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Introduction

The problem tackled in the paper is the detection of abrupt changes in the mean of a signal without assuming its variance is constant. Model selection and cross-validation techniques are used for building change-point detection procedures that significantly improve on existing procedures when the variance of the signal is not constant. Before detailing the approach and the main contributions of the paper, let us motivate the problem and briefly recall some related works in the change-point detection literature.

Change-point detection

The change-point detection problem, also called one-dimensional segmentation, deals with a stochastic process the distribution of which abruptly changes at some unknown instants. The purpose is to recover the location of these changes and their number. This problem is motivated by a wide range of applications, such as voice recognition, financial timeseries analysis [START_REF] Lavielle | Detection of Multiple Change-Points in Multivariate Time Series[END_REF] and Comparative Genomic Hybridization (CGH) data analysis [START_REF] Picard | Process segmentation/clustering Application to the analysis of array CGH data[END_REF]. A large literature exists about change-point detection in many frameworks [see 12, 17, for a complete bibliography].

The first papers on change-point detection were devoted to the search for the location of a unique change-point, also named breakpoint [see 34, for instance]. Looking for multiple change-points is a harder task and has been studied later. For instance, Yao [START_REF] Yao | Estimating the number of change-points via Schwarz criterion[END_REF] used the BIC criterion for detecting multiple change-points in a Gaussian signal, and Miao and Zhao [START_REF] Mia | On detection of change points when the number is unknown[END_REF] proposed an approach relying on rank statistics.

The setting of the paper is the following. The values Y 1 , . . . , Y n ∈ R of a noisy signal at points t 1 , . . . , t n are observed, with

Y i = s(t i ) + σ(t i )ǫ i , E [ǫ i ] = 0 and Var(ǫ i ) = 1 . (1) 
The function s is called the regression function and is assumed to be piecewise-constant, or at least well approximated by piecewise constant functions, that is, s is smooth everywhere except at a few breakpoints. The noise terms ǫ 1 , . . . , ǫ n are assumed to be independent and identically distributed. No assumption is made on σ : [0, 1] → [0, ∞). Note that all data (t i , Y i ) 1≤i≤n are observed before detecting the change-points, a setting which is called off-line.

As pointed out by Lavielle [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF], multiple change-point detection procedures generally tackle one among the following three problems:

1. Detecting changes in the mean s assuming the standard-deviation σ is constant, 2. Detecting changes in the standard-deviation σ assuming the mean s is constant, 3. Detecting changes in the whole distribution of Y , with no distinction between changes in the mean s, changes in the standard-deviation σ and changes in the distribution of ǫ.

In applications such as CGH data analysis, changes in the mean s have an important biological meaning, since they correspond to the limits of amplified or deleted areas of chromosomes. However in the CGH setting, the standard-deviation σ is not always constant, as assumed in problem 1. See Section 6 for more details on CGH data, for which heteroscedasticity-that is, variations of σcorrespond to experimental artefacts or biological nuisance that should be removed. Therefore, CGH data analysis requires to solve a fourth problem, which is the purpose of the present article: 4. Detecting changes in the mean s with no constraint on the standard-deviation σ :

[0, 1] → [0, ∞).

Compared to problem 1, the difference is the presence of an additional nuisance parameter σ making problem 4 harder. Up to the best of our knowledge, no change-point detection procedure has ever been proposed for solving problem 4 with no prior information on σ.

Model selection

Model selection is a successful approach for multiple change-point detection, as shown by Lavielle [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF] and by Lebarbier [START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF] for instance. Indeed, a set of change-points-called a segmentation-is naturally associated with the set of piecewise-constant functions that may only jump at these change-points. Given a set of functions (called a model), estimation can be performed by minimizing the least-squares criterion (or other criteria, see Section 3). Therefore, detecting changes in the mean of a signal, that is the choice of a segmentation, amounts to select such a model. More precisely, given a collection of models {S m } m∈Mn and the associated collection of least-squares estimators { s m } m∈Mn , the purpose of model selection is to provide a model index m such that s b m reaches the "best performance" among all estimators { s m } m∈Mn .

Model selection can target two different goals. On the one hand, a model selection procedure is efficient when its quadratic risk is smaller than the smallest quadratic risk of the estimators { s m } m∈Mn , up to a constant factor C n ≥ 1. Such a property is called an oracle inequality when it holds for every finite sample size. The procedure is said to be asymptotic efficient when the previous property holds with C n → 1 as n tends to infinity. Asymptotic efficiency is the goal of AIC [START_REF] Akaike | Statistical predictor identification[END_REF][START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] and Mallows' C p [START_REF] Mallows | Some comments on C p[END_REF], among many others.

On the other hand, assuming that s belongs to one of the models {S m } m∈Mn , a procedure is model consistent when it chooses the smallest model containing s asymptotically with probability one. Model consistency is the goal of BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF] for instance. See also the article by Yang [START_REF] Yang | Regression with multiple candidate model: selection or mixing?[END_REF] about the distinction between efficiency and model consistency.

In the present paper as in [START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF], the quality of a multiple change-point detection procedure is assessed by the quadratic risk; hence, a change in the mean hidden by the noise should not be detected. This choice is motivated by applications where the signal-to-noise ratio may be small, so that exactly recovering every true change-point is hopeless. Therefore, efficient model selection procedures will be used in order to detect the change-points.

Without prior information on the locations of the change-points, the natural collection of models for change-point detection depends on the sample size n. Indeed, there exist n-1 D-1 different partitions of the n design points into D intervals, each partition corresponding to a set of (D -1) change-points. Since D can take any value between 1 and n, 2 n-1 models can be considered. Therefore, model selection procedures used for multiple change-point detection have to satisfy non-asymptotic oracle inequalities: the collection of models cannot be assumed to be fixed with the sample size n tending to infinity. (See Section 2.3 for a precise definition of the collection {S m } m∈Mn used for change-point detection.) Most model selection results consider "polynomial" collections of models {S m } m∈Mn , that is Card(M n ) ≤ Cn α for some constants C, α ≥ 0. For polynomial collections, procedures like AIC or Mallows' C p are proved to satisfy oracle inequalities in various frameworks [START_REF] Baraud | Model selection for regression on a fixed design[END_REF][START_REF] Birgé | Gaussian model selection[END_REF][START_REF] Baraud | Model selection for regression on a random design[END_REF][START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF], assuming that data are homoscedastic, that is, σ(t i ) does not depend on t i .

However as shown in [START_REF] Arlot | Suboptimality of penalties proportional to the dimension for model selection in heteroscedastic regression[END_REF], Mallows' C p is suboptimal when data are heteroscedastic, that is the variance is non-constant. Therefore, other procedures must be used. For instance, resampling penalization is optimal with heteroscedastic data [START_REF] Arlot | Model selection by resampling penalization[END_REF]. Another approach has been explored by Gendre [START_REF] Gendre | Simultaneous estimation of the mean and the variance in heteroscedastic gaussian regression[END_REF], which consists in simultaneously estimating the mean and the variance, using a particular polynomial collection of models.

However in change-point detection, the collection of models is "exponential", that is Card(M n ) is of order exp(αn) for some α > 0. For such large collections, especially larger than polynomial, the above penalization procedures fail. Indeed, Birgé and Massart [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] proved that the minimal amount of penalization required for a procedure to satisfy an oracle inequality is of the form

pen(m) = c 1 σ 2 D m n + c 2 σ 2 D m n log n D m , (2) 
where c 1 and c 2 are positive constants and σ 2 is the variance of the noise, assumed to be constant. Lebarbier [START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF] proposed c 1 = 5 and c 2 = 2 for optimizing the penalty [START_REF] Akaike | Statistical predictor identification[END_REF] in the context of change-point detection. Penalties similar to (2) have been introduced independently by other authors [START_REF] Rissanen | Universal Prior for Integers and Estimation by Minimum Description Length[END_REF][START_REF] Abramovich | Adapting to Unknown Sparsity by controlling the False Discovery Rate[END_REF][START_REF] Barron | Risk bounds for model selection via penalization[END_REF][START_REF] Tibshirani | The Covariance Inflation Criterion for Adaptive Model Selection[END_REF] and are shown to provide satisfactory results.

Nevertheless, all these results assume that data are homoscedastic. Actually, the model selection problem with heteroscedastic data and an exponential collection of models has never been considered in the literature, up to the best of our knowledge.

