction. The case of surgery is dealt with as in the case of
proposition 3.11.

The first part of the following result has been obtained by different methods in
[Cieliebak-Frauenfelder-Oancea] (see also proposition 5.12).

Proposition 4.4. Let L be an orientable closed manifold, with non-zero Euler class
of dimension ≥ 3. Then ST ∗L has no contact embedding in a subcritical Stein
manifold. As before this also holds for any manifold obtained from ST ∗L by contact
surgery of index k ∈ [3, n− 1].

Proof. Since n ≥ 3, the group H2(DT
∗L, ST ∗L) is zero, so assumption (a) of

theorem 2.5 is satisfied. The Gysin exact sequence of ST ∗L shows that the map
Hn(ST

∗L) −→ Hn(L) vanishes. This contradicts Theorem 2.5. The case of mani-
folds obtained by surgery is dealt with as in proposition 3.8.
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5 Obstructions from Symplectic homology

In this section we assume (Σ, ξ) is a contact manifold and denoting by c1 the first
Chern class, that c1(ξ) = 0, All the symplectic fillings (W,ω) of (Σ, ξ) that we
consider shall satisfy c1(TW ) = 0.

Definition 5.1. Let (W,ω) be symplectic with contact type boundary. We say that
(W,ω) is weakly subcritical if SH∗(W,ω) = 0.

Remark 5.2. This is of course a strengthening of Algebraic Weinstein conjecture de-
fined in [Viterbo]. Note that a weakly subcritical also has the Equivariant Algebraic
Weinstein conjecture property. This can be seen using the spectral sequence connect-
ing the usual version of symplectic homology to the equivariant version [Viterbo],
or using the Gysin long exact sequence [Bourgeois-Oancea-2].

If we have an exact embedding (V1, ω1) into (W1, ω1), there is an induced transfer
map (see [Viterbo])

SH∗(W1) −→ SH∗(V1)

which according to Mark McLean (see [McLean]) is a unital ring homomorphism.
This implies the following result:

Proposition 5.3 ([McLean]). Let (V, ω) be an exact symplectic submanifold of
(W,ω). If (W,ω) is weakly subcritical then (V, ω) is also weakly subcritical.

It is easy to find non-Stein weakly subcritical manifolds. For example we have

Proposition 5.4 ([Oancea]). Let P be any exact symplectic manifold with contact
type boundary. Then, for any exact weakly subcritical manifold W , we have that
P × W is weakly subcritical. Also the total space of a symplectic fibration in the
sense of [Oancea] with fiber W is weakly subcritical.

Proposition 5.5 ([Cieliebak2]). Let W ′ be obtained from W by attaching handles of
index ≤ n− 1. Then SH∗(W ) ≃ SH∗(W

′). In particular if W is weakly subcritical
so is W ′.

The next statement is contained in [Cieliebak-Frauenfelder-Oancea], Corollary 1.15
and Remark 1.19.

Theorem 5.6. Let (Σ, ξ) be a contact manifold for which there exists a contact
form α with no closed characteristics of Conley-Zehnder index less than or equal to
3−n. Let i : (Σ, α) →֒ (W,ω) be a separating exact embedding in a weakly subcritical
manifold (W,ω). Assume i∗ : π1(Σ) → π1(W ) is injective. Then the Betti numbers
of the interior V of Σ in any coefficient field are determined by the contact structure
ξ (and do not depend on the choice of the weakly subcritical W ).
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Proof. By Proposition 5.3 we have SH∗(V ) = 0. The relative exact sequence in
Floer homology (see [Viterbo]) then implies that

SH+
∗ (V ) ≃ H∗+n−1(V, ∂V )

On the other hand, it was proved in [Bourgeois-Oancea-1] that we have a long
exact sequence

