Segmentation of the mean of heteroscedastic data via cross-validation - Archive ouverte HAL
Article Dans Une Revue Statistics and Computing Année : 2010

Segmentation of the mean of heteroscedastic data via cross-validation

Résumé

This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.
Fichier principal
Vignette du fichier
chpt.pdf (426.62 Ko) Télécharger le fichier
chpt_supp.pdf (156.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00363627 , version 1 (23-02-2009)
hal-00363627 , version 2 (08-04-2009)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Sylvain Arlot, Alain Celisse. Segmentation of the mean of heteroscedastic data via cross-validation. Statistics and Computing, 2010, 21 (4), ⟨10.1007/s11222-010-9196-x⟩. ⟨hal-00363627v2⟩
493 Consultations
576 Téléchargements

Altmetric

Partager

More