Furthermore, penalties of the form (2) are very close to be proportional to D m , at least for small values of D m . Therefore, the results of [START_REF] Arlot | Suboptimality of penalties proportional to the dimension for model selection in heteroscedastic regression[END_REF] lead to conjecture that the penalty ( 2) is suboptimal for model selection over an exponential collection of models, when data are heteroscedastic. The suggest of this paper is to use cross-validation methods instead.

Cross-validation

Cross-validation (CV) methods allow to estimate (almost) unbiasedly the quadratic risk of any estimator, such as s m (see Section 3.2 about the heuristics underlying CV). Classical examples of CV methods are the leave-one-out [Loo, [START_REF] Lachenbruch | Estimation of Error Rates in Discriminant Analysis[END_REF][START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF] and V -fold cross-validation [VFCV, [START_REF] Geisser | A predictive approach to the random effect model[END_REF][START_REF] Geisser | The predictive sample reuse method with applications[END_REF]. More references on cross-validation can be found in [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF][START_REF] Celisse | Density estimation via cross-validation: Model selection point of view[END_REF] for instance.

CV can be used for model selection, by choosing the model S m for which the CV estimate of the risk of s m is minimal. The properties of CV for model selection with a polynomial collection of models and homoscedastic data have been widely studied. In short, CV is known to adapt to a wide range of statistical settings, from density estimation [START_REF] Stone | An asymptotically optimal window selection rule for kernel density estimates[END_REF][START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF] to regression [START_REF] Stone | An Asymptotic Equivalence of Choice of Model by Cross-validation and Akaike's Criterion[END_REF][START_REF] Yang | Consistency of cross-validation for comparing regression procedures[END_REF] and classification [START_REF] Kearns | An Experimental and Theoretical Comparison of Model Selection Methods[END_REF][START_REF] Yang | Comparing Learning Methods for Classification[END_REF]. In particular, Loo is asymptotically equivalent to AIC or Mallows' C p in several frameworks where they are asymptotically optimal, and other CV methods have similar performances, provided the size of the training sample is close enough to the sample size [see for instance 31, 40, 22]. In addition, CV methods are robust to heteroscedasticity of data [START_REF] Arlot | Model selection by resampling penalization[END_REF][START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], as well as several other resampling methods [START_REF] Arlot | Suboptimality of penalties proportional to the dimension for model selection in heteroscedastic regression[END_REF]. Therefore, CV is a natural alternative to penalization procedures assuming homoscedasticity.

Nevertheless, nearly nothing is known about CV for model selection with an exponential collection of models, such as in the change-point detection setting. The literature on model selection and CV [START_REF] Birgé | From model selection to adaptive estimation[END_REF][START_REF] Shao | An asymptotic theory for linear model selection[END_REF][START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF][START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF] only suggests that minimizing directly the Loo estimate of the risk over 2 n-1 models would lead to overfitting.

In this paper, a remark made by Birgé and Massart [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] about penalization procedure is used for solving this issue in the context of change-point detection. Model selection is perfomed in two steps: First, choose a segmentation given the number of change-points; second, choose the number of change-points. CV methods can be used at each step, leading to Procedure 6 (Section 5). The paper shows that such an approach is indeed successful for detecting changes in the mean of a heteroscedastic signal.

Contributions of the paper

The main purpose of the present work is to design a CV-based model selection procedure (Procedure 6) that can be used for detecting multiple changes in the mean of a heteroscedastic signal. Such a procedure experimentally adapts to heteroscedasticity when the collection of models is exponential, which has never been obtained before. In particular, Procedure 6 is a reliable alternative to Birgé and Massart's penalization procedure [START_REF] Birgé | Gaussian model selection[END_REF] when data can be heteroscedastic.

Another major difficulty tackled in this paper is the computational cost of resampling methods when selecting among 2 n models. Even when the number (D -1) of changepoints is given, exploring the n-1 D-1 partitions of [0, 1] into D intervals and performing a resampling algorithm for each partition is not feasible when n is large and D > 0. An implementation of Procedure 6 with a tractable computational complexity is proposed in the paper, using closed-form formulas for Leave-p-out (Lpo) estimators of the risk, dynamic programming, and V -fold cross-validation.

The paper also points out that least-squares estimators are not reliable for changepoint detection when the number of breakpoints is given, although they are widely used to this purpose in the literature. Indeed, experimental and theoretical results detailed in Section 3.1 show that least-squares estimators suffer from local overfitting when the variance of the signal is varying over the sequence of observations. On the contrary, minimizers of the Lpo estimator of the risk do not suffer from this drawback, which emphasizes the interest of using cross-validation methods in the context of change-point detection.

The paper is organized as follows. The statistical framework is described in Section 2. First, the problem of selecting the "best" segmentation given the number of change-points is tackled in Section 3. Theoretical results and an extensive simulation study show that the usual minimization of the least-squares criterion can be misleading when data are heteroscedastic, whereas cross-validation-based procedures provide satisfactory results in the same framework.

Then, the problem of choosing the number of breakpoints from data is addressed in Section 4. As supported by an extensive simulation study, V -fold cross-validation (VFCV) leads to a computationally feasible and statistically efficient model selection procedure when data are heteroscedastic, contrary to procedures implicitly assuming homoscedasticity.

The resampling methods of Sections 3 and 4 are combined in Section 5, leading to a family of resampling-based procedures for detecting changes in the mean of a heteroscedastic signal. A wide simulation study shows they perform well with both homoscedastic and heteroscedastic data, significantly improving the performance of procedures which implicitly assume homoscedasticity.

Finally, Section 6 illustrates on a real data set the promising behaviour of the proposed procedures for analyzing CGH microarray data, compared to procedures previously used in this setting.

Statistical framework

In this section, the statistical framework of change-point detection via model selection is introduced, as well as some notation.

Regression on a fixed design

Let S * denote the set of measurable functions [0, 1] → R. Let t 1 < • • • < t n ∈ [0, 1] be some deterministic design points, s ∈ S * and σ : [0, 1] → [0, ∞) be some functions and define ∀i ∈ {1, . . . , n} ,

Y i = s(t i ) + σ(t i )ǫ i , (3) 
where ǫ 1 , . . . , ǫ n are independent and identically distributed random variables with E [ǫ i ] = 0 and E ǫ 2 i = 1. As explained in Section 1.1, the goal is to find from (t i , Y i ) 1≤i≤n a piecewise-constant function f ∈ S * close to s in terms of the quadratic loss

s -f 2 n := 1 n n i=1 (f (t i ) -s(t i )) 2 .

Least-squares estimator

A classical estimator of s is the least-squares estimator, defined as follows. For every f ∈ S * , the least-squares criterion at f is defined by

P n γ(f ) := 1 n n i=1 (Y i -f (t i )) 2 .
The notation 

P n γ(f ) means that the function (t, Y ) → γ(f ; (t, Y )) := (Y -f (t))
) := arg min f ∈S {P n γ(f )} .
The notation ERM(S; P n ) stresses that the least-squares estimator is the output of the empirical risk minimization algorithm over S, which takes a model S and a data sample as inputs. When a collection of models {S m } m∈Mn is given, s m (P n ) or s m are shortcuts for ERM(S m ; P n ).

Collection of models

Since the goal is to detect jumps of s, every model considered in this article is the set of piecewise constant functions with respect to some partition of [0, 1].

For every K ∈ {1, . . . , n -1} and every sequence of integers

α 0 = 1 < α 1 < α 2 < • • • < α K ≤ n (the breakpoints), (I λ ) λ∈Λ (α 1 ,...α K ) denotes the partition [t α 0 ; t α 1 ), . . . , [t α K-1 ; t α K ), [t α K ; 1]
of [0, 1] into (K + 1) intervals. Then, the model S (α 1 ,...α K ) is defined as the set of piecewise constant functions that can only jump at t = t α j for some j ∈ {1, . . . , K}.

For every K ∈ {1, . . . , n -1}, let M n (K + 1) denote the set of such sequences (α 1 , . . . α K ) of length K, so that {S m } m∈ f Mn(K+1) is the collection of models of piecewise constant functions with K breakpoints. When K = 0, M n (1) := {∅} and the model S ∅ is the linear space of constant functions on [0, 1]. Remark that for every K and m ∈ M n (K + 1), S m is a vector space of dimension D m = K + 1. In the rest of the paper, the relationship between the number of breakpoints K and the dimension D = K +1 of the model S (α 1 ,...α K ) is used repeatedly; in particular, estimating of the number of breakpoints (Section 4) is equivalent to choosing the dimension of a model. In addition, since a model S m is uniquely defined by m, the index m is also called a model.