(5.1) → SH+
∗ (V ) → HC lin

∗ (∂V )
∆
→ HC lin

∗−2(∂V ) → SH+
∗−1(V ) →

If the Reeb vector field associated to the contact form α has no closed characteristic
with Conley-Zehnder index ≤ 3 − n, and if i∗ : π1(Σ) → π1(V ) is injective, then
there is no rigid holomorphic plane in V bounding a closed characteristic. Thus
HC lin

∗ (∂V ) and ∆ only depend on the boundary (see [Bourgeois-Oancea-1]), and so
does SH+

∗ (V ). As a consequence, the Betti numbers bj(V, ∂V ) only depend on ξ.
Now if we have another exact embedding of Σ in W ′ and W ′ is also weakly

subcritical, the interior V ′ of Σ in W ′ must have the same cohomology as V .

Proposition 5.7. Let (Σ, ξ) be the boundary of a Stein subcritical manifold (W,ω).
Let (M,ω) be a weakly subcritical manifold, such that (Σ, ξ) has an exact separating
embedding into (M,ω) with interior Z. Then H∗(Z) ≃ H∗(W ).

Proof. First of all, by proposition 5.3, we have SH∗(Z) = 0. On one hand the exact
sequence ([Viterbo])

H∗+n(Z,Σ) −→ SH∗(Z) −→ SH+
∗ (Z) −→ H∗+n−1(Z,Σ) −→

shows that H∗(Z,Σ) ≃ SH+
∗+1−n(Z). On the other hand, since Σ bounds a subcrit-

ical Stein manifold, there exists a contact form, α such that the Reeb orbits are all
non-degenerate and of index > 3 − n (cf. [M.-L.Yau]), so the stretch of the neck
argument in [Bourgeois-Oancea-1] shows that the map ∆ appearing in the exact se-
quence (5.1) depends only on the boundary. This implies that SH+

∗ (Z) ≃ SH+
∗ (W ).

This last space is in turn isomorphic to H∗+n−1(Z,Σ) by the same argument, and
finally H∗(Z,Σ) ≃ H∗(W,Σ), hence H∗(Z) ≃ H∗(W ).

Remark 5.8. The condition that W is subcritical is not really necessary. We only
need W to be weakly subcritical provided there is a contact form defining ξ such
that there is no Reeb orbit on (Σ, α) with index ≤ 3 − n.

Remark 5.9. This can be compared to the following theorem of Mei-Lin Yau:

Corollary 5.10. ([M.-L.Yau]) Let W be a subcritical Stein manifold with boundary
∂W such that c1(TW )|π2(W ) = 0. Then any subcritical Stein manifold with the same
boundary ∂W and whose first Chern class vanishes on π2 has the same homology as
W .
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Proof. This follows from the main computation of [M.-L.Yau]

HC∗(∂W, α) ≃ H∗(W, ∂W ) ⊗H∗(CP
∞),

which implies directly that the homology of a subcritical Stein filling is determined
by the contact structure of the boundary.

Remark 5.11. Note that when Σ = S2n−1, we may apply our proposition to W =
D2n. Thus we prove that any filling H∗(Z) = 0 in nonzero degree, so if Z is simply
connected, and n ≥ 3, it is diffeomorphic to a ball. This is a weak version of the
Eliashberg-Floer-McDuff theorem mentioned in the previous section, but note that
the above proof does not make use of it and also that it extends to many other
contact manifolds.

Let us now use the above tools to find obstructions to embeddings. We first
have:

Proposition 5.12 ([Cieliebak-Frauenfelder-Oancea]). If Σ = ST ∗L where L is
closed simply connected manifold, then (Σ, ξ) has no exact embedding in a weakly
subcritical (M,ω).

Proof. Since the characteristic flow on ST ∗L is the geodesic flow, it has all closed
trajectories of index ≥ 0 > 3−n if n > 3 (in cases n = 2, 3 L is a sphere and we can
find a metric with geodesics of index > 3 − n). Assuming the existence of such an
embedding, the map ∆ in (5.1) has finite kernel and cokernel. As a result, (Σ, ξ) can-
not be filled by a symplectic manifold with infinite dimensional SH+

∗ (W ), provided
this last space depends only on ∂W = Σ. In our case SH+

∗ (DT ∗L) ≃ H∗(ΛL,L) is
infinite-dimensional, so that ST ∗L cannot be embedded in any subcritical Stein.