The classical collection of models for change-point detection can now be defined as

{S m } m∈ f
Mn , where M n = D∈Dn M n (D) and D n = {1, . . . , n}. This collection has a cardinality 2 n-1 .

In this paper, a slightly smaller collection of models is considered, that is, all m ∈ M n such that each element of the partition (I λ ) λ∈Λm contains at least two design points (t j ) 1≤j≤n . Indeed, when nothing is known about the noise-level σ(•), one cannot hope to distinguish two consecutive change-points from a local variation of σ. For every D ∈ {1, . . . , n}, let M n (D) denote the set of m ∈ M n (D) satisfying this property. Then, the collection of models used in this paper is defined as {S m } m∈Mn where M n = D∈Dn M n (D) and D n ⊂ {1, . . . , n/2}. Finally, in all the experiments of the paper, D n = {1, . . . , 4n/10} for reasons detailed in Section 4.2, in particular Remark 3.

Model selection

Among {S m } m∈Mn , the best model is defined as the minimizer of the quadratic loss ss m 2 n over m ∈ M n and called the oracle m ⋆ . Since the oracle depends on s, one can only expect to select m(P n ) from the data such that the quadratic loss of s b m is close to that of the oracle with high probability, that is,

s -s b m 2 n ≤ C inf m∈Mn s -s m 2 n + R n (4) 
where C is close to 1 and R n is a small remainder term (typically of order n -1 ). Inequality (4) is called an oracle inequality.

Localization of the breakpoints

A usual strategy for multiple change-point detection [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF][START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF] is to dissociate the search for the best segmentation given the number of breakpoints from the choice of the number of breakpoints.

In this section, the number K = D -1 of breakpoints is fixed and the goal is to localize them. In other words, the goal is to select a model among {S m } m∈Mn(D) .

Empirical risk minimization's failure with heteroscedastic data

As explained by many authors such as Lavielle [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF], minimizing the least-squares criterion over { s m } m∈M(D) is a classical way of estimating the best segmentation with (D -1) change-points. This leads to the following procedure: m ERM (D) (dashed blue line) and s b m Loo (D) (plain magenta line, see Section 3.2.2), D being the "optimal" dimension (see Figure 3). Data are generated as described in Section 3.3.1 with n = 100 data points. Left: homoscedastic data (s 2 , σ c ), D = 4. Right: heteroscedastic data (s 3 , σ pc,3 ), D = 6.

is the set of piecewise constant functions with exactly (D-1) change-points, chosen among t 2 , . . . , t n (see Section 2.3).

Remark 1. Dynamic programming [START_REF] Bellman | Applied Dynamic Programming[END_REF] leads to an efficient implementation of Procedure 1 with computational complexity O n 2 .

Among models corresponding to segmentations with (D -1) change-points, the oracle model can be defined as

m ⋆ (D) := arg min m∈Mn(D) s -s m 2 n
. Figure 1 illustrates how far m ERM (D) typically is from m ⋆ (D) according to variations of the standard-deviation σ. On the one hand, when data are homoscedastic, empirical risk minimization yields a segmentation close to the oracle (Figure 1, left). On the other hand, when data are heteroscedastic, empirical risk minimization introduces artificial breakpoints in areas where the noise-level is above average, and misses breakpoints in areas where the noise-level is below average (Figure 1, right). In other words, when data are heteroscedastic, empirical risk minimization over S D locally overfits in high-noise areas, and locally underfits in low-noise areas.

The failure of empirical risk minimization with heteroscedastic data observed on 

E [P n γ ( s m )] = s -s m 2 n -V (m) + 1 n n i=1 σ(t i ) 2 (5) E s -s m 2 n = s -s m 2 n + V (m) (6) 
where

V (m) := λ∈Λm (σ r λ ) 2 n and ∀λ ∈ Λ m , (σ r λ ) 2 := n i=1 σ(t i ) 2 1 t i ∈I λ Card ({k | t k ∈ I λ }) . ( 7 
)
Lemma 1 is proved in [START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF]. As it is well-known in the model selection literature, the expectation of the quadratic loss ( 6) is the sum of two terms: ss m 2 n is the bias of model S m , and V (m) is a variance term, measuring the difficulty of estimating the D m parameters of model S m . Up to the term n -1 n i=1 σ(t i ) 2 which does not depend on m, the empirical risk underestimates the quadratic risk (that is, the expectation of the quadratic loss), as shown by [START_REF] Arlot | Model selection by resampling penalization[END_REF], because of the sign in front of V (m).

Nevertheless, when data are homoscedastic, that is when ∀i, σ

(t i ) = σ, V (m) = D m σ 2 n -1
is the same for all m ∈ M n (D). Therefore, ( 5) and [START_REF] Arlot | Suboptimality of penalties proportional to the dimension for model selection in heteroscedastic regression[END_REF] show that for every D ≥ 1, when data are homoscedastic arg min

m∈Mn(D) {E [P n γ ( s m )]} = arg min m∈Mn(D) E s -s m 2 n .
Hence, m ERM (D) and m ⋆ (D) tend to be close to one another, as on the left of Figure 1.

On the contrary, when data are heteroscedastic, the variance term V (m) can be quite different among models m ∈ M n (D), even though they have the same dimension D. Indeed, V (m) increases when a breakpoint is moved from an area where σ is small to an area where σ is large. Therefore, the empirical risk minimization algorithm rather puts breakpoints in noisy areas in order to minimize -V (m) in [START_REF] Arlot | Model selection by resampling penalization[END_REF]. This is illustrated in the right panel of Figure 1, where the oracle segmentation m ⋆ (D) has more breakpoints in areas where σ is small.

Cross-validation

Cross-validation (CV) methods are natural candidates for fixing the failure of empirical risk minimization when data are heteroscedastic, since CV methods are naturally adaptive to heteroscedasticity (see Section 1.3). The purpose of this section is to properly define how CV can be used for selecting m ∈ M n (D) (Procedure 2), and to recall theoretical results showing why this procedure adapts to heteroscedasticity (Proposition 1).

Heuristics

The cross-validation heuristics [START_REF] Allen | The relationship between variable selection and data augmentation and a method for prediction[END_REF][START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF] relies on a data splitting idea: For each candidate algorithm-say ERM(S m ; •) for some m ∈ M n (D)-, part of the data-called training set-is used for training the algorithm. The remaining part-called validation set-is used for estimating the risk of the algorithm. This simple strategy is called validation or hold-out. One can also split data several times and average the estimated values of the risk over the splits. Such a strategy is called cross-validation (CV). CV with general repeated splits of data has been introduced by Geisser [START_REF] Geisser | A predictive approach to the random effect model[END_REF][START_REF] Geisser | The predictive sample reuse method with applications[END_REF].

In the fixed-design setting, (t i , Y i ) 1≤i≤n are not identically distributed so that CV estimates a quantity slightly different from the usual prediction error. Let T be uniformly distributed over {t 1 , . . . , t n } and Y = s(T ) + σ(T )ǫ, where ǫ is independent from ǫ 1 , . . . , ǫ n with the same distribution. Then, the CV estimator of the risk of s(P n ) estimates

E (T,Y ) ( s(T ) -Y ) 2 = 1 n n i=1 E ǫ (s(t i ) + σ(t i )ǫ i -s(t i )) 2 = s -s 2 n + 1 n n i=1 σ(t i ) 2 .
Hence, minimizing the CV estimator of

E (T,Y ) ( s m (T ) -Y ) 2 over m amounts to minimize s -s m 2 
n , up to estimation errors. Even though the use of CV in a fixed-design setting is not usual, theoretical results detailed in Section 3.2.4 below show that CV actually leads to a good estimator of the quadratic risk ss m 2 n . This fact is confirmed by all the experimental results of the paper.

Definition

Let us now formally define how CV is used for selecting some m ∈ M n (D) from data. A (statistical) algorithm A is defined as any measurable function P n → A(P n ) ∈ S * . For any t i ∈ [0, 1], A(t i ; P n ) denotes the value of A(P n ) at point t i .

For any I (t) ⊂ {1, . . . , n}, define I (v) := {1, . . . , n} \I (t) ,

P (t) n := 1 Card(I (t) ) i∈I (t) δ (t i ,Y i ) and P (v) n := 1 Card(I (v) ) i∈I (v) δ (t i ,Y i ) .
Then, the hold-out estimator of the risk of any algorithm A is defined as

R ho (A, P n , I (t) ) := P (v) n γ A P (t) n = 1 Card(I (v) ) i∈I (v) A(t i ; P (t) n ) -Y i 2 .
The cross-validation estimators of the risk of A are then defined as the average of R ho (A, P n , I (t) j ) over j = 1, . . . , B where

I (t) 1 , . . . , I (t) 
B are chosen in a predetermined way [START_REF] Geisser | The predictive sample reuse method with applications[END_REF]. Leave-one-out, leave-p-out and V -fold cross-validation are among the most classical examples of CV procedures. They differ one another by the choice of

I (t) 1 , . . . , I (t) B .
• Leave-one-out (Loo), often called ordinary CV [START_REF] Allen | The relationship between variable selection and data augmentation and a method for prediction[END_REF][START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF], consists in training with the whole sample except one point, used for testing, and repeating this for each data point:

I (t) j = {1, . . . , n} \ {j} for j = 1, . . . , n. The Loo estimator of the risk of A is defined by R Loo (A, P n ) := 1 n n j=1 Y j -A t j ; P (-j) n 2
, where P

(-j) n = (n -1) -1 i, i =j δ (t i ,Y i ) .
• 

I (t) ∈Ep   1 p j∈I (v) Y j -A t j ; P (t) n 2   . (8) 
• V -fold cross-validation (VFCV) is a computationally efficient alternative to Lpo and Loo. The idea is to first partition the data into V blocks, to use all the data but one block as a training sample, and to repeat the process V times. In other words, VFCV is a blockwise Loo, so that its computational complexity is V times that of A. Formally, let B 1 , . . . , B V be a partition of {1, . . . , n} and P

(B k ) n := (n - Card(B k )) -1 i / ∈B k δ (t i ,Y i ) for every k ∈ {1, . . . , V }. The VFCV estimator of the risk of A is defined by R VF V (A, P n ) := 1 V V k=1   1 Card(B k ) j∈B k Y j -A t j ; P (B k ) n 2   . (9) 
The interested reader will find theoretical and experimental results on VFCV and the best way to use it in [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF][START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF] and references therein, in particular [START_REF] Burman | Comparative study of Ordinary Cross-Validation, v-Fold Cross-Validation and the repeated Learning-Testing Methods[END_REF].

Given the Loo estimator of the risk of each algorithm A among {ERM(S m ; •)} m∈Mn(D) , the segmentation with (D -1) breakpoints chosen by Loo is defined as follows. As illustrated by Figure 1, when data are heteroscedastic, m Loo (D) is often closer to the oracle segmentation m ⋆ (D) than m ERM (D). This improvement will be explained by theoretical results in Section 3.2.4 below.

Computational tractability

The computational complexity of ERM(S m ; P n ) is O(n) since for every λ ∈ Λ m , the value of s m (P n ) on I λ is equal to the mean of {Y i } t i ∈I λ . Therefore, a naive implementation of Lpo p has a computational complexity O n n p , which can be intractable for large n in the context of model selection, even when p = 1. In such cases, only VFCV with a small V would work straightforwardly, since its computational complexity is O(nV ).

Nevertheless, closed-form formulas for the Lpo estimator of the risk have been derived in the density estimation [START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF][START_REF] Celisse | Density estimation via cross-validation: Model selection point of view[END_REF] and regression [START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF] frameworks. Some of these closedform formulas apply to regressograms s m with m ∈ M n . The following theorem gives a closed-form expression for R Lpo p (m) := R Lpo p (ERM(S m ; •), P n ) which can be computed with O(n) elementary operations.

Theorem 1 (Corollary 3.3.2 in [START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF]). Let m ∈ M n , S m and s m = ERM(S m ; •) be defined as in Section 2. For every

(t 1 , Y 1 ), . . . , (t n , Y n ) ∈ R 2 and λ ∈ Λ m , define S λ,1 := n j=1 Y j 1 {t j ∈I λ } and S λ,2 := n j=1 Y 2 j 1 {t j ∈I λ } .
Then, for every p ∈ {1, . . . , n -1}, the Lpo p estimator of the risk of s m defined by ( 8) is given by

R Lpo p (m) = λ∈Λm 1 pN λ (A λ -B λ ) S λ,2 + B λ S 2 λ,1 1 {n λ ≥2} + {+∞} 1 {n λ =1} ,
where for every λ ∈ Λ m ,

n λ := Card ({i | t i ∈ I λ }) N λ := 1 -1 {p≥n λ } n -n λ p -n λ / n p A λ := V λ (0) 1 - 1 n λ - V λ (1) n λ + V λ (-1) B λ := V λ (1) 2 -1 n λ ≥3 n λ (n λ -1) + V λ (0) n λ -1 1 + 1 n λ 1 n λ ≥3 -2 - V λ (-1)1 n λ ≥3 n λ -1 and ∀k ∈ {-1, 0, 1} , V λ (k) := min{n λ ,(n-p)} r=max{1,(p-n λ )} r k n-p r p n λ -r n n λ .
Remark 2. V λ (k) can also be written as E Z k 1 Z>0 where Z has hypergeometric distribution with parameters (n, np, n λ ).

An important practical consequence of Theorem 1 is that for every D and p, m Lpo p (D) can be computed with the same computational complexity as m ERM (D), that is O n 2 . Indeed, Theorem 1 shows that R Lpo p (m) is a sum over λ ∈ Λ m of terms depending only on {Y i } t i ∈I λ , so that dynamic programming [START_REF] Bellman | Applied Dynamic Programming[END_REF] can be used for computing the minimizer m Lpo p (D) of R Lpo p (m) over m ∈ M n . Therefore, Lpo and Loo are computationally tractable for change-point detection when the number of breakpoints is given.

Dynamic programming also applies to m VF V with a computational complexity O V n 2 , since each term appearing in R VF V (m) is the average over V quantities that must be computed, except when V = n since VFCV then becomes Loo. Since VFCV is mostly an approximation to Loo or Lpo but has a larger computational complexity, m Lpo p will be preferred to m VF V (D) in the following.

Theoretical guarantees

In order to understand why CV indeed works for change-point detection with a given number of breakpoints, let us recall a straightforward consequence of Theorem 1 which is proved in details in [21, Lemma 7.2.1 and Proposition 7.2.3]. where the approximation holds as soon as min λ∈Λm n λ is large enough (in particular larger than p).

Proposition 1. Using the notation of Lemma 1, for any

m ∈ M n , E R Lpo p (m) ≈ s -s m 2 n + 1 n -p λ∈Λm (σ r λ ) 2 + 1 n n i=1 σ(t i ) 2 , (10) 
The comparison of ( 6) and [START_REF] Baraud | Model selection for regression on a random design[END_REF] shows that Lpo p yields an almost unbiased estimator of ss m 2 n : The only difference is that the factor 1/n in front of the variance term V (m) has been changed into 1/(np). Therefore, minimizing the Lpo p estimator of the risk instead of the empirical risk allows to automatically take into account heteroscedasticity of data.

Simulation study

The goal of this section is to experimentally assess, for several values of p, the performance of Lpo p for detecting a given number of changes in the mean of a heteroscedastic signal. This performance is also compared with that of empirical risk minimization.

Setting

The setting described in this section is used in all the experiments of the paper.

Data are generated according to (3) with n = 100. For every i, t i = i/n and ǫ i has a standard Gaussian distribution. The regression function s is chosen among three piecewise constant functions s 1 , s 2 , s 3 plotted on Figure 2. The model collection described in Section 2.3 is used with D n = {1, . . . , 4n/10}. The noise-level function σ(•) is chosen among the following functions:

1. Homoscedastic noise: σ c = 0.25 1 [0,1] , 2. Heteroscedastic piecewise constant noise: σ pc,1 = 0.2 1 [0,1/3] + 0.051 [1/3,1] , σ pc,2 = 2σ pc,1 or σ pc,3 = 2.5σ pc,1 .
3. Heteroscedastic sinusoidal noise: σ s = 0.5 sin (tπ/4).

All combinations between the regression functions (s i ) i=1,2,3 and the five noise-levels σ • have been considered, each time with N = 10 000 independent samples. Results below only report a small part of the entire simulation study but intend to be representative of the main observed behaviour. A more complete report of the results, including other regression functions s and noise-level functions σ, is given in the second authors' thesis [21, Chapter 7]; see also Section 3 of the supplementary material.