Remark 5.13. Let (M,ω) be obtained by attaching subcritical handles to DT ∗L.
Provided one can prove that the Reeb orbits on (∂M, ξ) still have index > 3 − n,
our argument extends to show that (∂M, ξ) has no contact embedding in a weakly
subcritical Stein manifold.

The case of a circle bundle over P can also be dealt with using contact and Floer
homology. Indeed we have

Proposition 5.14. Let (Σ, ξ) be the unit sphere bundle associated to a negative
complex vector bundle E of rank r over a symplectic aspherical manifold (N2n−2r, ω)
with c1(TN) = 0. Then for n ≥ 2r, Σ does not bound a Stein subcritical manifold
with vanishing first Chern class. The same holds for any contact manifold obtained
by subcritical surgery on (Σ, ξ) of index 6= 2r, 2r + 1.
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Proof. Indeed, let W denote the manifold bounding Σ. Because if P is the unit disc
bundle associated to Σ, we have ∂P = Σ and since SH∗(P ) = 0 ([Oancea]) we get
an exact sequence:

−→ SH∗(P ) −→ SH+
∗ (Σ) −→ H∗+n−1(P,Σ) −→

as a result
SH+

∗ (Σ) ≃ H∗+n−1(P,Σ) ≃ H∗+n−2r−1(N)

while the same exact sequence with W yields

SH+
∗ (Σ) ≃ H∗+n−1(W,Σ) ≃ Hn−∗+1(W )

But this last space vanishes for ∗ ≤ 1 while H∗+n−2r−1(N) is non-zero for ∗ =
2r − n + 1. When n ≥ 2r we get a contradiction. Now since k 6= 2r, 2r + 1,
H2r(P,Σ) does not change, so remains equal to H0(N) = Q. But we must have
H2r(P,Σ) = SH+

2r−n+1(Σ) = H2n−2r(W ) = 0. A contradiction.

Remark 5.15. This partially answers a question of Biran in [Biran] who asked the
same question in the Stein case (not subcritical). A different answer was given by
Popescu-Pampu in [Popescu-Pampu]

6 Brieskorn spheres, McLean’s examples

We consider an isolated singularity of holomorphic germ. For example, assume we
are given V a complex submanifold in Cn with an isolated singularity at the origin.
We then consider the submanifold Σε = Sε ∩V where Sε = {z ∈ Cn | |z|2 = ε}. The
maximal complex subspace of the tangent space defines a hyperplane distribution
which happens to be a contact structure, and whose isotopy class is independent of
ε. In case the singularity is smoothable, Σε bounds a Stein manifold W .

Example 6.1. If V is the hypersurface f−1(0) where f is polynomial, then the
singularity is always smoothable. According to [Milnor], the manifold W has no
topology in dimension other than n and Hn(W ) = Zµ. The number µ is called the
multiplicity of the singularity.

The following is an immediate consequence of proposition 2.5 :

Corollary 6.2. Let n ≥ 3 and (Σ, ξ) be a Brieskorn sphere of a non trivial singu-
larity (i.e. with Milnor number ≥ 1). Then Σ does not embed in a subcritical Stein
manifold.

Proof. Indeed, such a Brieskorn sphere is simply connected and it bounds a Stein
manifold with bn(W ) = µ. This is impossible since we should have bn(W ) ≤ bn(Σ) =
0 according to theorem 2.5.
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Let us now study the manifolds of Mark McLean in [McLean]. These are Stein
symplectic manifolds (M2n

k , ωk) diffeomorphic to R2n (n ≥ 4), such that (∂M2n
k , ξ2n

k )
is a contact manifold diffeomorphic to S2n−1. However he shows that SHn(M

n
k )

contains Nk idempotent elements for some N ≥ 2, therefore the manifolds M2n
k are

pairwise non symplectomorphic.
We now prove

Proposition 6.3. The contact manifolds (∂M2n
k , ξ2n

k ) are never contactomorphic to
the standard sphere.