Results: Comparison of segmentations for each dimension

The segmentations of each dimension D ∈ D n obtained by empirical risk minimization ('ERM', Procedure 1) and Lpo p (Procedure 2) for several values of p are compared on On the one hand, when data are homoscedastic (Figure 3, left), all procedures yield similar performances for all dimensions up to twice the best dimension; Lpo p performs significantly better for larger dimensions. Therefore, unless the dimension is strongly overestimated (whatever the way D is chosen), all procedures are equivalent with homoscedastic data.

On the other hand, when data are heteroscedastic (Figure 3, right), ERM yields significantly worse performance than Lpo for dimensions larger than half the true dimension. As explained in Sections 3.1 and 3.2.4, m ERM (D) often puts breakpoints inside pure noise for dimensions D smaller than the true dimension, whereas Lpo does not have this drawback. Therefore, whatever the choice of the dimension (except D ≤ 4, that is for detecting the obvious jumps), Lpo should be prefered to empirical risk minimization as soon as data are heteroscedastic. (plotted on Figure 3) for procedures P among ERM, Loo, and Lpo p with p = 20 and p = 50. Therefore, the performance of a procedure P is defined by

C or ( P, Id ) := E inf 1≤D≤n s -s b m P (D) 2 n E inf m∈Mn s -s m 2 n
, which measures what is lost compared to the oracle when selecting one segmentation m P (D) per dimension. Even if the choice of D is a real practical problem-which will be tackled in the next sections-, C or ( P, Id ) helps to understand which is the best procedure for selecting a segmentation of a given dimension. The notation C or ( P, Id ) has been chosen for consistency with notation used in the next sections (see Section 5.1). Table 1 confirms the results of Section 3.3.2. On the one hand, when data are homoscedastic, ERM performs slightly better than Loo or Lpo p . On the other hand, when data are heteroscedastic, Lpo p often performs better than ERM (whatever p), and the improvement can be large (more than 20% in the setting (s 2 , σ pc,3 )). Overall, when homoscedasticity of the signal is questionable, Lpo p appears much more reliable than ERM for localizing a given number of change-points of the mean.

The question of choosing p for optimizing the performance of Lpo p remains a widely open problem. The simulation experiment summarized with Table 1 only shows that Lpo p improves ERM whatever p, the optimal value of p depending on s and σ.

Estimation of the number of breakpoints

In this section, the number of breakpoints is no longer fixed or known a priori. The goal is precisely the estimation of this number, as often needed with real data.

Two main procedures are considered. First, a penalization procedure introduced by Birgé and Massart [START_REF] Birgé | Gaussian model selection[END_REF] is analyzed in Section 4.1; this procedure is successful for change-point detection when data are homoscedastic [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF][START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF]. On the basis of this analysis, V -fold cross-validation (VFCV) is then proposed as an alternative to Birgé and Massart's penalization procedure (BM) when data can be heteroscedastic.

In order to enable the comparison between BM and VFCV when focusing on the question of choosing the number of breakpoints, VFCV is used for choosing among the same segmentations as BM, that is { m ERM (D)} D∈Dn . The combination of VFCV for choosing D with the new procedures proposed in Section 3 will be studied in Section 5.

Birgé and Massart's penalization

First, let us define precisely the penalization procedure proposed by Birgé and Massart [START_REF] Birgé | Gaussian model selection[END_REF] successfully used for change-point detection in [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF][START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF].

Procedure 3 (Birgé and Massart [15]).

1. ∀m ∈ M n , s m := ERM (S m ; P n ) .

2. m BM := arg min m∈Mn, Dm∈Dn {P n γ( s m ) + pen BM (m)} , where for every m ∈ M n , the penalty pen BM (m) only depends on S m through its dimension:

pen BM (m) = pen BM (D m ) := CD m n 5 + 2 log n D m , ( 11 
)
where C is estimated from data using Birgé and Massart's slope heuristics [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF][START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF], as proposed by Lebarbier [START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF] and by Lavielle [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF]. See Section 1 of the supplementary material for a detailed discussion about C. from N = 10 000 independent samples; error bars are all negligible in front of visible differences (the larger ones are smaller than 5.10 -4 on the left, and smaller than 2.10 -3 on the right). Similar behaviours are observed for every single sample, with slightly larger fluctuations for crit VF V (D) than for crit BM (D). The curves 'BM' and 'VF 5 ' have been shifted in order to make comparison with 'Loss' easier, without changing the location of the minimum.

C p penalty. When Card(M n ) is at most polynomial in n, Mallows' C p penalty leads to an efficient model selection procedure, as proved in several regression frameworks [START_REF] Shibata | An optimal selection of regression variables[END_REF][START_REF] Li | Asymptotic Optimality for C p , C L , Cross-Validation and Generalized Cross-Validation: Discrete Index Set[END_REF][START_REF] Baraud | Model selection for regression on a random design[END_REF]. Hence, Mallows' C p penalty is an adequate measure of the "capacity" of any vector space S m of dimension D m , at least when data are homoscedastic.

On the contrary, in the change-point detection framework, Card(M n ) grows exponentially with n. The formulation of Procedure 4 points out that pen BM (D) has been built so that crit BM (D) estimates unbiasedly ss b m ERM (D) 2 n for every D, where s b m ERM (D) is the empirical risk minimizer over S D . Hence, pen BM (D) measures the "capacity" of S D , which is much bigger than a vector space of dimension D. Therefore, pen BM should be larger than Mallows' C p , as confirmed by the results of Birgé and Massart [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] on minimal penalties for exponential collections of models.

Simulation experiments support the fact that crit BM (D) is an unbiased estimator of ss b m(D) 2 n for every D (up to an additive constant) when data are homoscedastic (Figure 4 left). However, when data are heteroscedastic, theoretical results proved by Birgé and Massart [START_REF] Birgé | Gaussian model selection[END_REF][START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] no longer apply, and simulations show that crit BM (D) does not always estimate ss b m ERM (D) 2 n well (Figure 4 right). This result is consistent with Lemma 1, as well as the suboptimality of penalties proportional to D m for model selection among a polynomial collection of models when data are heteroscedastic [START_REF] Arlot | Suboptimality of penalties proportional to the dimension for model selection in heteroscedastic regression[END_REF].

Therefore, pen BM (D) is not an adequate capacity measure of S D in general when data are heteroscedastic, and another capacity measure is required.

Cross-validation

As shown in Section 3.2.2, CV can be used for estimating the quadratic loss s -A(P n ) 2 n for any algorithm A. In particular, CV was successfully used in Section 3 for estimating the quadratic risk of ERM(S m ; •) for all segmentations m ∈ M n (D) with a given number (D -1) of breakpoints (Procedure 2), even when data are heteroscedastic.

Therefore, CV methods are natural candidates for fixing BM's failure. The proposed procedure-with VFCV-is the following. 

(t i , Y i ) i / ∈B k , the model S D is the union of the S m such that ∀λ ∈ Λ m , I λ contains at least two elements of {t i s.t. i / ∈ B k }.
Such an m exists as soon as D ≤ (nmax k {Card(B k )})/2 and two consecutive design points t i , t i+1 always belong to different blocks B k , which is always assumed in this paper. Note that the dynamic programming algorithms [START_REF] Bellman | Applied Dynamic Programming[END_REF] quoted in Section 3.2.3 can straightforwardly take into account such constraints when minimizing the empirical risk over S D .

The dependence of S D on the design explains why crit VF V (D) decreases for D close to n(V -1)/(2V ), as observed on Figure 4. Indeed, when D is close to n t /2 (where n t is the size of the design), only a few {S m } m∈Mn t (D) remain in S D ; for instance, when D = n t /2, S D is equal to one of the {S m } m∈Mn t (D) . Therefore, the "capacity" of S D decreases in the neighborhood of D = n t /2. Similar procedures can be defined with Loo and Lpo p instead of VFCV. The interest of VFCV is its reasonably small computational cost-taking V ≤ 10 for instance-, since no closed-form formula exists for CV estimators of the risk of ERM S D ; P n .

Simulation results

A simulation experiment was performed in the setting presented in Section 3.3.1, for comparing BM and VF V with V = 5 blocks. A representative picture of the results is given by Figure 4 and by Table 2 Subsequently, VFCV yields a much smaller performance index ), P = VF V with V = 5 or P = BM. Several regression functions s and noise-level functions σ have been considered, each time with N = 10 000 independent samples. Next to each value is indicated the corresponding empirical standard deviation divided by √ N , measuring the uncertainty of the estimated performance.

C or ( ERM, P ) := E s -s b m ERM ( b D P ) 2 n E inf m∈Mn s -s m (P n ) 2 n s • σ • Oracle VF 5 BM 2 c
than BM when data are heteroscedastic (Table 2); see also the supplementary material (Section 1) for details about the performances of BM and possible ways to improve them. When data are homoscedastic, VFCV and BM have similar performances (maybe with a slight advantage for BM), which is not surprising since BM uses the knowledge that data are homoscedastic. Moreover, BM has been proved to be optimal in the homoscedastic setting [START_REF] Birgé | Gaussian model selection[END_REF][START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF].

Overall, VFCV appears to be a reliable alternative to BM when no prior knowledge guarantees that data are homoscedastic.

New change-point detection procedures via crossvalidation

Sections 3 and 4 showed that when data are heteroscedastic, CV can be used successfully instead of penalized criteria for detecting breakpoints given their number, as well as for estimating the number of breakpoints. Nevertheless, in Section 4, the segmentations compared by CV were obtained by empirical risk minimization, so that they can be suboptimal according to the results of Section 3. The next step for obtaining reliable change-point detection procedures for heteroscedastic data is to combine the two ideas, that is, to use CV twice. The goal of the present section is to properly define such procedures (with various kinds of CV) and to assess their performances.

Definition of a family of change-point detection procedures

The general strategy used in this article for change-point detection relies on two steps: First, detect where (D -1) breakpoints should be located for every D ∈ D n ; second, estimate the number (D -1) of breakpoints. This strategy can be summarized with the following procedure:

1. ∀D ∈ D n , A D (P n ) := s b m(D) = arg min m∈Mn(D) {crit 1 (S m , P n )} where for every model S, crit 1 (S, P n ) ∈ R estimates s -ERM(S; P n ) 2
n and s m = ERM(S m ; P n ) is defined as in Section 3.1. Let us now detail which are the candidate criteria crit 1 and crit 2 for being used in Procedure 6. For the first step:

D = arg min

• The empirical risk ('ERM') is crit 1,ERM (S, P n ) := P n γ (ERM (S; P n ))
• The Leave-p-out estimator of the risk ('Lpo p ') is, for every p ∈ {1, . . . , n -1}, crit 1,Lpo (S, P n , p) := R Lpo p (ERM(S; •), P n )

• For comparison, the ideal criterion ('Id') is defined by crit 1,Id (S,

P n ) := s -ERM(S; P n ) 2 n .
As in Section 3, Loo denotes Lpo 1 . The VFCV estimator of the risk R VF V could also be used as crit 1 ; it will not be considered in the following because it is computationally more expensive and more variable than Lpo (see Section 3.2).

For the second step: where pen BM (D) is defined by [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] with c 1 = 5, c 2 = 2 and C is chosen by the slope heuristics (see Section 1 of the supplementary material).

• The V -fold cross-validation estimator of the risk ('VF V ') is, for every V ∈ {1, . . . , n},

crit 2,VF V (A D , P n ) := R VF V (A D , P n ) ,
where R VF V is defined by ( 9) and the blocks B 1 , . . . , B V are chosen as in Procedure 5 (see Remark 3).

• For comparison, the ideal criterion ('Id') is defined by crit 2,Id (A D , P n ) := s -A D (P n ) 2 n . Remark 4. For crit 2 , definitions using Lpo could theoretically be considered. They are not investigated here because they are computationally intractable.

In the following, the notation α, β is used as a shortcut for "Procedure 6 with crit 1,α and crit 2,β ", and the outputs of α, β are denoted by m α,β ∈ M n and s α,β ∈ S * . For instance, BM coincides with ERM, BM ; Procedures α, Id are compared for several α in Section 3; Procedures ERM, β are compared for β ∈ {Id, BM, VF 5 } in Section 4. 

Simulation study

A simulation experiment compares procedures α, VF 5 for several α and ERM, BM , in the setting described in Section 3.3.1. A representative picture of the results is given by , both expectations being evaluated by averaging over N = 10 000 independent samples.

Remark 5. Birgé and Massart's penalization procedure is the only classical change-point detection procedure considered in this experiment for two reasons. First, change-point detection procedure looking for changes in the distribution of Y i would clearly fail to detect changes in the mean of the signal, as soon as the noise-level σ varies inside areas where the mean is constant. Second, among procedures detecting changes in the mean of a signal in a setting comparable to the setting of the paper (that is, frequentist, parametric, off-line, with no information on the number of change-points), BM appears to be the most reliable procedure according to recent papers [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF][START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF]. The question of the calibration of C is addressed in Section 1 of the supplementary material.

First, BM is consistently outperformed by the other procedures, except in the homoscedastic settings in which it confirms its strength.

Second, empirical risk minimization (ERM) slightly outperforms CV (Loo and Lpo 20 ) when data are homoscedastic. On the contrary, when data are heteroscedastic, Loo and Lpo 20 clearly outperform ERM, often by a margin larger than 10% (for instance, when σ = σ pc,1 ). Therefore, the results of Section 3 are confirmed when using VF 5 (instead of Id) for choosing the dimension. Third, the comparison between Lpo p , VF 5 for several values of p is less clear. Even though p = 1 (that is, Loo) mostly outperforms p = 20 (as well as p = 50, see the supplementary material), differences are small and often not significant despite the large number of samples generated. The conclusion of the simulation experiment on this question is that all values of p between 1 and n/2 all perform almost equally well, with a small advantage to p = 1 which may not be general. Let us mention here that the choice of p for Lpo p is usually related to overpenalization [see for instance 5, 19, 21], but it seems difficult to characterize the settings for which overpenalization is needed for detecting change-points given their number.

Framework

Random frameworks

In order to assess the generality of the results of Table 3, the procedures considered in Section 5.2 have been compared in three random settings. The following process has been repeated N = 10, 000 times. First, piecewise constant functions s and σ are randomly chosen (see Section 2 of the supplementary material for details). Then, given s and σ, a data sample (t i , Y i ) 1≤i≤n is generated as described in Section 3.3.1, and the same collection of models is used. Finally, each procedure P is applied to the sample (t i , Y i ) 1≤i≤n , and its loss ss P (P n ) 2 n is measured, as well as the loss of the oracle inf m∈Mn ss m 2 n . To summarize the results, the quality of each procedure is measured by the ratio

C (R) or (P) = E s,σ,ǫ 1 ,...,ǫn s -s P (P n ) 2 n E s,σ,ǫ 1 ,...,ǫn inf m∈Mn s -s m 2 n . The notation C (R)
or (P) differs from C or (P) to emphasize that each expectation includes the randomness of s and σ, in addition to the one of (ǫ i ) 1≤i≤n .

The results of this experiment-which are reported in Table 4-mostly confirm the results of the previous section (except that all the frameworks are heteroscedastic here), that is, whatever p, Lpo p , VF 5 outperforms ERM, VF 5 , which strongly outperforms ERM, BM . Similar results-not reported here-have been obtained with a sample size n = 200 and N = 1 000 samples.

Moreover, the difference between the performances of Lpo p , VF 5 and ERM, VF 5 is the largest in setting C and the smallest in setting A. This fact confirms the interpretation given in Section 3 for the failure of ERM for localizing a given number of change-points. Indeed, the main differences between frameworks A, B and C-which are precisely defined in Section 2 of the supplementary material-can be sketched as follows:

A the partitions on which s is built is often close to regular, and σ is chosen independently from s.

B the partitions on which s is built are often irregular, and σ is chosen independently from s.

C the partitions on which s is built are often irregular, and σ depends on s, so that the noise-level is smaller where s jumps more often.

In other words, frameworks A, B and C have been built so that for any D ∈ D n , the largest variations over M n (D) of V (m) (defined by ( 7)) occur in framework C, and the smallest variations occur in framework A. As a consequence, variations of the performance of ERM, VF 5 compared to Lpo p , VF 5 according to the framework certainly come from the local overfitting phenomenon presented in Section 3.

Application to CGH microarray data

In this section, the new change-point detection procedures proposed in the paper are applied to CGH microarray data.