Proof. Let us denote for simplicity W = M2n
k and (Σ, ξ) = (∂M2n

k , ξ2n
k ). The exact

sequence in symplectic homology reads

−→ H2n(W,Σ) −→ SHn(W ) −→ SH+
n (W ) −→ 0

Assume (Σ, ξ) is the standard sphere. Then SH+
n (W ) only depends on (Σ, ξ) so is

the same as SH+
n (D2n) = 0. As a result we should have rank(SHn(W ) ≤ 1. But

for k ≥ 2, there are at least 3 idempotents, hence the rank is at least 2 and we get
a contradiction.

If we knew that there is a contact form on (∂M2n
k , ξ2n

k ) with no closed charac-
terisitic of index less than 3 − n, then we would get, by the above argument, that
(∂M2n

k , ξ2n
k ) has no embedding in a weakly subcritical manifold.

7 Summary

A conceptual framework for the study of symplectic fillings is provided by the fol-
lowing definition of [Etnyre-Honda].

Definition 7.1 ([Etnyre-Honda]). Let (Σ1, α1) and (Σ2, α2) be two closed contact
manifolds. We say that (Σ1, α1) is dominated by (Σ2, α2) if there exists an aspheri-
cal symplectic manifold (W,ω) such that (W, ω) has (Σ1, α1) as a concave boundary,
(Σ2, α2) as a convex boundary and no other boundary component. We shall write

(Σ1, α1) ≺ (Σ2, α2).

We shall say that (Σ1, α1) is equivalent to (Σ2, α2) if we both have (Σ1, α1) ≺
(Σ2, α2) and (Σ2, α2) ≺ (Σ1, α1), and this is denoted by

(Σ1, α1) ≃ (Σ2, α2).
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Clearly, we have
(Σ1, α1) ≃ (Σ1, α1).

We would like to know if there are nonequivalent pairs of contact manifolds. Clearly,
a contact manifold admits a filling if and only if it dominates the standard sphere.
Which manifolds are dominated by the standard sphere? Our results give example of
fillable manifolds which are not dominated by the standard sphere or, more generally,
by the boundary of a subcritical Stein manifold. On the other hand, in dimension 4,
any overtwisted contact manifold is dominated by any other contact manifold (see
[Etnyre-Honda]). In particular, all overtwisted contact structures are equivalent!

The point of view of Definition 7.1 is also related to the work of [Chantraine] on
the non-symmetry of Legendrian concordances.
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We here try to summarize our results, but warn the reader that in the table
below, the assumptions of the theorems are usually incomplete and the statements
often not precise. One should refer to the relevant section of the paper for full
details.

Weakly subcritical

case

Stein subcritical case Case of R2n

Hypothesis A (Σ, α) has a separat-
ing contact embedding
in a weakly subcriti-
cal (M, ω) with bounded
component Z.

(Σ, α) has a contact embedding
in a Stein subcritical (M, ω) with
bounded component Z.

(Σ, α) has a contact
embedding in R2n with
bounded component Z

Assume (Σ, α) = ∂(W, ω1) (Σ, α) = ∂(W, ω1) (Σ, α) = ∂(W, ω1)
Conclusion 1 The map Hj(Σ) −→ Hj(W ) is

onto (Thm. 2.5)
The homology of W is (al-
most) determined by the
homology of Σ (Thm. 3.3)

Hypothesis B W is Stein subcritical W is weakly subcritical W is Stein subcritical
Conclusion (Σ, ξ) determines the ho-

mology of Z (Prop. 5.7)
and the rank of HC∗(Σ)
is determined by H∗(W )
([M.-L.Yau])

If the Conley-Zehnder indices of
closed characteristics are > 3 −
n, (Σ, ξ) determines the homol-
ogy of Z (Prop. 5.7) and the
rank of HC∗(Σ) is determined by
H∗(W ) ([M.-L.Yau])

The rank of HC∗(Σ) is de-
termined by H∗(Σ) (Prop.
3.7)

Examples:

uniqueness of

fillings

Any filling of a simply connected
homology sphere embeddable in
a subcritical Stein is a homology
ball.