Biological context

The purpose of Comparative Genomic Hybridization (CGH) microarray experiments is to detect and map chromosomal aberrations. For instance, a piece of chromosome can be amplified, that is appear several times more than usual, or deleted. Such aberrations are often related to cancer disease. Roughly, CGH profiles give the log-ratio of the DNA copy number along the chromosomes, compared to a reference DNA sequence [see [START_REF] Picard | Process segmentation/clustering Application to the analysis of array CGH data[END_REF][START_REF] Picard | A statistical approach for array CGH data analysis[END_REF][START_REF] Picard | A segmentation/clustering model for the analysis of array cgh data[END_REF], for details about the biological context of CGH data].

The goal of CGH data analysis is to detect abrupt changes in the mean of a signal (the log-ratio of copy numbers), and to estimate the mean in each segment. Hence, changepoint detection procedures are needed.

Moreover, assuming that CGH data are homoscedastic is often unrealistic. Indeed, changes in the chemical composition of the sequence are known to induce changes in the variance of the observed CGH profile, possibly independently from variations of the true copy number. Therefore, procedures robust to heteroscedasticity, such as the ones proposed in Section 5, should yield better results-in terms of detecting changes of copy number-than procedures assuming homoscedasticity.

The data set considered in this section is based on the Bt474 cell lines, which denote epithelial cells obtained from human breast cancer tumors of a sixty-year-old woman [START_REF] Picard | A statistical approach for array CGH data analysis[END_REF]. A test genome of Bt474 cell lines is compared to a normal reference male genome. Even though several chromosomes are studied in these cell lines, this section focuses on chromosomes 1 and 9. Chromosome 1 exhibits a putative heterogenous variance along the CGH profile, and chromosome 9 is likely to meet the homoscedasticity assumption. Log-ratios of copy numbers have been measured at 119 locations for chromosome 1 and at 93 locations for chromosome 9.

Procedures used in the CGH literature

Before applying Procedure 6 to the analysis of Bt474 CGH data, let us recall the definition of two change-point detection procedures, which were the most successful for analyzing the same data according to the literature [START_REF] Picard | A statistical approach for array CGH data analysis[END_REF].

The first procedure is a simplified version of BM proposed by Lavielle [28, Section 2] and first used on CGH data in [START_REF] Picard | A statistical approach for array CGH data analysis[END_REF]. Note that BM would give similar results on the data of Figure 5.

The second procedure-denoted by 'PML' for penalized maximum likelihood-aims at detecting changes in either the mean or the variance, that is breakpoints for (s, σ). The selected model is defined as the minimizer over m

∈ M n of crit PML (m) := λ∈Λm n λ log   1 n λ t i ∈I λ (Y i -s m (t i ; P n )) 2   + C ′′ D m ,
where n λ = Card {t i ∈ I λ } and C ′′ is estimated from data by the slope heuristics algorithm [START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF][START_REF] Lebarbier | Detecting multiple change-points in the mean of a Gaussian process by model selection[END_REF].

Results

Results obtained with BMsimple, PML, ERM, VF 5 and Lpo 20 , VF 5 on the Bt474 data set are reported on Figure 5.

For chromosome 9, BMsimple and PML yield (almost) the same segmentation, so that the homoscedasticity assumption is certainly not much violated. As expected, ERM, VF 5 and Lpo 20 , VF 5 also yield very similar segmentations, which confirms the reliability of these procedures for homoscedastic signal [see 21, Section 7.6 for details].

The picture is quite different for chromosome 1. Indeed, as shown by Figure 5 (right), BMsimple selects a segmentation with 7 breakpoints, whereas PML selects a segmentation with only one breakpoint. The major difference between BMsimple and PML supports at least the idea that these data must be heteroscedastic.

Nevertheless, none of the segmentations chosen by BMsimple and PML are entirely satisfactory: BMsimple relies on an assumption which is certainly violated; PML may use a change in the estimated variance for explaining several changes in the mean.

CV-based procedures ERM, VF 5 and Lpo 20 , VF 5 yield two other segmentations, with a medium number of breakpoints, respectively 4 and 3. In view of the simulation experiments of the previous sections, the segmentation obtained via Lpo 20 , VF 5 should be the most reliable one since data are heteroscedastic. Therefore, the right of Figure 5 can be interpretated as follows: The noise-level is small in the first part of chromosome 1, then higher, but not as high as estimated by PML. In particular, the copy number changes twice inside the second part of chromosome 1 (as defined by the segmentation obtained with PML), indicating that two putative amplified regions of chromosome 1 have been detected. Note however that choosing among the segmentations obtained with ERM, VF 5 and Lpo 20 , VF 5 is not an easy task without additional data. A definitive answer would need further biological experiments.

Conclusion

Results summary

Cross-validation (CV) methods have been used to build reliable procedures (Procedure 6) for detecting changes in the mean of a signal whose variance may not be constant.

First, when the number of breakpoints is given, empirical risk minimization has been proved to fail for some heteroscedastic problems, from both theoretical and experimental points of view. On the contrary, the Leave-p-out (Lpo p ) remains robust to heteroscedasticity while being computationally efficient thanks to closed-form formulas given in Section 3.2.3 (Theorem 1).

Second, for choosing the number of breakpoints, the commonly used penalization procedure proposed by Birgé and Massart in the homoscedastic framework should not be applied to heteroscedastic data. V -fold cross-validation (VFCV) turns out to be a reliable alternative-both with homoscedastic and heteroscedastic data-, leading to much better segmentations in terms of quadratic risk when data are heteroscedastic. Furthermore, unlike usual deterministic penalized criteria, VFCV efficiently chooses among segmentations obtained by either Lpo or empirical risk minimization, without any specific change in the procedure.

To conclude, the combination of Lpo (for choosing a segmentation for each possible number of breakpoints) and VFCV yields the most reliable procedure for detecting changes in the mean of a signal which is not a priori known to be homoscedastic. The resulting procedure is computationally tractable for small values of V , since its computational complexity is of order O(V n 2 ), which is similar to many comparable change-point detection procedures. The influence of V on the statistical performance of the procedure is not studied specifically in this paper; nevertheless, considering V = 5 only was sufficient to obtain a better statistical performance than Birgé and Massart's penalization procedure when data are heteroscedastic. When applied to real data (CGH profiles in Section 6), the proposed procedure turns out to be quite useful and effective, for a data set on which existing procedures highly disagree because of heteroscedasticity.

Prospects

The general form of Procedure 6 could be used with several other criteria, at both steps of the change-point detection procedure. For instance, resampling penalties [START_REF] Arlot | Model selection by resampling penalization[END_REF] could be used at the first step, for localizing the change-points given their number. At the second step, V -fold penalization [START_REF] Arlot | Suboptimality of penalties proportional to the dimension for model selection in heteroscedastic regression[END_REF] could also be used instead of VFCV, with the same computational cost and possibly an improved statistical performance.

Comparing precisely these resampling-based criteria for optimizing the performance of Procedure 6 would be of great interest and deserves further works. Simultaneously, several values of V should be compared for the second step of Procedure 6, and the precise influence of p when Lpo p is used at the first step should be further investigated. Preliminary results in this direction can already be found in [START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF]Chapter 7].
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 11 Figure 1: Comparison of s m ⋆ (D) (dotted black line), s bm ERM (D) (dashed blue line) and s b m Loo (D) (plain magenta line, see Section 3.2.2), D being the "optimal" dimension (see Figure3). Data are generated as described in Section 3.3.1 with n = 100 data points. Left: homoscedastic data (s 2 , σ c ), D = 4. Right: heteroscedastic data (s 3 , σ pc,3 ), D = 6.
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 21 Figure1illustrates how far m ERM (D) typically is from m ⋆ (D) according to variations of the standard-deviation σ. On the one hand, when data are homoscedastic, empirical risk minimization yields a segmentation close to the oracle (Figure1, left). On the other hand, when data are heteroscedastic, empirical risk minimization introduces artificial breakpoints in areas where the noise-level is above average, and misses breakpoints in areas where the noise-level is below average (Figure1, right). In other words, when data are heteroscedastic, empirical risk minimization over S D locally overfits in high-noise areas, and locally underfits in low-noise areas.The failure of empirical risk minimization with heteroscedastic data observed on Figure1is general[START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF] Chapter 7] and can be explained by Lemma 1 below. Indeed, the criteria P n γ( s m ) and ss m 2 n , respectively minimized by m ERM (D) and m ⋆ (D) over M n (D), are close to their respective expectations, as proved by the concentration inequalities of [7, Proposition 9] for instance. Lemma 1 enables to compare these expectations. Lemma 1. Let m ∈ M n and define s m := arg min f ∈Sm sf 2 n . Then,

Procedure 2 .m

 2 Loo (D) := arg min m∈Mn(D) R Loo (ERM (S m ; •) , P n ) . The segmentations chosen by Lpo and VFCV are defined similarly and denoted respectively by m Lpo p (D) and by m VF V (D).
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 2 Figure 2: Regression functions s 1 , s 2 , s 3 ; s 1 and s 2 are piecewise constant with 4 jumps; s 3 is piecewise constant with 9 jumps.
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 322 Figure 3: E ss b m P (D)
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 3 Figure 3, through the expected values of the quadratic loss E ss b m P (D)

3 .

 3 s BM := s b m BM . All m ∈ M n (D) are penalized in the same way by pen BM (m), so that Procedure 3 actually selects a segmentation among { m ERM (D)} D∈Dn . Therefore, Procedure 3 can be reformulated as follows, as noticed in [16, Section 4.3]. Procedure 4 (Reformulation of Procedure 3). 1. ∀D ∈ D n , s b m ERM (D) := ERM S D ; P n where S D := m∈Mn(D) S m . 2. D BM := arg min D∈Dn P n γ( s b m ERM (D) ) + pen BM (D) where pen BM (D) is defined by (11).

3 .Figure 4 : 2 n

 342 Figure 4: Comparison of the expectations of ss b m(D)
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 513 ∀D ∈ D n , s b m ERM (D) := ERM S D ; P n , 2. D VF V := arg min D∈Dn {crit VF V (D)} where crit VF V (D) := R VF V ERM S D (•); • , • and R VF V is defined by (9). In algorithm (t i , Y i ) 1≤i≤n → ERM S D ; P n , the model S D depends on the design points. When the training set is

2 n

 2 [see 21, Chapter 7, and Section 3 of the supplementary material for additional results]. As illustrated by Figure 4, crit VF V (D) can be used for measuring the capacity of S D . Indeed, VFCV correctly estimates the risk of empirical risk minimizers over S D for every D and for both homoscedastic and heteroscedastic data; crit VF V (D) only underestimates ss b m(D) for dimensions D close to n(V -1)/(2V ), for reasons explained at the end of Remark 3. On the contrary, crit BM (D) is a poor estimate of ss b

3 .

 3 D∈Dn {crit 2 (A D , P n )}, where for every algorithm A D , crit 2 (A D , P n ) ∈ R estimates s -A D (P n ) 2 n . Output: the segmentation m( D) and the corresponding estimator s b m( b D) of s.

•

  Birgé and Massart's penalization criterion ('BM') is crit 2,BM (A D , P n ) := P n γ (A D (P n )) + pen BM (D) ,

  of several model selection procedures P in frameworks A, B, C with sample size n = 100. In each framework, N = 10, 000 independent samples have been considered. Next to each value is indicated the corresponding empirical standard deviation divided by √ N .

  Lpo 20 , VF 5

Figure 5 :

 5 Figure 5: Change-points locations along Chromosome 9 (Left) and Chromosome 1 (Right). The mean on each homogeneous region is indicated by plain horizontal lines.

  Leave-p-out (Lpo p , with any p ∈ {1, . . . , n -1}) generalizes Loo. Let E p denote the collection of all possible subsets of {1, . . . , n} with cardinality np. Then, Lpo consists in considering every I (t) ∈ E p as training set indices:

	R Lpo p (A, P n ) :=	p n	-1

Table 1 :

 1 Average performance C or ( P, Id ) for change-point detection procedures P among ERM, Loo and Lpo p with p = 20 and p = 50. Several regression functions s and noise-level functions σ have been considered, each time with N = 10 000 independent samples. Next to each value is indicated the corresponding empirical standard deviation divided by √ N , measuring the uncertainty of the estimated performance.

	s •	σ •	ERM	Loo	Lpo 20	Lpo 50
	2 3	c pc,1 1.31 ± 0.02 1.16 ± 0.02 1.14 ± 0.02 1.11 ± 0.01 2.88 ± 0.01 2.93 ± 0.01 2.93 ± 0.01 2.94 ± 0.01 pc,3 3.09 ± 0.03 2.52 ± 0.03 2.48 ± 0.03 2.32 ± 0.03 c 3.18 ± 0.01 3.25 ± 0.01 3.29 ± 0.01 3.44 ± 0.01 pc,1 3.00 ± 0.01 2.67 ± 0.02 2.68 ± 0.02 2.77 ± 0.02 pc,3 4.41 ± 0.02 3.97 ± 0.02 4.00 ± 0.02 4.11 ± 0.02
	3.3.3 Results: Comparison of the "best" segmentations	

This section focuses on the segmentation obtained with the best possible choice of D, that is the one corresponding to the minimum of D → ss b m P (D) 2 n

Table 2 :

 2 Performance C or ( ERM, P ) for P = Id (that is, choosing the dimension D ⋆ := arg min D∈Dn ss b

	3	2.88 ± 0.01 4.51 ± 0.03 pc,2 2.88 ± 0.02 6.58 ± 0.06 19.82 ± 0.07 5.27 ± 0.03 s 3.01 ± 0.01 5.21 ± 0.04 9.69 ± 0.40 c 3.18 ± 0.01 4.41 ± 0.02 4.39 ± 0.01 pc,2 4.06 ± 0.02 5.99 ± 0.02 7.86 ± 0.03 s 4.02 ± 0.01 5.97 ± 0.03 7.59 ± 0.03
			2
		m ERM (D)	n

Table 3 :

 3 Performance C or (P) for several change-point detection procedures P in several settings (s, σ). Each time, N = 10 000 independent samples have been generated. Next to each value is indicated the corresponding empirical standard deviation divided by √ N .

	s •	σ •	ERM, VF 5	Loo, VF 5	Lpo 20 , VF 5	ERM, BM
	1 2 3	c pc,1 11.96 ± 0.03 10.25 ± 0.03 10.28 ± 0.03 12.85 ± 0.04 5.40 ± 0.05 5.03 ± 0.05 5.10 ± 0.05 3.91 ± 0.03 pc,3 4.96 ± 0.05 4.82 ± 0.04 4.79 ± 0.05 13.08 ± 0.04 s 7.33 ± 0.06 6.82 ± 0.05 6.99 ± 0.06 9.41 ± 0.04 c 4.51 ± 0.03 4.55 ± 0.03 4.50 ± 0.03 5.27 ± 0.03 pc,1 11.67 ± 0.09 10.26 ± 0.08 10.29 ± 0.08 19.36 ± 0.07 pc,3 6.66 ± 0.06 5.81 ± 0.06 5.74 ± 0.06 20.12 ± 0.06 s 5.21 ± 0.04 5.19 ± 0.03 5.17 ± 0.03 9.69 ± 0.04 c 4.41 ± 0.02 4.54 ± 0.02 4.62 ± 0.02 4.39 ± 0.01 pc,1 4.91 ± 0.02 4.40 ± 0.02 4.44 ± 0.02 6.50 ± 0.02 pc,3 6.32 ± 0.02 5.74 ± 0.02 5.81 ± 0.02 8.47 ± 0.03 s 5.97 ± 0.02 5.72 ± 0.02 5.86 ± 0.02 7.59 ± 0.03

Table 3 [

 3 see 21, Chapter 7, for additional results]. The (statistical) performance of each competing procedure P is measured by

	C or (P) :=	E s -s P (P n ) 2

n E inf m∈Mn ss m (P n ) 2 n

Table 4 :

 4 Performance C

		A	B	C
	ERM, BM ERM, VF 5 Loo, VF 5 Lpo 20 , VF 5 Lpo 50 , VF 5	6.82 ± 0.03 7.21 ± 0.04 13.49 ± 0.07 4.78 ± 0.03 5.09 ± 0.03 7.17 ± 0.05 4.65 ± 0.03 4.88 ± 0.03 6.61 ± 0.05 4.78 ± 0.03 4.91 ± 0.03 6.49 ± 0.05 4.97 ± 0.03 5.18 ± 0.04 6.69 ± 0.05

n when pen(m) = 2σ 2 D m n -1 , that is Mallows'

Procedure 6 (General two-step change-point detection procedure).