If L has a Lagrange em-
bedding in R2n, the fill-
ings of ST ∗L have the ho-
mology of L. (Prop. 3.12)

Examples:

obstructions

to contact

embeddings

- Sphere bundles of negative
complex bundles and some of
their surgeries having no contact
embedding in a Stein subcritical
(Prop. 4.2, 4.3 and 5.14)

Sphere bundles of negative
complex bundles and some
of their surgeries having
no contact embedding in
R2n (Prop. 3.8 and 3.11)

Obstructions to contact
embedding ST ∗L in a
weakly subcritical Stein.
(Prop. 5.12)

- Obstructions to contact embed-
ding ST ∗L and the manifolds ob-
tained from it by surgery in a
subcritical Stein. (Prop. 4.4)
- Brieskorn spheres do not embed
in subcritical Stein (so their con-
tact structure is exotic) (Cor 6.2)
- Contact spheres obtained by
[McLean] as boundaries of exotic
symplectic R2n are exotic (Cor.
6.3)

24



References

[Albers-McLean] P. Albers and M. McLean, Non-displaceable contact embeddings
and infinitely many leaf-wise intersections. arXiv:0904.3564

[Biran] P. Biran, Symplectic Topology and Algebraic Families. Proceedings of the
European Congress of Mathematics (Stockholm 2004), 827–836.

[Bourgeois] F. Bourgeois, Odd Dimensional Tori Are Contact Manifolds. IMRN
International Math. Research Notices vol. 30 (2002), 1571–1574.

[Bourgeois-Oancea-1] F. Bourgeois and A. Oancea, An exact sequence for contact-
and symplectic homology. Invent. Math. vol. 175 : 3 (2009), 611–680.

[Bourgeois-Oancea-2] F. Bourgeois and A. Oancea, The Gysin exact sequence for
S1-equivariant symplectic homology. In preparation.

[Chantraine] B. Chantraine, On Lagrangian concordance of Legendrian knots.
arXiv:math/0611848

[Cieliebak1] K. Cieliebak, Subcritical Stein manifolds are split.
arXiv:math.DG/0204351

[Cieliebak2] K. Cieliebak, Handle attaching in symplectic homology and the Chord
Conjecture. Journal of the European Math. Society. 4 (2002), pp. 115–142 .

[Cieliebak-Frauenfelder] K. Cieliebak and U. Frauenfelder, A Floer homology for
exact contact embeddings. Pacific J. Math. 239 : 2 (2009), 251–316.

[Cieliebak-Frauenfelder-Oancea] K. Cieliebak, U. Frauenfelder, and A. Oancea, Ra-
binowitz Floer homology and symplectic homology. arXiv:0903.0768

[Eliashberg] Y. Eliashberg, Topological characterization of Stein manifolds of di-
mension > 2. Intern. Journal of Math. 1 (1990), 29–46.

[Etnyre-Honda] J. Etnyre and K. Honda, On Symplectic Cobordisms. Math. Ann.
323 (2002), 31–39.

[Greenberg-Harper] M. Greenberg and J. Harper, Algebraic Topology: a first course.
Benjamin-Cummings Pub. Comp., London, 1981.

[Gromov] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds. Invent.
Math. 82 (1985), 307–347.

[Laudenbach] F. Laudenbach, Trois constructions en topologie symplectique. Ann.
Fac. Sci. Toulouse Math. 6 (1997), 697–709.

25
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